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Comment. Math. Helvetici 53 (1978) 334-363 Birkhéduser Verlag, Basel

On a class of foliations and the evaluation of their characteristic
classes

DANIEL BAKER

Introduction

This paper gives a detailed exposition of the results appearing in [B]. Specific-
ally, we develop an algorithm for analyzing the images of characteristic classes
from H*(WO,) and H*(W,) for a certain class of foliations. The foliations are on
spaces of the form I'\G/K where G is a semi-simple Lie group, K is a compact
subgroup, and I’ is a discrete subgroup of G such that I'\G/K is a compact
orientable manifold. The leaves of the foliation are the left translates of a
parabolic subgroup P> K. When K =1, the normal bundle of the foliation is
trivialized by left invariant sections and we obtain characteristic classes from
H*(W,). For K non-trivial, the normal bundle is also non-trivial, and the
characteristic classes come from H*(WO,).

The examples yield new linear independence relations for the images of these
classes in H*(BI,, R) and H*(FT,, R). Specific examples of foliations of this type
have been anayzed by others (see, for example, [BR], [KT1], [KT2], [Y]).

The contents of this paper are as follows: In Chapter I we give some basic
facts, references for others, and we set our notation.

Chapter II uses the results of Cartan ((CA])) to replace the relative complex of
forms on the Lie algebra, A*(%, £, C), with a finitely generated complex A having
the same cohomology. This is done by observing that H*(¥, £, C) has the same
cohomology as a certain homogeneous space which is also a fibre bundle. The
complex A is basically the E, term of the spectral sequence for this fibre bundle.

Chapter III contains the basic classification theorem for parabolic subgroups.

Chapter IV contains the main results for computing the image of the charac-
teristic map for the foliation @ : H*(WO,)— H*(I'\G/K). The idea is to show
that there is a commutative diagram

H*(WO,) —— H*(%, #£)

o

H*(I'\G/K)
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where F is injective. This reduces the problem to studying the image of p. This is
the same technique that has been used by Kamber and Tondeur (see [KT1]).

We now use the isomorphism H*(9,#£)~ H*(A) to replace p with a map
A*: H*(WO,) — H*(A). The map A* is a nice map in the sense that it has a
geometric interpretation in terms of characteristic classes for principal fibre
bundles, and this fact renders its image computable. We emphasize that the
construction of A* relies heavily on the structure theorem for parabolic sub-
groups.

Chapter V contains calculations for specific examples. Sample results are the
following — (see corollaries 5.15 and 5.19):

For n#2, r=2 the set of classes

{ci"h 1hahy - hy, et zhlhzhi,' e h’ikEH*(W2n’ R) | 2<ip< - <i=n}

is non-vanishing and linearly independent in H*(FT,, R) (this includes the classes
c?"hyh, and c,c3"?h,h,). Here FT'}, is the classifying space for codimension n, C"
foliations with trivialized normal bundles.

For r=2 the set of classes

{C%nhlhi h;k, Czcln 2h1hi, T h’ik € H*(Wozm R) l

1<i1<"'<lk$n and i'

are odd}

is non-vanishing and linearly independent in H™*(BI%,,R) (this includes the
classes ci"h, and c,c3" %h,). Here BI™, is the classifying space for co-dimension n,
C’ foliations.

I. Some preliminary facts and notation

For more detailed information about the Weil homomorphism and TP forms
see [CS] and [KN], Volume II.

Let G be a Lie group with Lie algebra 4. I¢ (9, V) will be the ¢-dimensional,
V-valued, Weil polynomials (V=R or C). Let I (% V)=®I‘(%Y V) and
Pel“(%, V). If w:E — M is a principle G bundle with ¢ valued connection 6 and
curvature {2 then we are led to consider the 2¢-dimensional forms P({2)=
P(2,...,0). In [CS] the authors construct the forms

TP(§) = ¢ Llp(o A1) dt
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where ¢, = t2 +1(t*—1)[6, 6]. In the next proposition we collect some of the facts
which are proven in [CS] and [KN].

PROPOSITION 1.1 Let 0 be any 9 valued 1-form on a manifold E and let
0 =d0+3[0, 8). Then:

(i) dTP(0)=P(02)

(i) If 6, and 6, are two 9§ valued 1-forms on E, let

0,=1t0,+(1—1)6,,

d
a=‘£0,=01—00

1
0,=d6, +5 (4, 6,].
Then the form
1
AP(8,, 85) = € L P(a, Q¢7Y) dt

satisfies
d(AP(Gu 6,)) = P(Q2,) - P(no)

(iii) When 6,, 8, are ¢ valued connections on a principle G bundle 7: E — M,
then AP(0,,0,) is in the image of m* and can be thought of as a form in
A%"Y(M, V) (in the future, when it causes no confusion, we will do this).

(iv) When 0 is a connection on w:E — M, TP(8) = AP(6,0)e A*>*"Y(E, V).

Remarks. (a) In [CS] and [KN] these facts are proven only in the case where 6
is a connection form on a bundle. The more general case where 6 is an arbitrary 4
valued 1-form on E, which need not commute with the action Adg;, can be
obtained by means of the following construction:

On the trivial bundle E X G, let @ be a connection form defined by w(x, g)=
g+ Ad -+(6(x)) (Here we identify g with the left invariant vector field on G
taking the value g at ge G.) Then using the section s: E — E X G, s(e)= (e, 1),

s¥(w)=0.

Thus if something from the above proposition holds for w, it will also hold for 6.
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(b) To see that AP(6, 0) = TP(6) note that

1
AP(6,0) = ej P(6, 21 dt

0

where
1
ﬂt =tdo +E t2[0, 0]

=t +% (-0, 0]1= ¢,

Let & be a C"(r=2) codimension n foliation on a manifold M. We will use the
construction given in [BT] for the characteristic maps H*(WO, ) — H*(M, R) and
(in the case where the normal frame bundle to & is trivialized by a section)
H*(W,)—> H*(M,R). We caution only that, if V° and V' are two connections on a
real vector bundle with ¢€(n, R) valued connection forms 6, and 6, on the
associated bundle of bases, then the form that is referred to as A(V° V!)(P) in
[BT] is just AP(6,, 6,) in this paper.

