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Le genre d’un groupe nilpotent avec opérateurs

CHARLES CAssiDY*

Au cours des derniéres années, Pickel [13] et Mislin [12] ont introduit une
notion de ‘“genre” pour un groupe nilpotent de type fini N. De fagon précise, le
genre de N selon Pickel (que nous noterons ici Gp(N)) désigne I’ensemble des
classes d’isomorphisme de groupes M tels que les quotients finis de M et N
coincident et tels que les rationalisations M, et N, de M et N respectivement
soient isomorphes. Pickel démontre que cet ensemble est toujours fini. Par
ailleurs, Mislin appelle le genre d’un tel groupe (désigné ici par G,,(N)) ’ensem-
ble des classes d’isomorphisme de groupes M tels que M, = N, pour tout premier
p (si G est un groupe nilpotent, on désigne par G, la localisation de G en p, voir
par exemple [2], [15] et [17]). Ces deux notions de genre quoique trés voisines ne
coincident pas; Warfield [16] indique que si M e G,,(N) alors M € Gp(N); par
ailleurs, Belfi et Wilkerson [1] ont montré que la réciproque n’est pas vraie en
général; cependant, dans la catégorie N, des groupes nilpotents de type fini dont
le sous-groupe des commutateurs est fini, les deux notions de genre coincident
(9], [16)).

Le travail de Mislin [12] a été essentiellement consacré a ’étude du genre dans
la catégorie N,. Mislin y démontre que quoique G,,(N) est toujours fini (N € N),
il peut étre arbitrairement grand; ses exemples sont remarquables. Il démontre
aussi que le genre est étroitement reli€¢ a des phénomenes de non-simplification
qui apparaissent autant en théorie des groupes qu’en topologie ou le genre fut
également introduit pour les H-espaces ([6], [7], [10], [11], [18]).

Le concept de genre est cependant intéressant en lui-méme. En effet, I’idée de
localiser un groupe (ou un espace topologique) en chaque premier p permet de
remplacer ce groupe (ou cet espace) par plusieurs autres qui sont plus simples en
un certain sens; il est alors parfois possible de résoudre un probléme pour chacum
de ces nouveaux objets et avec un peu de chance de remonter a I’objet de départ.
Cependant la connaissance de tous les localisés d’un groupe N (ou d’un espace X)

*Ce travail fut partiellement réalisé alors que I’auteur était en congé de 1’Université Laval et se
trouvait 3 ’ETH de Ziirich. L’auteur tient a remercier les professeurs P. J. Hilton et G. Mislin pour les
nombreux conseils et les suggestions lors de la préparation de ce travail.

364



Le genre d’un groupe nilpotent avec opérateurs 365

en chaque premier p n’entraine pas en général la connaissance de N (ou de X)
comme le montrent les exemples de Milnor (voir [14]) ou de Mislin [12]. Le genre
au sens de Mislin est précisément une mesure de 1’obstruction a une telle
connaissance.

Un probleme qui vient immédiatement a I’esprit est celui de la recherche
d’invariants pour le genre; en topologie, par exemple, on peut voir que tous les
groupes d’homologie et de cohomologie ainsi que les groupes d’homotopie de
dimension au moins égale a 2 sont des invariants du genre alors que le groupe
fondamental ainsi que I’anneau de cohomologie n’en sont pas; pour les groupes
nilpotents, ’appartenance a la catégorie N, est un invariant du genre; il en est de
méme du centre, du sous-groupe des commutateurs et de la classe de nilpotence
pour les groupes dans la catégorie N, (la classe de nilpotence est méme un
invariant du genre dans la catégorie N de tous les groupes nilpotents). C’est
notamment en découvrant les bons invariants du genre que Mislin est parvenu a
obtenir tous ses résultats.

Il nous a semblé naturel d’introduire ici une définition du genre dans le cas
d’un groupe nilpotent N sur lequel opére un groupe Q (nous dirons alors que N
est un Q-groupe nilpotent); notre definition est une généralisation de celle de
Mislin. On sait que si Q opere sur N, alors Q opere aussi sur tous les localisés N,,;
l’action de Q sur N, n’est que la localisation de I’action de Q sur N (propriété
universelle de la localisation, voir [2]). Le probleme général est le suivant: que
pouvons-nous dire de N comme Q-groupe si nous connaissons tous ses localisés
N, comme Q-groupes? Il n’est pas difficile de voir qu’un Q-isomorphisme
¢:N— N est complétement déterminé par tous ses localisés ¢,:N, —> N,; la
situation est cependant completement différente en ce qui concerne les objets
eux-mémes: un Q-isomorphisme ¢:N— N détermine des Q-isomorphismes
<!>p:Np—->1\7p mais méme s’il existe des Q-isomorphismes lllp:Np—‘)Np pour
chaque premier p, on ne peut pas conclure en général qu’il existe un Q-
isomorphisme ¢ : N — N induisant en méme temps tous les s, Nous introduisons
également par la suite une définition du genre pour les Q-groupes qui généralise
la définition de Pickel. Dans les deux situations, notre étude se limite au cas ou le
Q-groupe N est nilpotent de type fini; il faudra d’ailleurs souvent imposer la
méme condition au groupe Q.

Dans la premicre partie, nous définissons le “Q-genre” (Mislin) de N que
nous notons QG,,(N). Ensuite, nous décrivons une famille de Q-groupes abéliens
{N(p, m)}, ou p est un premier impair fixe mais arbitraire et m=1,...,(p—1)/2,
qui fournissent des exemples de non-trivialité de QG,,; méme si G,, est trivial
pour les groupes sous-jacents; pour chaque premier p, les groupes N(p, m) sont
deux-a-deux isomorphes comme groupes mais non-isomorphes comme Q-
groupes. Puis, en prenant les produits croisés N(p, m)] Q, nous obtenons des
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groupes nilpotents mais non-abéliens qui sont précisément les exemples de Mislin
mais exprimés sous une forme beaucoup plus simple et explicite. Nous identifions
ensuite certains invariants du Q-genre qui nous permettent d’ obtenir par la suite
pour le Q-genre tous les résultats obtenus dans [5] et [12] pour le genre de
Mislin; 12 ou Hilton et Mislin devaient supposer que le sous-groupe des com-
mutateurs était fini, il faudra supposer dans notre situation qu’un certain sous-
groupe noté I';N est fini. Toutefois, 2 ’aide des méthodes de [5] et [12], c’est
seulement dans le cas ou N est abélien que nous réussissons a munir le Q-genre
d’une structure de groupe et a obtenir une borne supérieure pour le nombre de
ses éléments.

