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Comment. Math. Helvetici 53 (1978) 364-384 Birkhâuser Verlag, Basel

Le genre d'un groupe nilpotent avec opérateurs

Charles Cassidy*

Au cours des dernières années, Pickel [13] et Mislin [12] ont introduit une
notion de "genre" pour un groupe nilpotent de type fini N. De façon précise, le

genre de N selon Pickel (que nous noterons ici GP(N)) désigne l'ensemble des

classes d'isomorphisme de groupes M tels que les quotients finis de M et N
coïncident et tels que les rationalisations Mo et No de M et N respectivement
soient isomorphes. Pickel démontre que cet ensemble est toujours fini. Par

ailleurs, Mislin appelle le genre d'un tel groupe (désigné ici par GM(N)) l'ensemble

des classes d'isomorphisme de groupes M tels que Mp — Np pour tout premier
p (si G est un groupe nilpotent, on désigne par Gp la localisation de G en p, voir
par exemple [2], [15] et [17]). Ces deux notions de genre quoique très voisines ne
coïncident pas; Warfield [16] indique que si MeGM(N) alors MeGP(N); par
ailleurs, Belfi et Wilkerson [1] ont montré que la réciproque n'est pas vraie en
général; cependant, dans la catégorie jV0 des groupes nilpotents de type fini dont
le sous-groupe des commutateurs est fini, les deux notions de genre coïncident
([9], [16]).

Le travail de Mislin [12] a été essentiellement consacré à l'étude du genre dans
la catégorie Jf0. Mislin y démontre que quoique GM(N) est toujours fini (NeN0),
il peut être arbitrairement grand; ses exemples sont remarquables. Il démontre
aussi que le genre est étroitement relié à des phénomènes de non-simplification
qui apparaissent autant en théorie des groupes qu'en topologie où le genre fut
également introduit pour les H-espaces ([6], [7], [10], [11], [18]).

Le concept de genre est cependant intéressant en lui-même. En effet, l'idée de

localiser un groupe (ou un espace topologique) en chaque premier p permet de

remplacer ce groupe (ou cet espace) par plusieurs autres qui sont plus simples en

un certain sens; il est alors parfois possible de résoudre un problème pour chacum
de ces nouveaux objets et avec un peu de chance de remonter à l'objet de départ.
Cependant la connaissance de tous les localisés d'un groupe N (ou d'un espace X)

*Ce travail fut partiellement réalisé alors que l'auteur était en congé de l'Université Laval et se

trouvait à l'ETH de Zurich. L'auteur tient à remercier les professeurs P. J. Hilton et G. Mislin pour les
nombreux conseils et les suggestions lors de la préparation de ce travail.
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en chaque premier p n'entraîne pas en général la connaissance de JV (ou de X)
comme le montrent les exemples de Milnor (voir [14]) ou de Mislin [12]. Le genre
au sens de Mislin est précisément une mesure de l'obstruction à une telle
connaissance.

Un problème qui vient immédiatement à l'esprit est celui de la recherche
d'invariants pour le genre; en topologie, par exemple, on peut voir que tous les

groupes d'homologie et de cohomologie ainsi que les groupes d'homotopie de

dimension au moins égale à 2 sont des invariants du genre alors que le groupe
fondamental ainsi que l'anneau de cohomologie n'en sont pas; pour les groupes
nilpotents, l'appartenance à la catégorie No est un invariant du genre; il en est de

même du centre, du sous-groupe des commutateurs et de la classe de nilpotence

pour les groupes dans la catégorie Jf0 (la classe de nilpotence est même un
invariant du genre dans la catégorie M de tous les groupes nilpotents). C'est
notamment en découvrant les bons invariants du genre que Mislin est parvenu à

obtenir tous ses résultats.

Il nous a semblé naturel d'introduire ici une définition du genre dans le cas

d'un groupe nilpotent N sur lequel opère un groupe Q (nous dirons alors que N
est un Q-groupe nilpotent); notre définition est une généralisation de celle de

Mislin. On sait que si Q opère sur JV, alors Q opère aussi sur tous les localisés JVp ;

l'action de Q sur JVp n'est que la localisation de l'action de Q sur JV (propriété
universelle de la localisation, voir [2]). Le problème général est le suivant: que
pouvons-nous dire de JV comme Q -groupe si nous connaissons tous ses localisés

JVp comme O-groupes? Il n'est pas difficile de voir qu'un Q-isomorphisme
<£> : JV —» N est complètement déterminé par tous ses localisés </>p : Np -» JVP ; la
situation est cependant complètement différente en ce qui concerne les objets
eux-mêmes: un Q-isomorphisme 0:JV-->JV détermine des Q-isomorphismes
<£p:JVp—»JVP mais même s'il existe des Q-isomorphismes i/fp : JVp —> JVP pour
chaque premier p, on ne peut pas conclure en général qu'il existe un Q-
isomorphisme ij/ : N —> N induisant en même temps tous les i/rp. Nous introduisons
également par la suite une définition du genre pour les Q-groupes qui généralise
la définition de Pickel. Dans les deux situations, notre étude se limite au cas où le

Q-groupe JV est nilpotent de type fini; il faudra d'ailleurs souvent imposer la
même condition au groupe Q.