For computational purposes the following lemma is useful (see [G] or [KT1]
for proofs).

LEMMA 1.2. (i) A basis for H*(W,, R) consists of the classes determined by
the cocycles c; - - - ¢, h; - - h;, where

L}

h=-' = =n, W< <Je=n, =i

i1+'°°+ik+j1>n, i1+"‘+ik_<.n

(i) A basis for H*(WO,,R) is given by the cocycles listed above where
Ji>- - -, Je are odd, and by the monomials c,; - - - c;, where 2(i,+ -+ - +i)=n.

Note that if BI, is the classifying space for C" codimension n Haefliger
structures and FI, the homotopy theoretic fibre of the map v:BI}, — Bg; (wr)
which classifies the normal bundle of BI,, then we obtain a commutative diagram
(see [BT] for details).

i*

H*(WO,,R) —> H*(BI",R)
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Now if £ is a subalgebra of 4 we can consider the Lie algebra cohomology
H*(%, V) and the relative Lie algebra cohomology H*(%, £, V). For the basic
facts and definitions concerning these objects, and a proof of the following
theorem see [CE].

THEOREM 1.3. (i) If 9 is a semi-simple Lie algebra, then H*(%4, V) is an
exterior algebra on a finite number of generators (called primitive elements), each
having odd degree.

(ii) If G is a compact Lie group with Lie algebra 4, K a closed connected
subgroup with subalgebra £< 4 then H*(4, £, V)=~ H*(G/K, V).

We remark only that, if 7:G — G/K is projection, then A*(¥, #£,C) is the
image under 7* of the left invariant forms on G/K. This induces a map
¥ : A*(%9, £,C) - A*(G/K, C) which induces the above isomorphism.

Assume now that K is a compact, connected subgroup of a (not necessarily
compact) Lie group G. If there is a compact G with closed subgroup K such that

4RC~94R®C (1.4)

and this isomorphism restricts to an isomorphism k ® C= £4QC, then it follows
that

H*(%, #£,C)~ H*(4, k,C)~ H*(G/K, C).

In particular, H*(%, #, C) must satisfy Poincare duality.

PROPOSITION 1.5. (see also [KT1], Lemma 4.88). Suppose that G and K
satisfy the above hypotheses, and suppose I'< G is a discrete subgroup such that
I'\G/K is a compact manifold. Then there is a cochain map

y:A*(%Y, £,C)—> A¥(I'\G/K, C)

which is injective on cohomology.

We remark only that the map ¢ is constructed in the same fashion as the map
¥ above.

In general the isomorphism (1.4) does not restrict to an isomorphism 4®R ~
4®R. For this reason it will be easier to do all our cohomology computations
using complex coefficients.

Finally we note that, when G is semi-simple, a I' satisfying the hypotheses of
Proposition 1.5 always exists (see [BO2]).
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II. On the cohomology of homogeneous spaces G/K.

In this section we construct several different complexes which can be used to
compute the cohomology H*(¥%, #,C) using the isomorphism of Theorem 1.3.
This material is well known and can be found in, for example, the text [GHV].
Unless otherwise specified, all Lie groups in this chapter will be compact,
connected. Cohomology is always taken with complex coefficients.

We first fix some notation. For G a Lie group, let g,,..., g, € H*(G) denote
the primitive generators for the cohomology algebra. Write S; = H*(B), where
Bg is the classifying space for principle G bundles. S5 is a polynomial algebra on
generators g,,..., g, where g, transgresses to g in the classifying bundle E; —
Bg.

Given a continuous homomorphism of Lie groups, p: G — H, denote by
p: Sy — Sg the map on characteristic classes induced by p.

Finally, we use the same notation conventions for all Lie groups, e.g. k; are
the primitive generators in H*(K), transgressing to k, € Sk, etc.

Suppose K is a closed, connected subgroup of a compact Lie group G. Form
the complex Sy ® H*(G) with differential d satisfying

d(k,®1)=0
d(1®g)=p(g)®1
where p: K — G is inclusion. The differential d is extended as an antiderivation.

THEOREM 2.1. (see [GHV], 11.5, Vol III) (i) There is a commutative
diagram, where X is induced by a cochain map Sy ® H*(G) — A*(%, £,C)

H*(Sx® H*(G))
Sk l H*(G)
H*(G/K)

where i,: Sy — Sx ® H*(G) is the natural inclusion. The map
m: Sk @ H*(G) - H*(G)

is obtained by composing the natural projection Sx® H*(G)—> H*(G) with the
isomorphism w*:H*(G)— H*(G) induced by the homeomorphism u:G — G,
u(g)=g"'. The map o* is induced by a classifying map o:G/K — Bx of the
bundle m: G — G/K.
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(ii) If rank K =rank G, then o* is onto and H*(G/K)= Si/I where I is the
ideal generated by p(g,), i=1,...,rank G; deg(g)>0.

We now consider nested groups K< U< G, all compact, and construct a
complex whose cohomology is that of G/K but which reflects the fibre bundle
structure

UK — G/K

l

G/U.
Specifically consider the complex A =S, H*(G)® S, ® H*(U) with

d(1®gR1®1)=p,(8)R1R1®1
d1®101Qu)=101Q5,(ii,))R1-1Q101Q]1
d#®19181)=0=d(1018k®1)
where p,: U— G and p,: K — U are inclusions. The differential is extended as a
antiderivation.

Note that the complex A is filtered by giving S, ® H*(G)®1®1 filtration
equal to its degree and 1® 1® S, ® H*(U) filtration 0.