Dans la deuxieme partie, nous définissons le Q-genre (Pickel) de N que nous
notons QGp(N) et nous indiquons que les résultats obtenus par Warfield en [16]
restent valides avec essentiellement les mémes démonstrations dans le cas du
Q-genre. De plus, en étudiant attentivement 'une des démonstrations de
Warfield, nous parvenons a déterminer une borne supérieure pour le nombre
d’éléments dans le Q-genre des Q-groupes nilpotents (mais pas nécessairement
abéliens) de type fini avec I'5N fini; il ne nous a pas semblé possible par contre de
munir d’une fagon naturelle le Q-genre de tels Q-groupes d’une structure de
groupe a ’aide des méthodes de Warfield.

1. Définition du Q-genre (Mislin) et quelques propriétés fondamentales

Etant donné un groupe Q, nous entendons par Q-groupe tout groupe N sur
lequel Q opere, c’est-a-dire la donnée d’un groupe N et d’un homomorphisme
o : Q— Aut N. Un Q-homomorphisme d’un Q-groupe M dans un Q-groupe N
est un homomorphisme de groupes de M dans N qui commute avec les actions de
Q sur M et N respectivement. Si nous disons qu'un Q groupe N est de type fini
(resp. nilpotent), il faudra toujours comprendre que N est de type fini (resp.
nilpotent) en tant que groupe.

Le genre de Mislin est un cas particulier de notre premiére définition; si
Paction de Q sur N est triviale, c’est-a-dire si w(Q)=Identité, le Q-genre de N
sera précisément le genre de Mislin.

DEFINITION 1.1. Si N est un Q-groupe nilpotent de type fini, le Q-genre de
N (Mislin) noté QGy,(N) est la famille des classes d’isomorphisme de Q-groupes
nilpotents de type fini M tels que M, soit Q-isomorphe & N, pour tour premier p.

Si un groupe Q opére sur un groupe N, on définit [8] la Q-suite centrale
descendante de N comme suit:

FeN=N, Tg'N=gr{uv*uv'|ueN,vel'yN,xcQ}, i=1.
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Si I'y"* N = {1} pour un certain c € N, on dit que I’action de Q sur N est nilpotente
ou que Q opere sur N de fagon nilpotente et on écrit nil,N =< c¢; dans ce cas, le
groupe N est nécessairement nilpotent; si de plus, Q est nilpotent, on définit pour
chaque p une action de Q, sur N, de la fagon suivante: on considere I’extension
scindée de Q par N qui est alors nilpotente puis, en localisant cette extension, on
obtient une extension scindée de Q, par N, ce qui nous permet de définir I’action
de Q, sur N,. Il est facile de voir que si Q opere sur N de fagon nilpotente et si
M e QG,,(N), alors ’action de Q sur M est également nilpotente; cela est du au
fait que niloN = max, niloN, (voir [8]); de fait, en utilisant la convention niloN =
o si 'oN#{1} pour tout i eN, on voit que nil,N est un invariant du Q-genre.
Tout cela suggere une autre définition du Q-genre pour de tels Q-groupes; on dit

que Me QG}(N) si et seulement si Mpg-'pr pour tout premier p; il découle
immédiatement de [3] ((3.9) et théoreme 3) ainsi que de ce qui précéde que cette
définition est équivalente a la définition 1.1 pour les Q-groupes sur lesquels
I’action est nilpotente.

Nous décrivons maintenant pour chaque premier impair p fixe mais arbitraire
une famille de Q-groupes qui montre que QG,,(N) peut étre non-trivial méme si
Gy (N) est trivial. Tous les groupes considérés sont abéliens de type fini et on sait
que le genre de Mislin est trivial pour de tels groupes ([4], proposition 3.3); les
Q-groupes que nous décrivons sont deux-a-deux isomorphes comme groupes
mais non Q-isomorphes; par contre, tous les localisés seront Q-isomorphes pour
chaque premier. Puisque N est un Q-module, nous noterons 'opération dans N
additivement mais méme si Q est abélien, I’opération dans Q sera notée multip-
licativement.

THEOREME 1.1 Soit p un premier impair fixe mais arbitraire et soit q=
(p—1)/2. Posons N=Z/p® qZ; désignons par a un générateur de Z/p et par b, un
générateur de la i composante de qZ. Posons Q =14, le produit direct de q copies
de Z et désignons par x; un générateur de la i composante de Z3. Pour chaque

m=1,...,q nous définissons une action de Q sur N de la facon suivante:
xa=a i=1,...,q
x;b=1b; i#]j

xibi=a+bi i=l,-..,q_l

x,b, =ma+b,.

Nous désignons par N(p, m) le Q-groupe ainsi obtenu. Pour un p donné et pour m et
n différents et tels que 1=m, n=<gq, les Q-groupes N(p, m) et N(p, n) ne sont pas
Q-isomorphes mais leurs localisés le sont en chaque premier.
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Preuve. Démontrer que N(p, m) et N(p, n) ont les mémes localisés en tant que
Q-groupes pour chaque premier ne présente aucune difficulté. Nous nous borne-
rons donc a montrer que les groupes isomorphes N(p, m) et N(p, n) ne peuvent
pas étre Q-isomorphes pour m# n. Supposons qu’il existe un Q-isomorphisme
a :N(p, m)— N(p, n). Alors nécessairement a(a)=1la, o 1<I=p—1; par ail-
leurs, a(b)=Aa+X}_; p;b, ou w;eZ. Puisque nous voulons que a« soit un
Q-isomorphisme, il faut que chacune des relations a(x;b;) = x; . a(b;) soit satisfaite
pour i,j=1,...,q. Un calcul explicite nous montre que cela entraine que

p; = 0(mod p) pour i#j
w; = l(mod p) pouri=1,2,...,q—-1

Im
Mag =" (mod p)

Le déterminant de la matrice (u;) est donc [“m/n (mod p). Or I’application
induite par a sur le quotient qZ devant €tre un automorphisme de ce groupe, il
faut que le déterminant de (u;;) soit égal a +1. Cependant, m et n sont différents
et tous deux compris entre 1 et q; le quotient m/n est donc différent de +1
(mod p) alors que 19=1?"1Y"2 est égal & +1 (mod p) d’aprés le théoréme de
Fermat. Le déterminant [“m/n ne peut donc pas €tre égal a +1 (mod p) et « ne
peut pas étre un Q-isomorphisme.