Dans la première partie, nous définissons le "Q-genre" (Mislin) de JV que
nous notons QGM(N). Ensuite, nous décrivons une famille de Q-groupes abéliens

{N(p, m)}, où p est un premier impair fixe mais arbitraire et m 1,..., (p-1)/2,
qui fournissent des exemples de non-trivialité de QGM même si GM est trivial
pour les groupes sous-jacents; pour chaque premier p, les groupes N(p, m) sont
deux-à-deux isomorphes comme groupes mais non-isomorphes comme Q-
groupes. Puis, en prenant les produits croisés N(p, m)$ Q, nous obtenons des
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groupes nilpotents mais non-abéliens qui sont précisément les exemples de Mislin
mais exprimés sous une forme beaucoup plus simple et explicite. Nous identifions
ensuite certains invariants du Q-genre qui nous permettent d' obtenir par la suite

pour le Q-genre tous les résultats obtenus dans [5] et [12] pour le genre de

Mislin; là où Hilton et Mislin devaient supposer que le sous-groupe des

commutateurs était fini, il faudra supposer dans notre situation qu'un certain sous-

groupe noté F%N est fini. Toutefois, à l'aide des méthodes de [5] et [12], c'est
seulement dans le cas où N est abélien que nous réussissons à munir le Q-genre
d'une structure de groupe et à obtenir une borne supérieure pour le nombre de

ses éléments.
Dans la deuxième partie, nous définissons le Q-genre (Pickel) de N que nous

notons QGp(N) et nous indiquons que les résultats obtenus par Warfield en [16]
restent valides avec essentiellement les mêmes démonstrations dans le cas du
Q-genre. De plus, en étudiant attentivement l'une des démonstrations de

Warfield, nous parvenons à déterminer une borne supérieure pour le nombre
d'éléments dans le Q-genre des Q-groupes nilpotents (mais pas nécessairement
abéliens) de type fini avec I^N fini; il ne nous a pas semblé possible par contre de

munir d'une façon naturelle le Q-genre de tels Q-groupes d'une structure de

groupe à l'aide des méthodes de Warfield.

1. Définition du Q-genre (Mislin) et quelques propriétés fondamentales

Etant donné un groupe Q, nous entendons par Q-groupe tout groupe N sur
lequel Q opère, c'est-à-dire la donnée d'un groupe N et d'un homomorphisme
a) : Q -» Aut N. Un Q-homomorphisme d'un Q-groupe M dans un Q-groupe JV

est un homomorphisme de groupes de M dans JV qui commute avec les actions de

Q sur M et N respectivement. Si nous disons qu'un Q groupe JV est de type fini
(resp. nilpotent), il faudra toujours comprendre que N est de type fini (resp.
nilpotent) en tant que groupe.

Le genre de Mislin est un cas particulier de notre première définition; si
l'action de Q sur JV est triviale, c'est-à-dire si <o(Q) Identité, le Q-genre de N
sera précisément le genre de Mislin.

DÉFINITION 1.1. Si N est un Q-groupe nilpotent de type fini, le Q-genre de

N (Mislin) noté QGM(N) est la famille des classes d'isomorphisme de Q-groupes
nilpotents de type fini M tels que Afp soit Q-isomorphe à JVP pour tour premier p.

Si un groupe Q opère sur un groupe JV, on définit [8] la Q-suite centrale
descendante de JV comme suit:
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Si JTQ+1iV {l} pour un certain c gN, on dit que l'action de Q sur N est nilpotente
ou que Q opère sur N de façon nilpotente et on écrit niloiV< c; dans ce cas, le

groupe N est nécessairement nilpotent; si de plus, Q est nilpotent, on définit pour
chaque p une action de Qp sur Np de la façon suivante: on considère l'extension
scindée de Q par N qui est alors nilpotente puis, en localisant cette extension, on
obtient une extension scindée de Qp par Np, ce qui nous permet de définir l'action
de Op sur Np. Il est facile de voir que si Q opère sur N de façon nilpotente et si

M g QGM(N), alors l'action de Q sur M est également nilpotente; cela est du au
fait que nilQiV maxp nilQNp (voir [8]); de fait, en utilisant la convention niloN
oo si PqN^{1} pour tout ieN, on voit que niloN est un invariant du Q-genre.
Tout cela suggère une autre définition du 0-genre pour de tels 0-groupes; on dit

Q
que MgQG'm^N) si et seulement si MP=^NP pour tout premier p; il découle
immédiatement de [3] ((3.9) et théorème 3) ainsi que de ce qui précède que cette
définition est équivalente à la définition 1.1 pour les Q -groupes sur lesquels
l'action est nilpotente.

Nous décrivons maintenant pour chaque premier impair p fixe mais arbitraire
une famille de Q-groupes qui montre que QGM(N) peut être non-trivial même si

GM(N) est trivial. Tous les groupes considérés sont abéliens de type fini et on sait

que le genre de Mislin est trivial pour de tels groupes ([4], proposition 3.3); les

Q -groupes que nous décrivons sont deux-à-deux isomorphes comme groupes
mais non Q-isomorphes; par contre, tous les localisés seront Q-isomorphes pour
chaque premier. Puisque N est un Q-module, nous noterons l'opération dans N
additivement mais même si Q est abélien, l'opération dans Q sera notée multip-
licativement.

THÉORÈME 1.1 Soit p un premier impair fixe mais arbitraire et soit q

(p-l)/2. Posons N Z/p©qZ; désignons par a un générateur de Zip et par fc, un

générateur de la ieme composante de qZ. Posons Q Zq, le produit direct de q copies

de Z et désignons par xt un générateur de la ieme composante de Zq. Pour chaque

m 1,..., q nous définissons une action de Q sur N de la façon suivante:

xta a i 1,..., q

*,*>, 6, iV/
xtbt a + bx i /,..., q - /

xqbq ma + bq.

Nous désignons par N(p, m) le Q-groupe ainsi obtenu. Pour un p donné et pour m et

n différents et tels que 1 < m, n^q, les Q-groupes N(p, m) et N(p, n) ne sont pas
Q-isomorphes mais leurs localisés le sont en chaque premier.
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Preuve. Démontrer que N(p, m) et N(p, n) ont les mêmes localisés en tant que
Q-groupes pour chaque premier ne présente aucune difficulté. Nous nous bornerons

donc à montrer que les groupes isomorphes N(p, m) et N(p, n) ne peuvent
pas être Q-isomorphes pour m^n. Supposons qu'il existe un Q-isomorphisme
a:N(p,m)->N(p,n). Alors nécessairement a(a) la, où l<Z<p-l; par
ailleurs, a(b,) A,a+X?=i Pifo, où /a^gZ. Puisque nous voulons que a soit un
Q-isomorphisme, il faut que chacune des relations a(jttfy) xt. a{b}) soit satisfaite