THEOREM 2.2. (i) There is a cochain map a:A — A*(%,4£,C) which be-
comes a map of filtered complexes when we filter A*(%, £, C) using the fibre bundle
structure U/K — G/K — G/U. The map «a induces isomorphisms on the E5? level,
so a induces cohomology isomorphisms as well.

(ii) If rank (U)=rank (G) then we have a map
U:A > SIQS RH*(U)=A

which is the identity on 1®1Q@ S, @ H*(U), sends 1Q H¥*(G)®1®1 to 0, and
sends i, @1®1Q1 to its reduction mod I in Sy/IQ1®1. Here I is the ideal
generated by the p,(8). The map ¢ induces isomorphisms on cohomology.

(iii) The map B:A - Sy @ H*(G)

B(#@1®1@1)=p,(4)®1

B(1®gR®1¥1)=1Qg

B(1®1Qk®1)=k®1

B(1R1®1Quy)=0

induces isomorphisms on cohomology.
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Proof. (i) follows from [GHV], 12.10, Vol III for the complex A*(%, U, C)Q
Sk ®H*(U) where the differential is the usual one on A*(¥ U C)Q1R1,
d(1®k,®1)=0 and d(1®1Qu,)=1®p,(1,)®1-P, (2)®1®1. Here P, () is
the Weil form for &; evaluated on the curvature (2 of a left invariant connection
0:%9— U for the bundle G — G/U.

Using Theorem 2.1 we can construct a map A — A*(¥%, U, C)Q Sx @ H*(U)
again inducing isomorphisms on E%“. The composition of these two maps gives «a.

(ii) follows as well because ¢ induces isomorphisms on E%% by Theorem 2.1
(ii).

To prove (iii) filter A by giving 1@ H*(G)®1®1 filtration 0 and S, ®1Q®
Sk ® H*(U) filtration equal to its degree. Filter Sy ® H*(G) by giving 1Q H*(G
filtration 0, S ® 1 filtration equal to its degree. One then verifies that 8 induces
isomorphisms on E%9.

Remarks. (i) Theorem 2.2 is valid when K is the trivial group {1}. (ii) An
analysis of the map a shows that @ maps the subcomplex S, ®1® S, Q H*(U)
into forms which are polynomials in the connection @ and its curvature (2 in
A*(%, C). This fact is important and will be used in Chapter IV.

In Chapter IV we shall be interested in the following application of this
theorem. Let G, K, I' satisfy the hypotheses of Proposition 1.5. In particular
assume that G is a non-compact semi-simple Lie group and G is the compact
form. Then, by Proposition 1.5, we have the injective map vy which is the
composition

H*(A) > H*(&, k,C)~ H*(%,4,C)~—> H*(I\G/K, C).

As has already been noted, we use complex coeflicients because the isomorphism
4R®C=~ 94Q®C does not restrict to an isomorphism 4®@R~ 4$QR.

III. Some facts about parabolic subgroups

The basic reference for this is [S]. Throughout this chapter, G€ denotes a
connected semi-simple algebraic group defined over C. All subgroups of G€ are
assumed algebraic unless otherwise specified.

DEFINITION 3.1. A Borel subgroup of G€ is a maximal connected solvable
subgroup of G€. Any subgroup of G€ which contains a Borel subgroup is called a
parabolic subgroup of G€.



342 DANIEL BAKER

Now let T€ be a maximal torus in G€, V the set of roots for T¢, V* is the set
of all positive roots with respect to some linear order, IT< V™ is the set of simple
roots. For every root a € V there is a unique 1-dimensional subgroup of G€, PS,
whose Lie algebra, ®E, is the root space for the root a.

THEOREM 3.2. (i) The semi-direct product B€=T€ - ([[,.v+ PS) is a Borel
subgroup of G€ and all other Borel subgroups are conjugate to it.

(ii) There is a 1-1 correspondence between parabolic subgroups containing B€
and subsets of vertices (i.e. simple roots) in the Dynkin diagram for G€. Let A < II
be such a subset, TC < T€ is the subtorus annihilated by A, V,< V is the subset of
roots generated by A. Then V, is the set of roots for a unique semi-simple subgroup
GS of G€ and the centralizer of TS, Z(TS) = GSX T€. Then the 1-1 correspon-
dence is given by associating to each A the semi-direct product

=Gsx19-( 1 P2
aeV*r—V,
(iii) From (i) it follows that this classifies all parabolic subgroups of G€ up to

conjugacy.

For the proof see [S]. We remark that [[, v+~ v, PS=N(4) is a nilpotent
subgroup and that a given parabolic PS decomposes the Lie algebra %€ into
GCDITDNCDN C. Here 4F is the Lie algebra of GT, IT for T, A€ is the Lie
algebra of N(4)€ and ¥ € is the Lie algebra of the group [I,cv-_v, PS. (V™ is the
set of negative roots.) The following relations holds:

[4SDIE, NC]c NE

(950T5, K<l 4-<

Finally we will be interested in real forms G of G€ where the Lie algebra
%< 4€ has the form

G=4 DT, DNDN-
with
N=NNY % =%°NY etc.

Then P=P°NY=%DT, BN is a subalgebra of ¥, and the following rela-
tions also hold:

[(gl®g.1’ .IV]CJV‘
[glegl’ N—]CN_
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IV. Construction of the foliations and evaluation of their characteristic classes

We continue to examine the situation appearing at the end of the last Chapter.
Fix a parabolic P€ and a real form G of G€ with $=4,0T ONBN",
P =GN PC. Choose a compact form G of G€ satisfying

(i) There are closed subgroups G, and T, of G with the same complexifica-
tions as G, and T,, and G, N G, is maximal compact in G,.

(ii) The Lie algebra ¥ splits as 4 =%, T, D £ where the complexification of
£ equals NN C.