Un des aspects intéressants de nos exemples est qu’il est possible de récupérer
de fagon explicite les exemples de Mislin en prenant les produits croisés
M(p, m)=N(p, m){ Q pour les différentes valeurs de m. Rappelons que pour
chaque premier p fixe mais arbitraire, Mislin définit un groupe N(p) de la fagon
suivante: si {x, y;|1=si=<(p—1)/2}c H(Z"';Z/p) désigne la réduction mod p
d’une base de H'(ZP'; Z)=7Z ", alors N(p) est défini par I’extension

E(p):Z/p>> N(p) > Z*!
ou [E(p)]=Yxy; € H¥(Z?*; Z/p). Il démontre alors que |G (N(p))|=(p—1)/2=¢q
et qu'un ensemble de représentants pour les éléments de G,,(N(p)) est donné par
la famille {F,,(p)} définie par

E,(p):Z/p~ F,.(p) »Z°"'

ou [E.(p)l=m[E(p)]Y, m=1,...,q; remarquons quici m[E(p)]%¢e
H?"Y(ZP~';Z/p)=1Z/p ou Z/p est engendré par [E(p)]*

THEOREME 1.2. Soit p un premier impair fixe mais arbitraire. La famille des
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groupes {M(p, m)}, m=1, ..., q, fournit des exemples de non-trivialité du genre de
Mislin. Plus précisément, on peut choisir dans les exemples de Mislin N(p) = M(p, 1)
et F,(p)= M(p, m) (voir [12], théoreme 3).

Preuve. Notons d’abord que si Q opere de fagon nilpotente sur les groupes
nilpotents M et N, alors M, 2 N, pour tout premier r entraine (M{Q), =(N{Q),
pour tout r. En effet, on a clairement M,{ Q= N,{Q pour tout r et puisque
l’action est nilpotente M,] Q, = N,{ Q, pour tout r (voir [3]); par ailleurs, on sait
que M, Q,=(M}Q), et il S’ensuit que (M] Q), =(N{ Q), pour tout r.

D’autre part, il est clair que chaque groupe M(p, m) est une extension centrale
Z/p—i> M(p, m) > (p—1)Z. Soit s une section de 7 définie par

q q q q
s( Y Abi+ Y u,-x,-) - ( Y Abs Hx;a);
i=1 i=1 i=1 ji=1

un 2-cocycle représentant cette extension est obtenu en considérant ’ensemble de
facteurs f(X, Y)=s(x+ Y)s(X) 's(Y) .
Explicitement,

q q q
f(ZMbﬁ N AORHED) “fxi)
i = i=1 i=1

=1 ji=1

—1

= A+ ANDb. : (u+p) S b. : K, (s 'b. : ]
Z( i Db, Hxl Z’\tbv ny Z Alb, Hxi'
i i=1 i=1 i=1 i=1 i=1

(

X

q-—1

a d E
(A0, TTx70)( T madea + mudga— 3. Ay T[x)

1

et

q

— q q
piAia+muiAia— Z Alb, Hx,-“":'>
k=1 i=1 i=1
q
= (Z (A; +ADb, Z (Mj + M,")xj)
i j=1

i=1 j=

q—1
X ( (i + I LT A a+ m(pgd, + wid, + pgria
k=1

q

q
- Z (A; +ADb, xj_(u’+“;)>
i=1 fa=1

q=1
= (—- Z KiAca —mulA a, 1)
k=1
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le tout se faisant mod p dans Z/p. Ces calculs montrent qu’a un signe pres le
groupe M(p, 1) est le terme central de I’extension E(p) de Mislin ([12], théoréme
3).

Pour montrer que la famille {M(p, m)} nous donne précisément les exemples
de Mislin, il suffit (voir [12], page 116) de montrer que [M(p, m)]* =m[M(p, 1)1
ou [M(p, m)}® représente le “cup-produit” [M(p, m)]U- - - U[M(p, m)] pris q fois
de [M(p, m)]le H*(Z?'; Z/p) par lui-méme. D’aprés les calculs précédents et les
propriétés du “‘cup-produit”, on voit tout de suite qu'un 2-cocycle représentant a
la fois [M(p, m)]* et m[M(p, 1)]? est donné par

f(X’ Ya LERE X’ Y) = m(I‘LiAIM'ZI\Z LR M':;Aq)a

d’ou le théoreme.
Si Q opere sur N, nous avons indiqué précédemment que la Q-suite centrale
descendante de N est définie par:

IT's’N=N, TI3'N=gr{uv’u™'v"'|ueN,vel',N, xeQ)}, i=1.
De méme, on définit la Q-suite centrale ascendante (voir [8]) par:

vQN ={1}, voN={ue Z(N)| u* = u, pour tout x € Q},
Vi3 INIVN = vo(N/v,N), i=1.

Si Q opére trivialement sur N, on retrouve les suites centrales habituelles. Nous
disons que I’action de Q sur N est nilpotente si I''' N ={1} pour un certain c e N
ou de fagon équivalente si v5N = N; cette équivalence se démontre au moyen de
Pinclusion F'oN=v3 "N pour i=1,..., c que 'on peut obtenir par induction
sur i.

DEFINITION 1.2. La catégorie des Q-groupes pour lesquels I'2N est fini,
avec N et Q nilpotents de type fini, est désignée ici par 2,.

DEFINITION 1.3. Nous désignons par ., la sous-catégorie de 2, formée des
Q-groupes pour lesquels I'5N est fini, N abélien de type fini et Q nilpotent de
type fini.