pour i, /= 1,..., q. Un calcul explicite nous montre que cela entraîne que

/uty s 0(mod p) pour i ï j
julu s /(mod p) pour i 1,2,..., q -1

lm

Le déterminant de la matrice (^tJ) est donc lqm/n (mod p). Or l'application
induite par a sur le quotient o[L devant être un automorphisme de ce groupe, il
faut que le déterminant de (/u,y) soit égal à ±1. Cependant, m et n sont différents
et tous deux compris entre 1 et q; le quotient m/n est donc différent de ±1
(modp) alors que l« l<*-»'2 est égal à ±1 (modp) d'après le théorème de
Fermât. Le déterminant lqm/n ne peut donc pas être égal à ±1 (modp) et a ne

peut pas être un Q-isomorphisme.
Un des aspects intéressants de nos exemples est qu'il est possible de récupérer

de façon explicite les exemples de Mislin en prenant les produits croisés

M(p, m) N(p, m)\ Q pour les différentes valeurs de m. Rappelons que pour
chaque premier p fixe mais arbitraire, Mislin définit un groupe N(p) de la façon
suivante: si {xl9 yt | l<i<(p-l)/2}c:H1(Zp~1;Z/p) désigne la réduction mod p
d'une base de H1(ZP~1;Z)«ZP~1, alors N(p) est défini par l'extension

où [E(p)] JXy, g H^Z'"1; Zip). Il démontre alors que |GM(N(p))| (p -1)/2 q
et qu'un ensemble de représentants pour les éléments de GM(N(p)) est donné par
la famille {Fm(p)} définie par

où [Em(p)]q m[E(p)]q, m l, ...,q; remarquons qu'ici m[E(p)]qe
Hp~1(Zp"1;Z/p) Z/p où Zip est engendré par [E(p)]q.

THEOREME 1.2. Soit p un premier impair fixe mais arbitraire. La famille des
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groupes {M(p, m)}, m 1,..., q, fournit des exemples de non-trivialité du genre de

Mislin. Plus précisément, on peut choisir dans les exemples de Mislin N(p) M(p, 1)

et Fm(p) M(p, m) (voir [12], théorème 3).

Preuve. Notons d'abord que si Q opère de façon nilpotente sur les groupes
nilpotents M et N, alors Mr — Nr pour tout premier r entraîne {M\ Q)r — {N\ Q)r

pour tout r. En effet, on a clairement Mr\ Q — Nr\ Q pour tout r et puisque
l'action est nilpotente Mr\Qr — Nr\Qr pour tout r (voir [3]); par ailleurs, on sait

que Mr\ Qr - (M\ Q)r et il s'ensuit que {M\ Q)r - (N\ Q)r pour tout r.

D'autre part, il est clair que chaque groupe M(p, m) est une extension centrale

Z/pA M(p, m)—>(p-l)Z. Soit s une section de w définie par

un 2-cocycle représentant cette extension est obtenu en considérant l'ensemble de

facteurs f(X, Y) s(jc+ Y)s(X)-1s(Y)-\
Explicitement,

=1 ]=1 1=1 J=l

I (A, + K)K ftx^^y i KK flxpVl l KK !{<)"

(A, + K)b,, rW1+li;>)( Y ^Ka
1 /

x Çt VlKa + m^A^a - £ À,'*,, fl
\fc=l 1=1 J=l

q-1
X Wk + /x'k

/ qi- X ^k
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le tout se faisant mod p dans Z/p. Ces calculs montrent qu'à un signe près le

groupe M(p, 1) est le terme central de l'extension E(p) de Mislin ([12], théorème
3).

Pour montrer que la famille {M{p, m)} nous donne précisément les exemples
de Mislin, il suffit (voir [12], page 116) de montrer que [M(p, m)]q m[M(p, l)]q
où [M(p, m)p représente le "cup-produit" [M(p, m)]U • • • U [M(p, m)] pris q fois
de [M(p, m)]eH2(Zp"1;Z/p) par lui-même. D'après les calculs précédents et les

propriétés du "cup-produit", on voit tout de suite qu'un 2-cocycle représentant à

la fois [Af(p, m)]q et m[M(p9 l)]q est donné par

/(X, Y,..., X, Y) m(/Lt'1Al/Lt^A2 ^À>
d'où le théorème.

Si Q opère sur N, nous avons indiqué précédemment que la Q -suite centrale
descendante de N est définie par:

r1QN=N, r£1N gr{uvxu-1v-1 \ueN,ve PQN, x e Q},

De même, on définit la Q-suite centrale ascendante (voir [8]) par:

v°QN {1}, v^N {ue Z{N) \ux u, pour tout x e Q},

Si Q opère trivialement sur N, on retrouve les suites centrales habituelles. Nous
disons que l'action de Q sur N est nilpotente si /^+1iV {l} pour un certain c eN
ou de façon équivalente si vcoN N; cette équivalence se démontre au moyen de
l'inclusion PQN< v^^'N pour i 1,..., c que l'on peut obtenir par induction
sur L

DÉFINITION 1.2. La catégorie des Q-groupes pour lesquels F%N est fini,
avec N et Q nilpotents de type fini, est désignée ici par â0.

DÉFINITION 1.3. Nous désignons par Mo la sous-catégorie de â0 formée des

Q -groupes pour lesquels F%N est fini, N abélien de type fini et Q nilpotent de

type fini.

Remarquons que les exemples N(p, m) décrits plus haut appartiennent à la
catégorie Mo; de plus, dans ce cas, Q opère sur N(p, m) de façon nilpotente.
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LEMME 1.1. Pour Ne St0, le quotient N/vqN est un Q-groupe fini et le nombre
de Hirsch h(N) de N (où N est considéré comme groupe) est donné par

h(N) rang VqN dim0N0

Preuve. Considérons le diagramme commutatif

> N —» '

No

où les lignes sont exactes. D'après [8], théorème 3.5, (vqN)0= Vq(N0) puisque N
et Q sont de type fini. Par aileurs, 2V0 est abélien et Q opère trivialement sur No
puisque F%N est fini et donc contenu dans ker (N—> JV0); on a donc vq(N0) No,
d'où (vqN)0 N0, puis (Nlv1oN)0 {l}. On en déduit que N/v^N est fini et la
conclusion s'ensuit.