Such a compact form can be constructed using, for example, the contents of
Chapter III of Helgason [H].

In what follows K will either be the trivial group 1 or K= G, N G,. The left
translates of P determine a foliation on I'\G/K. When K =1 this foliation has a
normal bundle trivialized by left invariant sections, and we obtain characteristic
classes from H*(W,). For K# 1 we obtain characteristic classes from H*(WO,),
and we do this case first.

There are the complexes

A =S5,1,/I® S @H*(G, x T))
and
A= sf}lx’f‘1®H*(G)®SK®H*(Gl X Ty)

defined in Chapter II. Let u; € H*(G, x T),) (resp. g € H*(G), k, € H*(K)) be the
primitive generators transgressing to i (resp. g, k;). As noted at the end of
Chapter II, there is an injective map y:H*(A,C)— H*(I'\G/K,C), and by
Theorem 2.2 there is the isomorphism ¢*: H*(A, C) » H*(A, C).

We will define a map A : WO, — A where n is the codimension of P in G, and
the composition y © ($*)™! o A*: H*(WO,) - H*(I'\G/K) will be the characteris-
tic map for the foliation on I'\G/K. First note that there is a homomorphism
o :P€— GL(%4°/P€) where GL(%®/?€) is the general linear group on the
complex vector space §€/PC€

o(p)(x) = Ady,(x)

Choose an Adg, .+, invariant Hermitian metric on ¥€/?€ and an orthonormal
basis x4, ..., X, which is also a basis for §/% when the scalar field is restricted to
R. By means of this basis we can identify GL(94€/?€) with GL(n,C), GL(Y/%)
with GL(n,R), etc. In particular, because K=G,NG,, and o(G,) < U(n),
a(K)< U(n)N GL(n,R) = O(n). Let 0, = 05,1, and o, = alg. Then ,(C,;_;) =
0 where C,;_; € Sg1.(nc) is the (2i —1)™ Chern class.
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Consider the subcomplex B = Sg,x1,® 1® Sy ® H *(G, X T,;) < A, and the maps
Ai:Saxr,—> B, i=1,2, given by A,(%)=#,Q1Q1R1, A,(%) =101 p,(i)R 1.
The A; clearly induces the same maps on cohomology. It follows that

31(Co)® 18181 =6,(Cpi_)R1R1®1 - 1Q 1®6,(Cyy_)® 1 = dtr,_,

for some &,;_; € Sg,x7,® 1Q Sy ® H*(G, x T,), Let &,,_, denote the image of &,,_,
in A.
Now define A : WO, — A as follows: A(C,) is the mod I reduction of

V=-1)*¢,(C)R®1®1
Ahy_y) = (\/:—]»)2k—1§_2k—1'

It is easily verified that A commutes with the differentials and is a cochain map.

Remarks. The reason for the coefficient (v—1)* is that the Weil polynomials
for Chern Classes are given by the formulae

1 — C n—k
det (AI e (2>—kgock(n))u .

These polynomials are real valued on the Lie algebra for U(n), but complex
valued on the Lie algebra for GL(n, R). To avoid complex numbers, one uses the
definition

1 — C n—k
det (u %n)_kgo C.(D)A

when defining characteristic classes for foliations. These polynomials are real
valued on the Lie algebra for GL(n,R) and differ from the first definition by a
factor of (V—1)*.

Note also that, because the dimension of G/G, X T is 2n, the algebra Sex1: /1
is 0 above dimension 2n. This is necessary if A is to be a cochain map, since
products of dimension greater than 2n in the Chern classes are zero in WQO,. It is
for this reason that we cannot map WO, into A instead of A.

THEOREM 4.1 There is a commutative diagram

H*(A, C) —— H*(I'"\G/K, C)

H*(WO,,R)—— H*I'\G/K, R)



On a class of foliations 345

where i is induced by inclusion R<C, & is the characteristic map of the foliation
determined by P and F= o (y*)7*.

The point of this theorem is that, because F is injective, linear independence
of classes in the image of A* implies the linear independence of their image by @.
The image of A™* is fairly computable because of its topological interpretation in
terms of characteristic classes.

To prove Theorem 4.1, we define the auxiliary notion of a classifying
homomorphism. The initial data is a Lie group U and subgroup K, a principle U
bundle 7 : E — B with dimension of B equals 2n, and a representation r: U —
GL(n,C) with r(K)< O(n,C).

Let #: EGL — BGL be a finite dimensional smooth approximation to the
classifying space for GL(n, C) bundles and choose a bundle map

E/K —— EGL/r(K)
B—— BGL
where f: B — BGL classifies the bundle E X ; GL(n, C) — B where the action of U
on GL(n,C) is given by the representation r.

Choose forms a, € A*(BGL, C) representing the k™ Chern class C,. Since
r(K)< O(n, C), the odd Chern classes vanish on EGL/r(K), so choose B,._,€
A*(EGL/r(K),C) with dB,,_, = #*a,,_,. Then define a cochain map v: WO, —
A*(E/K, C) by

v(G)=(=1)F* o #*(a)
v(hy—1) = (‘/:—1)2'(_1)?*(321:—1)-
Define the classifying homomorphism = to be the induced map

E=v*: H*(WO,,R) > H*(E/K, C).

The next Lemma will show that 5 is actually independent of the various choices
made in defining ».

LEMMA 42 Let m:E— B be a U bundle with dimension B=2n. If
do, ¢1: WO, — A*(E, C) are two cochain maps with ¢,(C,) € Image m*,
(do— o NC)= W*do'k,
(bo— @)(hok—y) = ¥ +dmy,

then ¢, and ¢, induce the same map on cohomology.
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Proof. 1t suffices to prove that ¢, and ¢, are cohomologous on the basis for
H*(WO,,C) given in Lemma 1.2 (ii). This is fairly straightforward, keeping in
mind that, since dimension of B is 2n, any form in the image of #* of dimension
greater than 2n must be 0. We leave the details to the reader.