Remarquons que les exemples N(p, m) décrits plus haut appartiennent a la
catégorie M,y; de plus, dans ce cas, Q opeére sur N(p, m) de fagon nilpotente.
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LEMME 1.1. Pour N e 2,, le quotient N/v;,N est un Q-groupe fini et le nombre
de Hirsch h(N) de N (ou N est considéré comme groupe) est donné par

h(N)=rang voN =dimyN,
Preuve. Considérons le diagramme commutatif

voN>—> N —» N/voN

l l

(voN)o>—> Ny —> (N/vgN)o

ou les lignes sont exactes. D’apres [8], théoreme 3.5, (v5N)o = vo(N,) puisque N
et Q sont de type fini. Par aileurs, N, est abélien et Q opere trivialement sur N,
puisque I'4N est fini et donc contenu dans ker (N — N); on a donc v5(N,) = N,
d’olt (v5N)o= Ny, puis (N/vgN)o={1}. On en déduit que N/v;N est fini et la
conclusion s’ensuit.

LEMME 1.2. Soient Ne 2,, M € QGy,(N). Alors F'e;M =T7%N.

Preuve. On sait ([8], corollaire 3.3) que pour tout Q-groupe nilpotent N,
I’application canonique I'AN— I'3(N,) p-localise. On a donc I'3(N,)£(I'3N),
mais puisque I'5N est fini, TN 2] (I'AN),, I'action respectant les composantes.
Si M e QGy(N), alors I ?)(Mp)g r g(Np); en particulier I'2M est fini et FT2M £
[1 T3(M,) 2T T3(N,) 2T3N.

DEFINITION 1.4. Soit N un Q-groupe nilpotent avec T(v,N) d’exposant
fini (pour tout groupe nilpotent G, T(G) désignera le sous-groupe de torsion de
G). Nous posons:

FvuN={xecvHLN|IyevLN avec y*=x, k=exp T(voN)}

Remarque. FviN est abélien sans torsion et muni d’une Q-action triviale; si
N e Q,, Fr,N est abélien libre de rang h(N) d’apres le lemme 1.1; si N et Q sont
de type fini, on voit que I’application canonique N — N, envoie FruoN dans
Fvy(N,); (Fv,N), peut donc étre identifié a un sous-groupe de Fro(N,).

LEMME 1.3. Si N et Q sont de type fini, N nilpotent, alors I’application
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canonique (FvgN), — Fvo(N,) est un isomorphisme (remarquons que tous les
groupes sont clairement des Q-groupes sur lesquels I’ action est triviale).

Preuve. On remarque d’abord que si
X={xevy(N,)|Iyevs(N,) avec y*=x, k=exp T(v5N)}
alors il existe un diagramme commutatif

T(V})N) p S V}JN———'—‘——» FvbN

3 Pl

T(v5(N,)) = v5(N,) > X

ou les lignes sont exactes. Puisque N et Q sont de type fini, a et B p-localisent [8]
et alors y p-localise [2]. On a clairement X = Fyg(N,) puisque, T(voN) étant fini,
exp T(vo(N,)) est précisément la p-composante de exp T(v5N) et que vi(N,) est
p-local.

DEFINTION 1.5. Pour Ne9,, nous posons S(N)=N/FyogN muni de sa
structure évidente de Q-groupe.

LEMME 1.4. Soient N €9y, M e QGy,(N). Alors Fv,M=Fv5LN et S(M)2
S(N).

Il suffit de reprendre mutatis mutandis la preuve du lemme 4 de [12] en
vérifiant bien que tous les homomorphismes sont des Q-homomorphismes.

Soit maintenant N e #,. Si M€ QG,,(N), nous savons ([4], proposition 3.3)
que M est abélien comme groupe et les résultats précédents montrent que M se
laisse représenter comme extension de modules sur ’anneau de groupe Z(Q); a M
correspond une extension E:Z" > M —» S ou f(Z") = FvguM, h = h(N) = h(M) et
S2S(N)2S(M). On sait que ces extensions. sont classifiées par le groupe
Ext,(S; Z"); cependant, la classe de Q-isomorphisme de M ne détermine pas
uniquement un élément de Exty(S;Z") mais seulement une classe double dans
AutoZ"\ExtL(S; Z")/Aut,S, Pensemble des classes d’équivalence dans
Ext(S; Z") produites en considérant I'action 2 gauche de Aut,Z" et Paction a
droite de Aut,S sur le groupe Ext;(S; Z"). En effet, Si les modules M et M’ sont
isomorphes et représentés par des extensions Z">L> M -—» S et Z">E8 M —» S
telles que f(Z")=FviM et g(ZM) = FvoM' alors clairement ces deux extensions
appartiennent 2 la méme classe double. Réciproquement, si une extension Z" »>
L —» S appartient 3 la méme classe double que Z">L> M —» S, il existe un
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diagramme commutatif

Z' >t s M—S

Lol

'L —> S

d’ot M2 L et k(Z") = FyLL. On peut donc conclure comme dans [12] qu’il existe
une bijection entre QG,,(N) et un sous-ensemble de I’ensemble des classes
doubles de Exty(S;Z") pour Ne, Puisque S est fini, que Z" est de
présentation finie et que Ext,(—, —) est additif, on peut affirmer que si I’on pose
t=exp S alors ¢ est aussi un exposant de Exty(S;Z"). Nous verrons plus loin
comment ¢t est reli€ a N dans le cas ou Q opere sur N de facon nilpotente.
Désignons par T l’ensemble des premiers p tels que p divise t; puisque
Ext5(S; Z") ne contient que des éléments de torsion dont l'ordre a tous ses
facteurs premiers dans T, Exty(S;Z")=Exty(S;Z")" (la localisation de
Ext(S; Z") par rapport a I’ensemble des premiers T, voir [2]); puisque Q est
nilpotent de type fini, le lemme suivant nous montre que Ext}(S;Z")=
Exto(S; ZY).

LEMME 1.5. Soient A et B des Q-modules ouu A est de type fini et soit Q un
groupe nilpotent de type fini. Alors si T est un ensemble de premiers,

Exto(A, B)r =Exty(A,Br), i=0,1,2,...
et en particulier Homy (A, B)r =Homg(A, By).