LEMME 1.2. Soient Ne£0, Me QGM(N). Alors jT^M-F^JV.

Preuve. On sait ([8], corollaire 3.3) que pour tout Q-groupe nilpotent N,

l'application canonique r^N-*r^(Np) p-localise. On a donc râ(Np)â(r£N)p
mais puisque FqN est fini, FqN° J\ (FqN)^ l'action respectant les composantes.

Si MeQGM(N), alors rUMp)°r2Q(Np); en particulier r2QM est fini et

DEFINITION 1.4. Soit N un Q-groupe nilpotent avec T(vqN) d'exposant
fini (pour tout groupe nilpotent G, T(G) désignera le sous-groupe de torsion de

G). Nous posons:

avec yk x, k exp T

Remarque. FvqN est abélien sans torsion et muni d'une Q-action triviale; si

Ne2,0, FvqN est abélien libre de rang h(N) d'après le lemme 1.1; si N et Q sont
de type fini, on voit que l'application canonique N-*NP envoie FvqN dans

^q(Np); (FvqN)p peut donc être identifié à un sous-groupe de Fvq(Np).

LEMME 1.3. Si N et Q sont de type fini, N nilpotent, alors Vapplication
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canonique {FvqN)p —? Fvq(Np) est un isomorphisme (remarquons que tous les

groupes sont clairement des Q-groupes sur lesquels Vaction est triviale).

Preuve. On remarque d'abord que si

X {jce^(Np)|3ye^(Np) avec yk x, k exp T

alors il existe un diagramme commutatif

où les lignes sont exactes. Puisque N et Q sont de type fini, a et p p-localisent [8]
et alors y p-localise [2]. On a clairement X Fvq(Np) puisque, T(vqN) étant fini,
exp T(vq(Np)) est précisément la p-composante de exp T(vqN) et que Vq(Np) est

p-local.

DEFINTION 1.5. Pour Ne%, nous posons S(N) N/FvqN muni de sa

structure évidente de Q -groupe.

LEMME 1.4. Soient Ne£0,MeQGM(N). Alors Fv^M^Fv^N et S(M)^
S(N).

Il suffit de reprendre mutatis mutandis la preuve du lemme 4 de [12] en
vérifiant bien que tous les homomorphismes sont des Q-homomorphismes.

Soit maintenant NeM0. Si MeQGM(N), nous savons ([4], proposition 3.3)

que M est abélien comme groupe et les résultats précédents montrent que M se

laisse représenter comme extension de modules sur l'anneau de groupe Z(Q); à M
correspond une extension E:Zh >^ M-» S où /(Zh) FvqM, h h(N) h(M) et

S ~ S(N) 2 S(M). On sait que ces extensions* sont classifiées par le groupe
ExtQ(S;Zh); cependant, la classe de Q -isomorphisme de M ne détermine pas
uniquement un élément de ExtQ(S;Zh) mais seulement une classe double dans

AutQZH\ExtQ(S;Zh)/AutQS, l'ensemble des classes d'équivalence dans

ExtQ(S;ZH) produites en considérant l'action à gauche de AutQZh et l'action à

droite de AutQS sur le groupe Ext^S; Zh). En effet, Si les modules M et M1 sont
isomorphes et représentés par des extensions Zh>^»M—»S et Zh>i»M'-^S
telles que /(Zh) Fï>qM et g(Jjh) Fv^M1 alors clairement ces deux extensions

appartiennent à la même classe double. Réciproquement, si une extension Zh £>

L—»S appartient à la même classe double que Zh>^»M—»S, il existe un
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diagramme commutatif

i i

d'où M^L et fc(Zh) FvqL. On peut donc conclure comme dans [12] qu'il existe

une bijection entre QGM(N) et un sous-ensemble de l'ensemble des classes

doubles de ExtQ(S;ZH) pour NeM0. Puisque S est fini, que Zh est de

présentation finie et que Ext^(—, —) est additif, on peut affirmer que si Ton pose
£ exp S alors t est aussi un exposant de ExtQ(S;ZK). Nous verrons plus loin
comment t est relié à N dans le cas où Q opère sur N de façon nilpotente.
Désignons par T l'ensemble des premiers p tels que p divise t; puisque

Ext^S; Zh) ne contient que des éléments de torsion dont l'ordre a tous ses

facteurs premiers dans T, ExtQ(S;Zh)^Exto(S; ZH)T (la localisation de

Exto(S;Zh) par rapport à l'ensemble des premiers T, voir [2]); puisque Q est

nilpotent de type fini, le lemme suivant nous montre que ExtQ(S;Zh) —

LEMME 1.5. Soient A et B des Q-modules où A est de type fini et soit Q un

groupe nilpotent de type fini. Alors si T est un ensemble de premiers,

Extb(A, B)T Extb(A, BT), i 0,1, 2,...

et en particulier HomQ(A, jB)T Hom0(A, BT).

Preuve. Pour tout groupe Q-libre de type fini F, on a HomQ(F, B)T
HomQ(F, BT) prusque HomQ(F, C)= © C (il y a autant de copies de C que le

finie

nombre d'éléments dans une Q-base de F).
Considérons maintenant une résolution Q -libre

> Fl+l -* Ft -> F,., -> > Fo-^ A

où les F, peuvent être choisis de type fini puisque si Q est nilpotent de type fini,
alors Z(O) est noethérien. On a la suite

• • • <- HomQ(Fl+I, B) «- HomQ(FI, B) «- HomQ(FI_1, B) <
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et en localisant en T,

• • • +- HomQ(Fl+1, B)T «- Hom^F,, B)T «- Hom^F,^, B)T<

Le résultat découle de l'égalité HomQ(F, £)T Homo(F, jBt) et du fait que la
localisation est exacte.