Now to see that = is well defined, suppose first that we are given two different
classifying maps

(. 0, (& g): (E/K, B)— (EGL/r(K), BGL).

Then these maps are homotopic, so there are cochain homotopies f*—g*=
dK + Kd and f*—g*=dK+ Kd and one can choose K and K to satisfy m*K =
K#*. Then 7*f* () — m*g* () = 7*(dK(e,)) and f*(sz )~ &% (Bak—1) =
dK(Bai_1) + Ki*(aze—1) = dK(Box—1) + m*K*(az_;). So by Lemma 4.2 5 is inde-
pendent of the classifying map. If a,, Box_; and @, Box_; are dlﬁerent choices of
forms determining v, then o, — & =dmn, and d(Box_;— Baok—1— T Narc_1) =0, s0,
since A*(EGL/r(K),C) is acyclic in low odd dimensions, B,._1—Box_1=
¥ Nok—1+dé&—, and again Lemma 4.2 shows that = is independent of this
choice.
Finally note that we can use the diagram

E-———-)EU—E-)EGL
Lol

B——-—>BU-—R-->BGL

where EU — BU is a smooth finite dimensional approximation to the classifying
space for U bundles, and R is induced by the representation r. Then we can
define v by choosing a eA*(BU C) to represent R*(C,) and B,_;€
A*(EU/K, C) with dB,._,=71*a,. Agaln since H*(EU/K, C)=0 in odd dimen-
sions, v will induce the same map =

Remark. Let B%} (..c) be the 2n-skeleton of By (. ) using the cell decomposi-
tion by Schubert cells. By taking the restriction E(GL) — BZj (,.c, of the classify-
ing bundle to its 2n-skeleton, we obtain a classifying space for bundles whose
base has dimension <2n. One can show that H*(E(GL)/O(n, C))=~ H*(WO,) and
that & is induced by a classifying map f:E/K — E(GL)/O(n,C).

The point now is that A*:H*(WO,,R)— H*(A,C) is the classifying
homorphism & when we compose with the isomorphism a ° (¢*)™': H*(A, C) -
H*(G/K,C) of Chapter II. Here the representation is o : Glx Tl—-> GL(n,C)
and G - G/ G1 x T, is the principle bundle with dimension G/G, x T, =2n (recall
dim G,/G,x T, =dim (W@®A") in the Lie algebra ¥, and dim & =dim ¥~ = n).
For the map a°(¢*)™" sends classes in the image of A* to Weil polynomials in a
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%,® 9, valued connection and its curvature (see the remark after Theorem 2.2).
We must show that these forms are pull-backs of forms from a classifying space
and to do this it suffices to show that the connection is the pull-back of a
connection on a finite dimensional approximation to Eg ., — Bg,«1,. This fol-
lows by a theorem of Narasimhan-Ramanan on universal connections (see [NR]).

Thus to prove Theorem 4.1 we must do the following:

(i) Show that i o @: H*(WO,,R)— H*(I'\G/K, C) is induced by a cochain
map ¢: WO, = A*(%, £,C)=A*(F, £ C) and

(i) Show that ¢ induces the classifying map for the bundle G — G/G, x T,
under the isomorphism H*(9, £, C)~ H*(G/K, C).

We show (i) first. Let 6:%9€— P€ be the projection induced by the splitting

GC=GCHICODN DN =P DN C
G=49 DT, ONON =PDN".

LEMMA 4.3. The normal bundle to the foliation on I'\G/K is just
I'NG X GL(n,R) — I'\G/K where the action of K on GL(n,R) is given by the
representation o,. The form

w(g, X) = % + Ad,-1(0x(6(8)))

is a basic-connection form on this bundle. (See [BT] for the definition of a basic
connection.)

Proof. Let T be the GL(n,R) bundle associated to the normal bundle to the
foliation. We give a bundle isomorphism I'\G X, GL(n,R)— T and leave the
other details to the reader. Choose an orthonormal basis x;, ..., x, for 9% and
view each x; as a left invariant vector field in ™. Then, given g€ G, x € GL(n, R),
x determines a normal frame at g and, by using projection, at gK € G/K. This
process is independent of the left action of I" and the right action of K, and gives
the desired map.

We must now define a Riemannian connection on the normal bundle to
compute ®. By choosing this connection carefully we can save some work when it
comes time to prove part (ii) of the proof of Theorem 4.1.

LEMMA 4.4. There is a projection p:g€(n,C)— 04(£)€ commuting with
Ad, ) and a projection 6,: 4€ — £ commuting with Ady such that

(1) 65(9)< £

(i) poogxo@=0ay° 6,
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Proof. Choose an Adyg stable splitting of P =4DNDOM where DN =
£+Ker (04) and ox(N)=0. Define 6,: 9 — £ by projection from ¥ to % (using
014: 9 — P) composed with projection from 2 onto £ (using the above splitting).

Now choose an Ad,, , stable decomposition of g€(n, R) = 04(£) o4x(M)D M.
Define p:gf€(n, R) — o4(£) by projection via this splitting. It is easily seen that
Ty ° oolpzp ° Oxlp

One can now extend 6, to all of 9€ and p to all of ¢€(n, C) by complexifying
the above maps.

Now define a connection on I'\G X GL(n, R) by wo(g, X) = x + Ad,-1(040,(8)).
Then w, is so(n) valued on the SO(n) reduction I'\G X SO(n) by Lemma 4.4 (i),
and so is Riemannian.

Thus we have a cochain map, inducing @
¢ : WO, - A*(I'N\G X GL(n,R), R)

given by
$(CH=(-D*C(@),  0=do+io o]

d;(th—l) = (\/_ 1)2k—1AC2k-—1(w’ o).