Preuve. Pour tout groupe Q-libre de type fini F, on a Homg(F, B)r=
Hom (F, By) prusque Homy(F, C)=& C (il y a autant de copies de C que le

fime

nombre d’éléments dans une Q-base de F).
Considérons maintenant une résolution Q-libre

> Fu—>FE—>F, > >F—>A

ou les F; peuvent étre choisis de type fini puisque si Q est nilpotent de type fini,
alors Z(Q) est noethérien. On a la suite

-+ —Homg(F..;, B) < Homg(F, B) < Homq(F,_;, B) <+
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et en localisant en T,
«++ «—Homg(F;.1, B)r «<Homg(F, B)r < Homg(F,_;, B)p < - - -

Le résultat découle de I’égalité Homq(F, B)r=Hom(F, Br) et du fait que la
localisation est exacte.

Posons maintenant § = Aut, S, G = GL(h,Z)= Aut, Z" et G(T)= GL(h,Z);
puisque Extl(S; Z*)=Exty(S; ZY%), il s’ensuit que ce groupe est muni d’une
action a gauche de G(T) en plus de I’action a gauche de G et de I'action a droite
de S. L’injection GL(h,Z)— GL(h,Z) induit une surjection

o : G\ExtL(S; Z")/S — G(T)\ExtL(S; Z")/S
: G[E]S -~ G(T)[E]S.

THEOREME 1.3. Soit Ne M, et soit E:Z" > N—» S une extension de
Q-groupes ot f(Z")=FyyN et S S(N). Alors il existe une bijection naturelle

0:0~(G(T)[E]S) > QGy(N).

Preuve. 1l n’y a plus maintenant qu’a reprendre la preuve du théoreme 4 de
[12] en remplagant H*(Q;Z") par Ext}(S;Z"); toutes les remarques que nous
avons faites & propos de Exty(S;Z") permettent de le faire.

Remarque. On peut déduire (comme dans [12]) de la preuve du théoreme
précédent que pour NedM,, il existe une surjection de coker (GL(h,Z)—
GL(h,Z/t))=(Z/t)*/{£1} sur QGp(N) que nous noterons

8(N):(Z/t)* {£1} = QGp(N).

COROLLAIRE 1.1. Si Ne M, et si t=exp S(N), alors |QG,(N)|= ¢(1)/2 oi
¢ est fonction d’Euler.

Les exemples décrits dans le théoréme 1.1 montrent que cette borne peut étre
atteinte; en effet, on a alors |QG,,(N(p, m))| = (p—1)/2.

Nous donnerons dans la deuxiéme partie une borne pour |QG,,(N)| dans le
cas ou Ne 2, mais auparavant nous allons indiquer quelques résultats qui nous
permettront de munir QG,,(N) d’une structure de groupe si N € #, et si Q opere
sur N de fagon nilpotente.
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LEMME 1.6. Supposons que N e My, t =exp S(N) et Q opeére sur N de facon
nilpotente. Alors p divise t si et seulement si N a de la p-torsion.

La preuve est comme celle du lemme 1.1 de [S]; il faut cependant utiliser le
résultat suivant:

LEMME 1.7. Si A est abélien et si Q opére sur A de facon nilpotente, alors A a
de la p-torsion entraine que A en a aussi (ici A°={aec A |xa=a, pour tout

xeQ}),

Preuve. Remarquons que si A est abélien, la Q-suite centrale ascendante est
tout simplement:

VLA ={0}, VoA =A%, v AIVLA = (AlvgA)S, i=1.

Supposons que A a de la p-torsion mais que v5,A = A° n’en a pas; désignons par
j le plus petit entier naturel i tel que »,A a de la p-torsion; par hypothése, on a
au moins j=2. Il existe donc un élément de p-torsion a,€ vhbA et comme
ao€ A9, il existe x € Q tel que xao—a,# 0. Puisque a € vhA — (xa—a)e v,'A
est un homomorphisme, xa,— a, est de p-torsion, ce qui est une contradiction.

Dans le cas ou Q opere sur N de fagon nilpotente, on voit que T défini plus
haut est précisément I’ensemble des premiers p tels que N (et non seulement
S(N)) a de la p-torsion. Cette remarque permet de démontrer le lemme suivant
(voir [5], lemme 1.2):

LEMME 1.8. Soit Ne M, avec Q opérant sur N de fagon nilpotente. Soit
f:N— M un Q-homomorphisme qui est aussi une T-équivalence (voir dans [2] la
notion de T-isomorphisme). Alors,

i) f(FvoN)< FvoN et dét f (le déterminant de f|pun) qui est défini a un
signe pres est relativement premier a T.

ii) f est une injection et f(N) est un Q-sous-groupe de M.

Ce résultat permet de définir les applications suivantes:

DEFINITION 1.6. Soit T-Equ(N) lensemble des Q-homomorphismes
¢ : M — L qui sont des T-équivalences, ou M, L € QG,,(N), Ne M,, Q opére sur
N de fagon nilpotente. On définit

a:T-Equ (N)— (Z/t)*/{= 1}
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par
¢ +> classe résiduelle mod ¢ de |dét ¢|.

De plus, si T-Aut N est I’ensemble des Q-endomorphismes de N qui sont des
T-équivalences, on obtient par restriction une application

0:T-Aut (N)— (Z/t)*/{z=1}.

Il est immédiat que a (donc 0) est multiplicative et en particulier im 6 est un
sous-groupe de (Z/t)*/{+1}.

En revenant 2 la surjection 8(N):(Z/t)*/{x 1} = QG,,(N), nous voyons que si
ae(Z/t)*/{x1} et si a€Z est un représentant de @, nous pouvons décrire 8(N)
explicitement comme suit: dire que 8(N)a =M, c’est dire qu’il existe un dia-
gramme commutatif dans la catégorie des Q-modules avec les lignes exactes

Z'>Ls N — S(N)

lA J# le (1)

Z" >t M—>» S(M)

avec |[dét A|=a, B : S(N) 3 S(M), f(Z") = Fv,N, g(Z") = Fv,M. Puisque a est
premier a T, A est une T-équivalence donc ¢ aussi. On remarque que
réciproquement si un diagramme tel que (1) existe avec B un Q-isomorphisme,
f(Z*)=FviN et ¢ une T-équivalence, alors M e QG (N), g(Z')=FvoM et
8(N) a=M.