Posons maintenant S AutQS,G= GL(h, Z) AutQ ZH et G(T) GL(h, ZT);
puisque ExtQ(S;Zh)=*ExtQ(S;Zx), il s'ensuit que ce groupe est muni d'une
action à gauche de G(T) en plus de l'action à gauche de G et de l'action à droite
de S. L'injection GL(fi, Z) —» GL(h, ZT) induit une surjection

a : G\Ext^(S; ZH)/S -» G(T)\Ext^(S; Zh)/S

:G[E]S^G(T)[E]S.

THÉORÈME 1.3. Soit NeM0 et soit E:Zh >—>N-^»S une extension de

Q-groupes où /(Zh) F^qN et S^S(N). Alors il existe une bijection naturelle

0 : *-\G(T)[E]S) -» QGM(N).

Preuve. Il n'y a plus maintenant qu'à reprendre la preuve du théorème 4 de

[12] en remplaçant H2(O;ZH) par ExtQ(S;Zh); toutes les remarques que nous
avons faites à propos de ExtQ(S;Zh) permettent de le faire.

Remarque. On peut déduire (comme dans [12]) de la preuve du théorème

précédent que pour NeM0, il existe une surjection de coker (GL(fi, Z)—?

GL(fi,Z/OH(Z/f)*/{±l} sur QGM(N) que nous noterons

COROLLAIRE 1.1. Si NeJl0 et si f exp S(N), alors |QGM(N)|<<^(r)/2 où
<t> est fonction d'Euler.

Les exemples décrits dans le théorème 1.1 montrent que cette borne peut être

atteinte; en effet, on a alors \QGM(N(p, m))| (p-1)/2.
Nous donnerons dans la deuxième partie une borne pour |QGM(N)| dans le

cas où Ne £l0 mais auparavant nous allons indiquer quelques résultats qui nous

permettront de munir QGM(N) d'une structure de groupe si NeM0 et si Q opère
sur N de façon nilpotente.
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LEMME 1.6. Supposons que NeM0, t exp S(N) et Q opère sur N de façon
nilpotente. Alors p divise t si et seulement si N a de la p-torsion.

La preuve est comme celle du lemme 1.1 de [5]; il faut cependant utiliser le
résultat suivant:

LEMME 1.7. Si A est abélien et si Q opère sur A de façon nilpotente, alors A a
de la p-torsion entraîne que AQ en a aussi (ici AQ={aeA \ xa a, pour tout
xeQ}),

Preuve. Remarquons que si A est abélien, la Q-suite centrale ascendante est

tout simplement:

v°QA ={0}, vloA A°, v^AlvloA (AjvxoA)°, i > 1.

Supposons que A a de la p-torsion mais que vxQA A° n'en a pas; désignons par
/ le plus petit entier naturel i tel que vlQA a de la p-torsion; par hypothèse, on a

au moins />2. Il existe donc un élément de p-torsion aoev}QA et comme
aoféAQ, il existe xe Q tel que xao — aQ5e0. Puisque a e v]QA »-» (xa-a)e v]qXA
est un homomorphisme, xa0 — a0 est de p-torsion, ce qui est une contradiction.

Dans le cas où Q opère sur N de façon nilpotente, on voit que T défini plus
haut est précisément l'ensemble des premiers p tels que N (et non seulement
S(N)) a de la p-torsion. Cette remarque permet de démontrer le lemme suivant
(voir [5], lemme 1.2):

LEMME 1.8. Soit NeM0 avec Q opérant sur N de façon nilpotente. Soit

/:N—> M un Q-homomorphisme qui est aussi une T-équivalence (voir dans [2] la
notion de T-isomorphisme). Alors,

i) f(Fv1QN)czFv1QN et dét / (le déterminant de f\Fv^N) qui est défini à un
signe près est relativement premier à T.

ii) / est une injection et f(N) est un Q-sous-groupe de M.

Ce résultat permet de définir les applications suivantes:

DÉFINITION 1.6. Soit T-Equ(N) l'ensemble des Q-homomorphismes
<t> :M-+ L qui sont des T-équivalences, où M, Le QGM(N), NeM0, Q opère sur
N de façon nilpotente. On définit

a : T-Equ (N) -* (Z/t)*l{± 1}
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par

$ *-*> classe résiduelle mod t de |dét <f>\.

De plus, si T-Aut N est l'ensemble des Q-endomorphismes de N qui sont des

T-équivalences, on obtient par restriction une application

6 : T-Aut (N) -» (Z/O*/{±1}.

Il est immédiat que a (donc 0) est multiplicative et en particulier im 0 est un

sous-groupe de (Z/f)*/{±l}.
En revenant à la surjection 8(N) : (Z/t)*l{± 1} —» QGM(N), nous voyons que si

âe(Zilt)*l{±l} et si aeZ est un représentant de â, nous pouvons décrire 8(N)
explicitement comme suit: dire que 8(N)â M, c'est dire qu'il existe un

diagramme commutatif dans la catégorie des Q-modules avec les lignes exactes

Zh>-L>N—

avec |détA| a, B : S(N)-^S(M), f(Zh) Fv1oN, g(Zh) Fv1QM. Puisque a est

premier à T, A est une T-équivalence donc <f> aussi. On remarque que
réciproquement si un diagramme tel que (1) existe avec B un Q-isomorphisme,
f(Zh) Fv1oN et <f> une T-équivalence, alors MeQGM(N), g(Zh) Fv1QM et
8(N) â M.

On peut alors démontrer ([5], théorème 1.4):

THÉORÈME 1.4. La suite T-Aut (N)-^ (Z/r)*/{±l}(^ QGM(N) est exacte

en ce sens que 8(N)x 8(N)y si et seulement si x y0(<£) pour un certain

$ g T-Aut (N).

Ce résultat permet d'introduire une structure de groupe abélien sur QGM(N),
NeM0, Q opérant sur JV de façon nilpotente.