It follows that the image ($)< 7w*(A*(I'\G/K,R)). We have a bundle map,
where s(g)=(g, 1),

NG —> I'\G X GL(n, R)

NG/K —* NG/K
and from this it follows that s* o ¢ maps into the image of #* and also induces .
Note that a left invariant form in the image of #* must factor through

A*(4,£,R). Since s*o=040 and s*w,=o040,, we have a map
¢: WO, > A*(9, £ R)

¢(Ck) = Ck(O'*ﬂ), ‘Q = de+%[09 0]
d(hy_q) = AC2k—1(U#0’ o4 0)

and ¢ induces @. This proves (i).
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As before, we move to complex coeflicients and view ¢ as a map ¢: WO, —
A*(%, £, C). Now consider the bundle G Xgx1,GL(n,C)— G/G,x T; and let
»(g, X) =X+ Ad,-1(040(g)) be a connection on this bundle. Note that pe@ is a
ox(#)€ valued connection on the bundle G Xg,.7, GL(n,C)—
G Xg,x7, GL(n, C)/a(K)€. Now, in the diagram
—— G Xg,x1, GL(n, C)

T m

1 <—Q)

/G_lelT G/G—IXTI

5(g)=(g 1), we have
E*(p ° (D):p O Oy ° 620'*00
by Lemma 4.4 (ii). It then follows that the classifying map determined by &
Ci = G(042)
ha-1—> ACo_1(0%0, 048,) = §*ACy_1(@, po @)

is the same map as ¢, and this proves (ii) and completes the proof of Theorem
4.1.

When K =1, the complexes A and A are given by

A =S5, H(G)Q H*(G, x T})
A = Sg 1/ IOH*(G, x T)).
In A the class 6(C,)®1®1=d& for & € S,7,Q1Q H¥(G, X T,) by a similar

argument to the one used when K# 1. Let & € A be the image of & e A and
define A : W, — A as follows: A(C,) is the mod I reduction of

W-1)6,(G)®1
A(h) = (V-1)*E,.
THEOREM 4.5. There is a commutative diagram

H*(A, C) —> H*(I'"\G, C)

A* i

H*(W,,R)—> H*I'\G,R)
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where i is induced by inclusion R<C, @ is the characteristic map for the foliation
determined by P and F= vy o (¢*).

The proof is basically the same as that for Theorem 4.1. We omit the details.

V. Examples

Note. In the computations in this chapter, the scale factor (v—1)! appearing in
A(cg) and A(hk;) will be ignored. Because we are interested only in questions of
linear independence, this will make no difference, and to include it would
unnecessarily clutter the notation.

In the examples which follow it is necessary to evaluate the maps on charac-
teristic classes induced by the representation o, : G, X T; = GL(n, C) and by the
inclusions G, X T, = G and K — G, x T,. We do this by evaluating the associated
maps on Weil polynomials. Since the domains of our homomorphisms are always
compact, there is a Weil polynomial representing each characteristic class as-
sociated to these groups. To evaluate these maps on Weil polynomials we usually
restrict to a Cartan subalgebra. This technique is standard (see [KN], Volume II,
for an excellent exposition).

The following proposition will be useful:

PROPOSITION 5.1. Consider a parabolic subgroup obtained by removing one
vertex from the Dynkin diagram for G€. Then H*(G/G, x Ty, C) is one dimensional
and, for 0# x € HX(G/G, x T,, C), a power of x is a non-zero top dimensional class
in H*(G/G,x T, C).

Proof. Since G, has rank one less than G, T, must be a circle. Since G, is
semi-simple, H'(G,,C) =0 (see Theorem 16.1 of [CE]). Thus H*(G, X T,,C) is
one dimensional and a generator must transgress to a non-zero class in
H*(G/G,x T,,C). (Otherwise H'(G,C) would not be 0.) Conversely, any two
dimensional class in H*(G/G, X T,, C) must be in the image of the transgression
in G,xT,— G- G/G,xT,, since H¥G,C)=0. Thus there can be only one
such class which shows that H*(G/G, x T, C) is one dimensional.

To see that a power of x is a non-zero top dimensional class note that G/G, x T,
is Kaehler and x must be a multiple of the fundamental two form.

EXAMPLE 1(a). The Dynkin diagram for +f(n+k) is just:

o 0 o o (n+k—1 nvertices).




On a class of foliations 351

If we remove one of these vertices we get a parabolic of the form
{lla;lle of(n+k)|a,;=0fori>k,j=<k}

Here

6, D T, ~s(3€(k)B g€(n)) ={la,le s¢(n+k)|a;=0fori>k, j<k
ori<k,j<k}.
The codimension of the associated foliation is nk.

[@169% | N ]
N | 999,
Set K=1.

In doing computations, it is simpler to find maps on Weil polynomials if we
replace of(n+k) with ¢€(n+k) and o(9€(n)®D ¢€(k)) with ¢€(n)D g€(k). One
easily verifies that doing the computation in g€(n+k) and then restricting to
sf(n+k) is equivalent to doing the computation in of(n+k). In fact, this
corresponds to working with the foliation on I\SL(n+k,R)XR=
I\GL(n+k,R) whose leaves are of the form L XR where L is a leaf in
IN\SL(n+k,R).

So let A =Symxua/I®H*(U(n)xU(k)). The ring Symxua/l is the
cohomology ring of k planes in n-+k-space. Let d,e H*(U(n)) (resp.
e; € H*(U(k))) represent the primitive generators transgressing to the i™ Chern
classes d; in Sy, (resp. & in Syu,). Then Sypyxvw =Cldy, ..., dy €1, .., &l
To evaluate the map on characteristic classes g,, induced by inclusion p,: U(n) X
U(k)— U(n+k) recall the Whitney sum formula

n+k n k
(£9)-(59)5)
(1) 0 0
where g; is the i™ Chern class in Sy .« and do=&,= g, = 1. Thus I is generated
by the relations 1= (33 d)(Ck &).