On peut alors démontrer ([5], théoréme 1.4):

THEOREME 1.4. La suite T-Aut (N)-> (Z/0)* {£1}*3 QG,,(N) est exacte
en ce sens que 8(N)x=58(N)y si et seulement si x=y60(¢p) pour un certain
¢ € T-Aut (N).

Ce résultat permet d’introduire une structure de groupe abélien sur QG,,(N),
N e M, Q opérant sur N de fagon nilpotente.

DEFINITION 1.7. Soit Ne#, ou Q opere sur N de fagon nilpotente. Le
groupe abélien QG,,(N) est ’ensemble QG,,(N) muni de la seule structure de
groupe telle que 8(N)=(Z/t)*/{x1} = QGy,(N) soit un homomorphisme.
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C’est un groupe abélien dont I’élément neutre est N. On montre facilement
que QG,,(N(p, m)) est le groupe cyclique d’orde (p—1)/2. Une analyse plus fine
de la structure de groupe sur QG,,(N) permet d’obtenir le résultat suivant:

THEOREME 1.5. Supposons N e My, M € QG,(N). Q opére sur N de facon
nilpotente, alors QGy(N)= QG,,(M) comme groupes abéliens.

Esquisse de la preuve. Si X, Y, M € QG,,(N), on dit qu’une paire d’homomor-
phismes ¢ : X > M, ¢ : Y —> M est exhaustive si ¢ ou ¢ est une T-équivalence
et si pour chaque premier p, ¢ ou ¢ est une p-équivalence. On montre que de
telles paires existent toujours a l'intérieur d’un méme Q-genre et que I'égalité
X+Y=2Z+M dans QG,,(N) est équivalente a I’existence d’un carré bicartésien
avec (¢, ¥) exhaustive

Ll

dans la catégorie des Q-modules ou Q opere de fagon nilpotente; on peut méme
montrer qu’en prenant le “pull-back” de ¢ et ¢, le carré ainsi obtenu est de fait
bicartésien. Les détails de la preuve se déduisent ais€ément de [5]. On vérifie alors
tout de suite que I'application 7 : QG (M)— QGy,(N) définie par 7(X)=X-M
est un homomorphisme, donc un isomorphisme puisque 7 est clairement bijective.

Tous les autres résultats de [12] se laissent démontrer facilement si on
remplace N, par 2,; cependant, lorsque Mislin utilise le groupe H*(Q; Z"), il faut
nous restreindre a la catégorie M, et utiliser Exty, (S;Z"); dans la deuxieme
partie, nous verrons que plusieurs de ces résultats se démontrent sans utiliser le
groupe Extg, (S; Z") et seront valides dans 2, et non seulement dans ,. Nous
nous bornerons donc a démontrer le théoréme suivant dans #, pour lequel nous
n’avons pas exactement I’équivalent dans 2, grice aux méthodes de la deuxieme
partie. Nous donnerons les détails de la démonstration puisque nous n’utilisons
évidemment pas le théoréme de Kiinneth comme le fait Mislin.

—

o
-

THEOREME 1.6. Soit N € M, avec Q opérant sur N de fagon nilpotente. Soit
{M}i=1,...,k une famille de Q-groupes appartenant a QGy(N). Supposons que
pour chaque i=1,...,k 8(N)a, =M, Alors (B, N,) (1, d)=B, M,

(chaque N; étant une copie de N). En particulier, le diagramme suivant est
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commutatif:

3(N)

(Z/* {x1}——> QGp(N)

(élévation 2 la K
lpuissanoe k) l (L ” (?1 Li)

k

5 ® N, Kk
@Iy 1= QG B N))
j=1

ou chaque L, est une copie de L.

Preuve. Notons d’abord que I’énoncé a un sens parce que si ¢t = exp S(N) alors
t=exp S(@BX_, N,) également. Rappelons ensuite que §(N) est défini comme suit:
si @; € (Z/t)*{+1} est représenté par a, € Z, dire que 8(N)a, = M,, c’est dire qu’il
existe un diagramme commutatif dans la catégorie des Q-modules avec les lignes
exactes

2>t N —S(N)

-

Zh 25 M,—» S(M))

Q
ou |det A;|=la,|, B;: S(N)= S(M,), f(Z")=FvgN, g(Z")=FvgM, et ¢, une
T-équivalence. On a alors clairement un diagramme commutatif

20 b N, ()

i=1

R

th»%ieélm.—_»s(gél M)
ol chaque fleche de (3) est 1a somme directe des fleches correspondantes dans (2)
pour i=1,...,k Puisque B':S(®%,N)—>S@®, M), F@* )=
Fry(D¥r.; N,) et ¢’ est une T-équivalence, il découle des remarques précédant le
théoreme 1.4 que

5(é1 N)(|dét A’ | (mod 1) = ® M,
= i=1

La conclusion s’ensuit puisque |dét A'|(mod t) =[]%_, a..

=
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Nous en déduisons enfin I’analogue de [12], théoréme 6, sous la forme
suivante:

THEOREME 1.7. Soit Ne M, avec Q opérant sur N de facon nilpotente et
soient {M.}, {M} (i=1,...,k) deux familles de Q-groupes appartenant a
QG,,(N). Soient G; et a! tels que 8(N)a, = M, et 8(N)a!= M. Alors si [[}-, a, =

k@, ®, M, 2 @*, M. En particulier, si t =exp S(N), alors

D M2 @ N pourtout Me QGy(N).
&(t)/2 b (1)/2

Preuve

dm-a@([]a) -2 @m([1ar)= v

i=1
d’aprés le théoréeme 1.6.

Remarque. En prenant M,=N(p, m;) et M!=N(p,m!), on a @i, M, L
k M osi T, my=+[], m! (mod p). Par exemple, N(13,3)¢ N(13, 4)g
N(13,2) ®N(13, 6) et N(7,2)®N(7,3)2 N(7, DO N(7, 1).

2. Définition du Q-genre (Pickel), comparison avec le Q-genre (Mislin), non-
simplification dans les Q-groupes

DEFINITION 2.1. Pour tout Q-groupe G, nous désignons par QF(G)
I’ensemble des classes de Q-isomorphisme des quotients finis de G par ses Q-
SOus-groupes normaux.