DÉFINITION 1.7. Soit NeM0 où Q opère sur N de façon nilpotente. Le

groupe abélien QGM(N) est l'ensemble QGM(N) muni de la seule structure de

groupe telle que ô(N) (Z/r)*/{±l}—* QGM(N) soit un homomorphisme.
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C'est un groupe abélien dont l'élément neutre est N. On montre facilement

que QGM(N(p, m)) est le groupe cyclique d'orde (p-l)/2. Une analyse plus fine
de la structure de groupe sur QGM(N) permet d'obtenir le résultat suivant:

THÉORÈME 1.5. Supposons NeM0, Me QGM(N). Q opère sur N de façon
nilpotente, alors QGM(N) — QGM(M) comme groupes abéliens.

Esquisse de la preuve. Si X, Y, Me QGM(N), on dit qu'une paire d'homomor-
phismes <f> : X—» M, if/ : Y—> M est exhaustive si <fr ou $ est une T-équivalence
et si pour chaque premier p, <f> ou if/ est une p-équivalence. On montre que de

telles paires existent toujours à l'intérieur d'un même Q-genre et que l'égalité
X+Y= Z + M dans QGM(N) est équivalente à l'existence d'un carré bicartésien

avec (<f), if/) exhaustive

dans la catégorie des Q-modules où Q opère de façon nilpotente; on peut même

montrer qu'en prenant le "pull-back" de <f> et i/f, le carré ainsi obtenu est de fait
bicartésien. Les détails de la preuve se déduisent aisément de [5]. On vérifie alors

tout de suite que l'application t : QGM(M)^>QGM(N) définie par r(X) X-M
est un homomorphisme, donc un isomorphisme puisque t est clairement bijective.

Tous les autres résultats de [12] se laissent démontrer facilement si on
remplace Jf0 par â0; cependant, lorsque Mislin utilise le groupe H2!*?; Zh), il faut
nous restreindre à la catégorie Mo et utiliser ExtQ (S;Zh); dans la deuxième

partie, nous verrons que plusieurs de ces résultats se démontrent sans utiliser le

groupe ExtQ(S;ZH) et seront valides dans St0 et non seulement dans Mo. Nous

nous bornerons donc à démontrer le théorème suivant dans Mo pour lequel nous
n'avons pas exactement l'équivalent dans St0 grâce aux méthodes de la deuxième

partie. Nous donnerons les détails de la démonstration puisque nous n'utilisons
évidemment pas le théorème de Kùnneth comme le fait Mislin.

THÉORÈME 1.6. Soit NeM0 avec Q opérant sur N de façon nilpotente. Soit

{Mt} i 1,..., k une famille de Q-groupes appartenant à QGM(N). Supposons que

pour chaque i l,...\k, 8(N)âl=Ml. Alors ô(0,k=1 N,) dtf-i a,) 0^1 Mt
(chaque Nt étant une copie de N). En particulier, le diagramme suivant est
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commutatif:

où chaque Lx est une copie de L.

Preuve. Notons d'abord que l'énoncé a un sens parce que si t exp S(N) alors

t exp S(©k=1 Nt) également. Rappelons ensuite que 8(N) est défini comme suit:
si â,€(Z/r)*{±l} est représenté par ateZ, dire que ô(N)â, =MI? c'est dire qu'il
existe un diagramme commutatif dans la catégorie des Q -modules avec les lignes
exactes

où |det A,| |a,|, B,: SiN)^* S(Mt), /(Zh) Fi>qN, gl(Xh) FvQMl et </>, une
T-équivalence. On a alors clairement un diagramme commutatif

hfc >^u è (k \

h
k

h t <3>

où chaque flèche de (3) est la somme directe des flèches correspondantes dans (2)

pour i 1,..., k. Puisque B': S(©k=1 Nt) -S-> Si®^ Mx), f(Zhk)

Fvq(®^i Ni) et 4>' est une T-équivalence, il découle des remarques précédant le
théorème 1.4 que

8(êt A0( | dét A' | (mod 0) © Mr

La conclusion s'ensuit puisque |dét A'|(mod 0 nfc=i «,•
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Nous en déduisons enfin l'analogue de [12], théorème 6, sous la forme
suivante:

THÉORÈME 1.7. Soit NeM0 avec Q opérant sur N de façon nilpotente et

soient {MJ, {M;} (ï l,...,fc) deux familles de Q-groupes appartenant à

QGM(N). Soient ât et â[ tels que ô(N)â, =Mt et 8(N)âf Mf. Alors si Il^i ô,

11!°= i 5., ©!"=! M, £ ©f-i Mi. En particulier, si t exp S(N),

© Ma 0 N pour tout MeQGM(N).
<*>(t)/2 4>(0/2

Preuve

âf) ©M;

d'après le théorème 1.6.

Remarque. En prenant Ml=N(p,ml) et M[ N(p,m't), on a

0f=1 M[ si n^i mi ±n!c=i m\ (mod p). Par exemple,

JV(13,2) ©N(13, 6) et N(7, 2)0N(7, 3) â N(7,1)©N(7,1).
si n^i mi ±n!c=i mî (mod p). Par exemple, N(13, 3) 0 N(13, 4) —

2. Définition du Q-genre (Pickel), comparison avec le O-genre (Mislin), non-
simplification dans les O-groupes

DÉFINITION 2.1. Pour tout Q-groupe G, nous désignons par QF(G)
l'ensemble des classes de Q-isomorphisme des quotients finis de G par ses Q-
sous-groupes normaux.

Nous désignons par G(n) le O-sous-groupe normal de G engendré par les
n«èmes pUiSSances cféléments de G. Le produit cartésien de n copies de G muni de

l'action habituelle est noté Gn (Rappelons qu'habituellement Gn désigne plutôt
ce que nous avons désigné ici par G(n)). Nous posons G lim G/Gin); c'est un
Q-groupe qui coïncide avec le complété profini si G est nilpotent de type fini; il
suffit en effet de remarquer que si G est nilpotent de type fini, alors G/G(n) est fini
pour tout neN.