THEOREM 5.3. Suppose k <n. Then the classes c"hy -+ - hyh; - - by, for all
k<iy<--:<i,<n are non-zero and linearly independent in H*(I'\SL(n + k, R),
R).

Notation. In Theorem 5.3 and throughout this chapter, “for all k<i; < :-- <
i, <n” includes the class involving no indices, i.e. c"h, - - - h, in the above case.
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Proof. The representation o, = oG, xr,: GL(n) X GL(k) — GL(kn) is the rep-
resentation of GL(n) X GL(k) on R*"®@R* where the action of GL(n) on R" is the
usual one and the action of GL(k) on R* is given by A — (A*)™%. It is not difficult
to show that

74(¢;) = kd, +(—1)'né, + mixed terms (5.4)

where a mixed term is a product of two or more of &,,é,,...,d,, d,, .... (For
ease in notation, assume that d,=d, =0 for i>n, & =¢,=0 for i>k.)

In particular &,(c,)=kd,—né, and in Sy xuw/l the relation & +d,=0
implies &,(c;)=—(n+k)é mod I Thus the map A: W, — A of Theorem 4.5
sends ci" to [-(n+ k)&, ] which, by Proposition 5.1, is a non-zero top dimen-
sional class in Sy)xuay/l, hereafter referred to as V.

Now H*(A,C)=~H*(U(n+k),C) is an exterior algebra on generators
g1, - .-, &.+x Where the dimension of g; is 2i —1. We show that A*(ct*h, - -+ k) is
non-zero by taking its product with g,A---Ag, and obtaining a non-zero
multiple of the top dimensional class V®e A - - Ae, Ad A~ -+ Ad, € A. Because
A(ct¥) =V is top dimensional in Sy,)~xuw)/l, We can ignore all terms involving
€1,...58&,d,,...,d, when multiplying V by a A(h;). With this in mind we set

A(h)=1Q@ (kd, +(—1)'ne;) + other terms

and the other terms will drop out when multiplied by V (see equation 5.4). Thus
k .
ARy )= V® H(kd,- " (-—1)'nei). (5.5)
1

We now give cochain representativés for the generators g, . .., g, € H*(A, C).
Using Theorem 2.2 (ii) and (iii), and the fact that K =1, we obtain from (5.2)

g =10d; +1Q®e, + mixed terms

where, again, the mixed terms will vanish when multiplied by V. Thus
A*(c™h, - h)g, - - g has'a cochain representative in A,

VO[T (kd, + (~1)yne)[](d, + €. (5.6)
1 1

Since k# n, this is a non-zero multiple of V®e; A - Ae . AdyA -+ Ad, sO that
A*(ct*h, - - - h,) must be non-zero.
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The proof that A*(c*h, - - - heh, - - - k) is non-zero for k<i;<---<i,<nis
the same except that we multiply by

Furthermore, suppose a linear combination

Y o a ARy - ehy - hy) =0 (5.7)

k<ij<-<ipg=n

Then, for fixed iy, ..., i, multiply equation (5.7) by

to show that «; _; =0 so that these classes are linearly independent in H*(A, C),
hence by Theorem 4.5 in H*(I"\SL(n+k,R),R). Q.E.D.

Remark. An examination of the proof shows that the stipulation k# n is not
necessary when k = n = 1. This is Roussarie’s example on I'\SL(2, R). (see [GV]).

We now examine the remaining classes in H*(W,,, R). We start by restricting
our attention to the case where k=1.

THEOREM 5.9. (see [KT2]). On the foliation of '\SL(n +1, R) whose leaf is
determined by the parabolic P ={|a,||| a; =0 for i>1, j=1} the image of the
characteristic map

@ : H*(W,,R)—> H*(I'\SL(n+1),R), R)
has the following properties:

(i) Let q(cy,...,c,) be a monomial of deg. 2i. Then the classes
D(q(cyy ... s )iy - k) forall n—i+1<i,<---<i,=<n are linearly in-
dependent in H*(I'\SL(n+1), R), R). These classes are multiples of the classes

®(cthih - - - h,)e H*(I'\SL(n+1,R),R).

If p(cy,...,c,) and q(cy,...,c,) are monomials of degree 2 then
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D(plcy, ..., C)hyiirhy - -+ h,) and ®(q(cy, ..., )il - - - h,) are multiples
of each other.
(ii) The image of the rigid classes under @ is 0.

This theorem yields (in all codimensions) non-vanishing (in H*(FI™,, R)) of all
the classes which form the basis for H*(W,) in Lemma 1.2 and which are
deformable (see [HI1]). To obtain linear independence of these classes as we vary
the monomial q(c,,...,c,), we must examine the other foliations we have
analyzed, and compare them with this one. If we find that in other examples
q(cy,...,c,) is a different multiple of ¢} from the one it is in the k =1 example,
then new linear independence relations can be obtained. In particular we have the
following result:

PROPOSITION 5.10. For k <n, consider the GL(kn, C) bundles associated to
the bundles

U(kn)xU(1)— U(kn+1)

U(kn+1)/U(kn)x U(1)

U(k)x U(n)— U(k +n)

U(k+n)/U(k)x U(n)
by the representations o used in Theorem 4.1. Let p(c,, . .., ¢,) and q(cy, . . ., Ci)
be any polynomials of dimension 2kn in their Chern classes. Then if the ratios of the
Chern numbers associated to p(cy, . . ., ¢,) and q(cy, . . ., c,) are different on these

two bundles, the set of classes

{q(cla ee ey ckn)hl e hkhi1 T Ie’ P(Cb ey ckn)hl ct hkhi1 e h’i, k<ll
<. <ij,=n}

are linearly independent in H*(FI;,,R), r=2.