Nous désignons par G™ le Q-sous-groupe normal de G engendré par les
ni*mes puissances d’éléments de G. Le produit cartésien de n copies de G muni de
I’action habituelle est noté G" (Rappelons qu’habituellement G" désigne plutot
ce que nous avons désigné ici par G™). Nous posons G =lim G/G"™; c’est un
Q-groupe qui coincide avec le complété profini si G est nilpotent de type fini; il
suffit en effet de remarquer que si G est nilpotent de type fini, alors G/G™ est fini
pour tout neN.

THEOREME 2.1. Soient G et H des Q-groupes tels que pour tout neN,
G/G™ et HHH™ soient finis. Supposons de plus que ’une des trois conditions
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suivantes est satisfaite:

i) QF(G)= QF(H)
i) G* & H" pour un certain neN
iii) il existe un Q-groupe L tel que L/L™ soit fini pour tout neN et tel que
GxL2HXL.

Alors G2 H.

Preuve. On n’a qu’a reprendre la preuve de Warfield ([44], lemme 1 et
théoreme 1) en constatant que les homomorphismes sont des Q-homomor-
phismes et en utilisant le théore¢me de Krull-Schmidt pour les groupes a
opérateurs.

Remarque. Etant donné une extension T—-> N—Z>F de Q-groupes et une
section s de , on peut déterminer les applications suivantes (qui en général ne
sont pas des homomorphismes):

a) a : F> Aut T définie par a(a)=(b+> s(a) 'bs(a))

b) f: FXF— T définie par f(a, b)=s(ab)s(a) 's(b)™"

¢) A : FXQ— T définie par A(a,x)=x-s(a)s(a)™!

Ces applications caractérisent I’extension N en ce sens qu’il est possible de
reconstruire N connaissant a, f et A.

LEMME 2.1. Soit Ne2,. Nous pouvons considérer N comme une extension
T>> N-—=>F oi T est fini et F abélien libre de rang fini sur lequel Q opere
trivialement. De plus, il existe un Q-sous-groupe D et N tel que i) D < v§N, ii) D
est abélien libre de méme rang que F, iii) I’homomorphisme = : N — F restreint a D
est un Q-isomorphisme de D sur F* pour un certain k €N et en particulier il existe
un Q-homomorphisme p : F® — N tel que w(F®)=D et mp =1dpw.

Enfin, il existe une section o de 7 telle que les applications a, f et A définies par
rapport a cette section ne dépendent que de la classe modulo F* dans F et non du
représentant; de facon précise, si a, be F, m, ne F®, xe Q, alors a(am)=«a(a),
f(am, bn) = f(a, b) et A(am, x) = A(a, x). On peut donc regarder a, f et A comme
définies sur F/F®, FJF® X F/F® et FJF® x Q respectivement.

Preuve. La démonstration de ce résultat demande au plus quelques précisions.

On prend pour T le Q-sous-groupe formé des éléments de torsion de N. Puisque
I'LN est fini donc contenu dans T(N), F= N/T posséde les propriétés voulues. Si
on pose D =Fv,N, on a rang D =rang F d’aprés le lemme 1.1 et la remarque
suivant la définition 1.4; il est clair que D satisfait i), ii) et iii) ou k = exp T(v&N).
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Enfin, posons o = u sur F*® et définissons o arbitrairement sur un ensemble
U de représentants des éléments de F/F® dans F. Ensuite, o peut étre prolongée
a F par o(um)=ca(u)a(m) pour ue U et me F®. 1l est facile de voir que a, f et
A définies par rapport a o ont les propriétés voulues. On a par exemple
Aum, x)=A(u,x); en effet, A(um,x)=x:o(um)o(um) ' '=x o(u)x - ao(m)
om) to(w) '=x"-o(u)o(u)™" (puisque o(m)e D, alors x - a(m)=a(m)).

DEFINITION 2.2. Donnons-nous deux extensions (4) T>>N —» F et (5)

T'>>N'— F' avec N, N'€9,, T T', F=F' comme dans le lemme précédent.
On sait qu’il existe k €N tel que la Q-structure de N’ peut étre définie par des
applications o": F//(F)*—Aut T', f:F[(F)® X F/(F)®—-T et \":F[/(F)*x Q
— T'. On dit qu’on isomorphisme ¢:F/F® — F'(F)*® induit une équivalence
faible entre les extensions (4) et (5) si on peut choisir a, f et A tels que
a(a)=a'(&(a)), f(a, b)={f'(&(a), £(b)) et A(a,x)=A'(&(a), x) pour tout a,be
F/IF® xeQ.

Remarque. Dans ces conditions les Q-groupes N et N’ ne sont pas
nécessairement Q-isomorphes puisque & n’est pas nécessairement induit par un
isomorphisme de F sur F'; cependant si ¢ est induit par un isomorphisme de F
sur F', alors N et N’ sont Q-isomorphes. Si g: F — F' est un isomorphisme et
g:F/F® - F[(F)* Tisomorphisme induit, alors g '¢:F/F* — F/F® est un
automorphisme avec dét (g7 '¢) e (Z/k)* et il est bien connu que ¢ est induit par
un isomorphisme de F sur F’ si et seulement si dét (g7 '&)==+1; on voit tout de
suite que si h: F — F’ est un autre isomorphisme, alors dét (g~'¢) = +dét (h'&).
A tout isomorphisme ¢ : F/F® — F'/(F')* qui induit une équivalence faible entre
(4) et (5), on peut donc associer un élément bien déterminé de (Z/k)*/{=1} défini
par d(&)=dét (g7 1¢) e (Z/k)*/{£1}. Si d(¢)=1, & peut étre induit par un isomor-
phisme de F sur F' et dans ce cas N<N'. Réciproquement, si N 2N, un
Q-isomorphisme de N sur N’ induit d’abord un isomorphisme de F sur F' qui 2
son tour induit un isomorphisme ¢: F/F® — F'/(F')* tel que d(¢)=1.

LEMME 2.2. Siles deux extensions T>>N—>F et T'>>N'-» F' sont faiblement
équivalentes, alors

i) pour tout groupe abélien de type fini A tel que h(A)=1 et qui est muni d’une
Q-action triviale, Nx A2 N'x A

i) NeUw22 N'¢W2 on k est comme dans la définition 2.2.