THÉORÈME 2.1. Soient G et H des Q-groupes tels que pour tout neN,
G/G(n) et H/Hin) soient finis. Supposons de plus que Vune des trois conditions
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suivantes est satisfaite:

i) OF(G) QF(H)
ii) Gn — Hn pour un certain rc e N
iii) il existe un Q-groupe L tel que L/Lin) soit fini pour tout rceN et tel que

Alors G — H.

Preuve. On n'a qu'à reprendre la preuve de Warfield ([44], lemme 1 et
théorème 1) en constatant que les homomorphismes sont des Q -homomorphismes

et en utilisant le théorème de Krull-Schmidt pour les groupes à

opérateurs.

Remarque. Etant donné une extension T>—» N » F de Q-groupes et une
section s de tt, on peut déterminer les applications suivantes (qui en général ne
sont pas des homomorphismes):

a) a : F—»AutT définie par a(a) (b •-» s(a)~1fc(a))
b) / : FxF-* T définie par f(a, b) s{ab)s(a)-1s(b)-1
c) A : FxQ^T définie par A(a, x) x- s(a)s(ay1

Ces applications caractérisent l'extension N en ce sens qu'il est possible de

reconstruire N connaissant a, f et A.

LEMME 2.1. Soit Ne2L0. Nous pouvons considérer N comme une extension

T >—» N » F où T est fini et F abélien libre de rang fini sur lequel Q opère

trivialement. De plus, il existe un Q-sous-groupe D et N tel que i) De VqN, ii) D
est abélien libre de même rang que F, iii) Vhomomorphisme tt : N—> F restreint à D
est un Q-isomorphisme de D sur F(k) pour un certain keN et en particulier il existe

un Q-homomorphisme n : F(k) —> N tel que n(F(k)) D et tt[jl IdFoo.

Enfin, il existe une section ar de tt telle que les applications a, f et A définies par
rapport à cette section ne dépendent que de la classe modulo F(k) dans F et non du
représentant; de façon précise, si a, beF, m, neF(k), xeQ, alors a(am) a(a),
f{am, bn) f(a, b) et \{am, x) A(a, x). On peut donc regarder a, f et A comme
définies sur F/Fik), F/F(k) x FIF(k) et F/F(k)xQ respectivement.

Preuve. La démonstration de ce résultat demande au plus quelques précisions.

On prend pour T le Q -sous-groupe formé des éléments de torsion de N. Puisque
F^N est fini donc contenu dans T(N), F= N/T possède les propriétés voulues. Si

on pose D FvqN, on a rang D rang F d'après le lemme 1.1 et la remarque
suivant la définition 1.4; il est clair que D satisfait i), ii) et iii) où k exp T<
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Enfin, posons <x fi sur F(k) et définissons a arbitrairement sur un ensemble

U de représentants des éléments de F/F(k) dans F. Ensuite, a peut être prolongée
à F par <r(um) cr(u)cr(m) pour u g U et m g F(k). Il est facile de voir que a, f et
À définies par rapport à a ont les propriétés voulues. On a par exemple
A(«ra, x) A(w, x); en effet, \(um, x) x • o-(um)a(um)~1 x • cr(u) x • o-(m)
cr(m)~1o-(u)~1 x • o-(m)ct(m)~1 (puisque cr(m)eD, alors x • o-(m) o-(m)).

DÉFINITION 2.2. Donnons-nous deux extensions (4) T>~*N-^>F et (5)

T>-+N'-*>F' avec JV, Nre2L0> T^T, F-F' comme dans le lemme précédent.
On sait qu'il existe keN tel que la Q-structure de Nf peut être définie par des

applications a':F/(F)(k)-*Aut T, f :F/(F)(k)xF/(F)(k)-*r et A':F/(F)(k)xQ
-» T'. On dit qu'on isomorphisme £ : F/F(k) —> F(F)(k) induir une équivalence
faible entre les extensions (4) et (5) si on peut choisir a, / et A tels que
a(a) a'(£(a)), /(a, 6) /'(£(a),£(6)) et A(a,x) A'(f(a),x) pour tout a,fce
F/F(k), x g O.

Remarque. Dans ces conditions les O-groupes N et N' ne sont pas
nécessairement Q-isomorphes puisque £, n'est pas nécessairement induit par un
isomorphisme de F sur F'; cependant si £ est induit par un isomorphisme de F
sur F', alors N et N' sont Q-isomorphes. Si g:F —> F' est un isomoiphisme et
g:F/F(fc)-^F/(F)(k) l'isomorphisme induit, alors g-^iF/F00-* F^^ est un
automorphisme avec dét (g~1^)e(Z/fc)* et il est bien connu que £ est induit par
un isomorphisme de F sur F' si et seulement si dét (g~1f) ±l; on voit tout de

suite que si h:F' —> F' est un autre isomorphisme, alors dét (g-1£) ±dét (/T^£).
A tout isomorphisme § : F^^ -> F'l(F')(k) qui induit une équivalence faible entre
(4) et (5), on peut donc associer un élément bien déterminé de (Z/fc)*/{±l} défini

par d(f) dét (g"1^) g (Z/fc)*/{±l}. Si d(£)= 1, £ peut être induit par un isomorphisme

de F sur F' et dans ce cas N — Nf. Réciproquement, si N — N\ un

Q-isomorphisme de N sur Nf induit d'abord un isomorphisme de F sur F' qui à

son tour induit un isomorphisme % : F/F(k) -» F'l{F')k tel que

LEMME 2.2. Si les deux extensions T^-*N-*>Fet T^N'-» F sont faiblement
équivalentes, alors

i) pour touf groupe abélien de type fini A tel que h(A) > 1 ef qui est mwra d'une

Q-action triviale, NxA^N'xA
ii) N*(k)/2 â ]V*<«/2, où k est comme dans la définition 2.2.