Preuve. i) 1l suffit de montrer que N XZ = N'xZ. On considére alors I’isomor-
phisme &: F/F® — F'/(F')** que I’on prolonge en un isomorphisme 7 de F/F® x
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Z/k sur F/(F)®XZ/k en posant n=¢ sur F/F® et n=multiplication par un
représentant de d(£)~! dans Z/k sur Z/k. Puisque d(n) =1, n est induit par un Q-
isomorphisme de FXZ sur F'XZ et la conclusion découle des remarques pré-
cédentes appliquées aux extensions T>> NXZ-» FXZ et T>> N'XZ —» F'XZ

ii) £: FF® — F(F)*  détermine un isomorphisme ¢":(F/F®)" —
(F/(F)*)" et d(&)"=d(£)". La conclusion est alors une conséquence du fait
que d(&)*®2=1,

THEOREME 22.Si M, N €9y, les quatre conditions suivantes sont
équivalentes:

i) QF(M)= QF(N)

iiy M~ 2 N™ pour un certain neN

iii) Mx A 2 NxA pour tout groupe abélien de type fini A tel que h(A)=1 et
sur lequel on fait opérer Q trivialement.

iv) M 2N

Preuve. Le théoréme 2.1 montre que chacune des conditions 1), ii) et iii)
implique iv). La preuve que iv) entraine i), ii) et iii) est similaire a celle de [16],
théoréme 2. En particulier, pour montrer que iv) entraine ii) et iii), il suffit d’aprés
le lemme précédent de montrer que M et N peuvent étre décrites par des
extensions faiblement équivalentes.

Si G est un Q-groupe, nous désignons par Gp le complété p-adique de G
muni de sa structure naturelle de Q-groupe, c’est-a-dire G, =lim G/G®". On
prouve de la méme fagon que dans [16], les résultats suivants:

LEMME 2.3. Si M et N sont des Q-groupes nilpotents de type fini, alors
QF(M) = QF(N) si et seulement si Mp 2 Np pour tout premier p.

LEMME 2.4. Si M et N sont des Q-groupes nilpotents de type fini tels que
M e QG,,(N), alors Mp 2 Np et M, 2 N,.

Pour les Q-groupes nilpotents de type fini, la définition du Q-genre (Pickel),
noté QGp(—). est la. suivante:

DEFINITION 2.3. Me QGp(N) si et seulement si QF(M)= QF(N) et
M,2N,.

Les lemmes 2.3 et 2.4 montrent que M € QG,,(N) entraine que M e QG,(N).
La réciproque n’est pas vraie en général et cela méme dans le cas des groupes
sans opérateurs ainsi que 'ont montré Belfi et Wilkerson ([1], corollaire 4.2).

Cependant, si nous nous limitons a la catégorie 2, alors M e QGp(N) entraine
M e QG,,(N) (voir théoréme 2.4).
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THEOREME 2.3. Si M et N sont des Q-groupes nilpotents de type fini et si I’on
a une des conditions:

. Q :
i) M" = N" pour un certain neN, ou

i) M XLENXL pour un certain Q-groupe nilpotent de type fini L, alors
M e QG,(N).

THEOREME 2.4. Soient M, N €9, Les six conditions suivantes sont
équivalentes:

i) QF(M)= QF(N)

ii) M" 2 Nm pour un certain neN

i) MxA2NxA pour tout groupe abélien de type fini A tel que h(A)=1 et
sur lequel on fait opérer Q trivialement

iv) M 2N

V) Mp 2 Np pour tout premier p

vi) M, 2 N, pour tout premier p.

Le théoréme 2.3 se prouve comme dans [16] et le théoréme 2.4 est déja
essentiellement prouvé; en effet, les cing premiéres conditions sont équivalentes
d’apres le théoreme 2.2 et le lemme 2.3; d’aprés le lemme 2.4, vi) implique v);
enfin iii) entraine vi) se démontre comme le corollaire 1 dans [12] ainsi que nous
le remarquons dans les commentaires suivant le théoréme 1.5; dans ce cas, Mislin

ne fait pas appel au foncteur H?(-,-) et le résultat est valide dans 9, (et non
seulement ).

THEOREME 2.5. Pour Ne 2,, |QGp(N)| =|QGp(N)| = ¢(k)/2 ot ¢ est la
fonction d’Euler et k = exp T(voN).

Preuve. Puisque viN est abélien et muni d’une Q-action triviale, le genre de
voN est trivial ([4], proposition 3.3); par ailleurs, v5(—) est un invariant du
Q-genre car (voN), 2 v6(N,). On peut donc pour chaque M € QG,,(N) choisir le
méme entier k = T(v4,N) dans le lemme 2.1 et si M, M' € QG,,(N), les extensions
T>>N-—->»F,, T>M-»F,, et T>>M —» F,, obtenues comme dans le
lemme 2.1 sont deux-a-deux faiblement équivalentes d’apres le théoréeme 2.4
(nous avons en effet indiqué dans la preuve du théoréme 2.2 que si M2 N, alors il
existe une équivalence faible entre les extensions correspondant a2 M et N).

Supposons maintenant que &, : F,/(F)"* —=— F,/(F\)" et &, : Fyl(Fy)* —
For/(Fpp)™ induisent des équivalences faibles entre les extensions correspondantes
telles que d(&y) = d(&v)- 11 existe alors g: Fy ——> Fy, et h: Fy—=> F), tels que
dét (§ 7 &) =dét (R &), 11 est clair que &y énf i Ful(Fo)® —=> Fyl/(Fp)™®
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induit une équivalence faible et que dét (gﬁg@g;}hil. Il découle alors des

remarques précédant le lemme 2.2 que M =3V

Nous avons montré que nous pouvons associer a chaque élément de QG,,(N)
un élément ae(Z/k)*/{x1} et que lapplication ainsi obtenue est injective; en
particulier, |QGy(N)|=|QGp(N)|=|(Z/k)*{x1}|= ¢(k)/2.

Notons que Mislin a obtenu une borne supérieure pour |G,,(N)| en montrant
qu’il existe une surjection (Z/k)*/{x1}— G,,(N) alors que nous obtenons un
résultat analogue pour |QG,,(N)| en démontrant Vexistence d’une injection

QG (N)>> (Z/k)*[{=1}.
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