Preuve, i) II suffit de montrer que NxZ-iV'xZ. On considère alors l'isomorphisme

£:F/F(k)-^ F'/(F')(k) que l'on prolonge en un isomorphisme tj de F/Fik)x
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Z/fc sur F/(F)(k)xZ/fc en posant tj £ sur F/F*^ et tj multiplication par un
représentant de d{^)~x dans Z/fc sur Z/fc. Puisque 4(t?) 1, T7 est induit par un Q-
isomorphisme de FxZ sur FxZ et la conclusion découle des remarques
précédentes appliquées aux extensions T>-> N x Z -» FxZ et T >-? N' x Z -» FxZ

ii) £ : F/f<fc) -> F(F)(k) détermine un isomorphisme £n : (F/F<k))n -»
(F/(F)(k))n et d(£)n d(£)n. La conclusion est alors une conséquence du fait
qued(f)"k)/2=l.

THÉORÈME 2.2. Si M, NeSl0, les quatre conditions suivantes sont
équivalentes:

i) QF(M) QF(N)
ii) M" â N™ pour un certain n e N

iii) Mx A 2 JVx A pour towf groupe abélien de type fini A tel que h(A)>\ et

sur lequel on fait opérer Q trivialement.

iv) M°N.
Preuve. Le théorème 2.1 montre que chacune des conditions 1), ii) et iii)

implique iv). La preuve que iv) entraîne i), ii) et iii) est similaire à celle de [16],
théorème 2. En particulier, pour montrer que iv) entraîne ii) et iii), il suffit d'après
le lemme précédent de montrer que M et N peuvent être décrites par des

extensions faiblement équivalentes.
Si G est un Q-groupe, nous désignons par Gp le complété p-adique de G

muni de sa structure naturelle de Q-groupe, c'est-à-dire Gp=lim G/Gipk\ On

prouve de la même façon que dans [16], les résultats suivants:

LEMME 2.3. Si M et N sont des Q-groupes nilpotents de type fini, alors

QF(M) QF(N) si et seulement si Mp â Np pour tout premier p.

LEMME 2.4. Si M et N sont des Q-groupes nilpotents de type fini tels que
Me QGM(N)y alors Mp â Np et Mo â No.

Pour les Q-groupes nilpotents de type fini, la définition du Q-genre (Pickel),
noté QGp(-). est la suivante:

DÉFINITION 2.3. MeQGP(N) si et seulement si QF(M)=QF(N) et

Les lemmes 2.3 et 2.4 montrent que Me QGM(N) entraîne que Me QGP(N).
La réciproque n'est pas vraie en général et cela même dans le cas des groupes
sans opérateurs ainsi que l'ont montré Belfi et Wilkerson ([1], corollaire 4.2).
Cependant, si nous nous limitons à la catégorie â0, alors Me QGP(N) entraîne
M € QGM(N) (voir théorème 2.4).
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THÉORÈME 2.3. Si M et N sont des Q-groupes nilpotents de type fini et si Von

a une des conditions:

i) Mn 2 Nn pour un certain n g N, ou

ii) MxL^NxL pour un certain Q-groupe nilpotent de type fini L, alors

MeQGp(N).

THÉORÈME 2.4. Soient M, Ne&0. Les six conditions suivantes sont

équivalentes:
i) QF(Af)=QF(iV)
ii) Mn â jVn pour un certain neN
iii) MxA-NxA pour tout groupe abélien de type fini A tel que h(A)> 1 et

sur lequel on fait opérer Q trivialement

iv) M^N
v) Mp =* Np pour tout premier p
vi) Mp =* A/p pour tout premier p.

Le théorème 2.3 se prouve comme dans [16] et le théorème 2.4 est déjà
essentiellement prouvé; en effet, les cinq premières conditions sont équivalentes
d'après le théorème 2.2 et le lemme 2.3; d'après le lemme 2.4, vi) implique v);
enfin iii) entraîne vi) se démontre comme le corollaire 1 dans [12] ainsi que nous
le remarquons dans les commentaires suivant le théorème 1.5; dans ce cas, Mislin
ne fait pas appel au foncteur H2(-,-) et le résultat est valide dans 2L0 (et non
seulement Mo).

THÉORÈME 2.5. Pour Ne&0, \QGM(N)\ =\QGP(N)\ <<Mfc)/2 où <£ est la
fonction d'Euler et k exp T(vqN).

Preuve. Puisque VqN est abélien et muni d'une Q-action triviale, le genre de

VqN est trivial ([4], proposition 3.3); par ailleurs, Vq(~) est un invariant du

Q-genre car (vqN)p S vq(Np). On peut donc pour chaque Me QGM(N) choisir le
même entier k T(vqN) dans le lemme 2.1 et si M, M' g QGm(N), les extensions

T>~>N-**FN, T>^>M-*>FM et T>-*M'-^»FM> obtenues comme dans le

lemme 2.1 sont deux-à-deux faiblement équivalentes d'après le théorème 2.4

(nous avons en effet indiqué dans la preuve du théorème 2.2 que si M — N, alors il
existe une équivalence faible entre les extensions correspondant à M et N).

Supposons maintenant que £M : FJ(Fjk) -^-* FM/(FM)(k) et &,, : FN/(FNYk) -=-?
FM/(FM)(k) induisent des équivalences faibles entre les extensions correspondantes
telles que d(ÇM) d{£M). Il existe alors g : FN --2L-* FM et h : FN —^ FM> tels que

Il est clair que fi*,*^ : FM/(FM)(k)-^ FM7(FM,)(k)
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induit une équivalence faible et que dét(ghifM^M) ±l. Il découle alors des

remarques précédant le lemme 2 2 que M^Mf
Nous avons montré que nous pouvons associer à chaque élément de QGM{N)

un élément âe(Z/fc)*/{±l} et que l'application ainsi obtenue est mjective, en
particulier, |QGM(N)| |QGP(N)|<|(Z/fc)*{±l}| <fr(fc)/2.

Notons que Mislin a obtenu une borne supérieure pour \GM(N)\ en montrant
qu'il existe une surjection (Z/fc)*/{±l}—» GM(N) alors que nous obtenons un
résultat analogue pour \QGM(N)\ en démontrant l'existence d'une injection
QGM(N)~(Z/fc)*/{±l}.
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