Proof. On the I'\SL(nk + 1, R) example, we know that for any linear combi-
nation of these «classes which is 0, the terms involving
q(cy, ..., Cn)hy* - My - -+ hy, and p(cy, ..., Gn)hy* - * hhy - -+ b, must vanish
pairwise. The same is true for the example I'\SL(n+k, R) Thus we obtain two
equations of the form

O=aq(cy,...,Cn)hy - hy - b, +Bp(cy, .. Gy - - bchy - - -

1 €
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and the ratios of « to $ in these two examples are different. But this can’t happen
so the classes must be linearly independent.

Of course this proposition has analogues involving three or more Chern
numbers evaluated on three or more different bundles associated to different
foliations.

We will compute the ratios of the monomials c,ci" 2 and c¢i" for the
codimension 2n foliations on I'\SL(2n+1,R) and on I'\SL(n+2,R), but,
before proceeding further, we digress to analyze the ring structure of
S vemuaolT= HX(U(n+ k) U(n) x U(K)).

PROPOSITION 5.11. The cohomology algebra Sy .)xuw)/I is isomorphic to an
algebra which is generated as a vector space by n-tuples of integers (¢4,...,%¢,)
satisfying 0<{¢,=<¢,<---=<¢,<k. The cohomology «class associated to
(€1, ...,4¢,) has dimension 2(€,+ - +¢,). The class € € Syxuw/I is sent to
0,...,0,i) under this isomorphism and we have the following formula for cup
products of classes with é;:

(0,...,0,i)U(fl,...,fn)=Z(0'1,...,0'n) (5.12)

where the summation is taken over n-tuples satisfying dim(oy,...,0,)=
dim(¢,,...,€,)+2i, {;=0;<¢,, forj=1,...n-1, €, <0,k

Proposition 5.11 is proven in [HP], Volume II, but it is stated there in terms of
homology classes and intersection cycles instead of cohomology and cup products.
Formula (5.12) is referred to there as Pieri’s formula. The fact that ¢; corresponds
to the class (0,...,0, i) is shown in [C]. We caution that these two references use
different notation conventions.

Now let k =2 and write

£=0,...,0,1,...,1,2,...,2

j entries
\ 7
A

i entries

Then we can write .

-4 S
€1= Z ;iS5
i+j=ti=j

where «;; €Z.
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LEMMA 5.13.

a--=(i+])—(i+j>

. i i+1)
Proof: From formula (5.12)
&iVe=¢&1,;+(1-8;)&;11

where §; is the Kronecker delta. From this we get

.+ Q.

& = Xj_q,j ij—1

21 2i—1
(Note that o;_,; = ( il__ 1 )—( li )= O). The lemma is easily proven for arbit-
rary i and j=0or j=1 (for j=0, use the convention (HI_ 1) =0.> Proceeding

inductively, assume the lemma proven for all i<k and j<i and all i=k and
j<€=k. Then

Qe =0 16t Qe q,

e R R ey
C(k+€-1\ (k+€-1\ (k+OWk—£+1)!
”( k-1 ) ( k+1 )" 1k +1)!

-(“9-(537) oEp.

From Proposition 5.11 it is not difficult to deduce that in Sy oyxue/1

SO

- =2n—2 __ 52n _
eZel - an*l,n-l n,n and €1 = an,n n,n*

From Lemma 5.13, it follows that

n+l =2n _ ®n—-1,n-1 -2p

4n——2e1 o e, (5.14)

ézé%n 2

We now return to the computation of the monomials c,c¥"™2 and c%". Recall
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that, if d; is the i symmetric polynomial in b,, . .., b, and ¢, is the i symmetric

polynomial in a,,..., a, then &,(¢;) is the i™ symmetric polynomial in {b,—
a;|1=i=n, 1=j=<k}. Computation then yields that

a(cy) = k51 —ne,

- k\ = -

Since d,+¢&,=0 mod I and d,+ &+ & d;=0mod I we get

n+k

&,(co)=(n— k)&, + [( .

>+k—1]é§mod1.

We want to show that the ratios of &,(ci") and &,(c,c3"?) are different in
Sumxva/I and Syemxuay I In Sueunxua)/I we have

a,(ci)=Q2n+1)*"e3"

éZn

1

2n+1
arlercdn=@n+ 122

2
(since in this case €,=0). In Syxu@/I we have (using 5.14)
&1(c) = (n-+ 2"

d(c,ci" ) =(n+ 2)2"‘2([<n ; 2) + 1] +(n—2) M) e,

n,n

It is tedious but not difficult to show that the ratios &,(c,c3" ?)/&,(c3") are equal
in these two cases if and only if n = 1. As a corollary to Proposition 5.10 we get

COROLLARY 5.15. For r=2, n>2 in H*(FI',, R) the set of classes

£

Czcﬁnﬁzhlhzhﬁ RN

{4

{C%"hthhil-..hi 2<i1<"’<i€Sn}

is linearly independent.

EXAMPLE 1(b). We now do the same calculations done in Example 1(a), but
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we consider the foliations on I'\SL(n + k, R)/SO(n) < SO(k). This will give linear
independence relations for classes in H*(WO,, R).
Note that there is a commutative diagram:

H*(BI',,R) < H*(WO,,R)

l,. ln'

H*(FT,,R) < H*(W,, R)

where i* is induced by inclusion FI',< BI", and n: WO, — W, is also the natural
inclusion. The horizontal maps are the characteristic maps for the classifying
spaces. Thus linear independence in H*(FI™, R) of classes in the image of n™*
proves linear independence of these classes in H*(BI™,, R). For this reason, using
Example 1(a) when k =1, we automatically obtain

THEOREM 5.16. (see [KT1] and [KT2].) Let q(cy, ..., c,) be a monomial of
degree 2i. Then for fixed n—i+1 odd and all sequences of odd numbers i,, ..., i,
withn—i+1<i,<--:<i,=ntheclassesq(cy,...,c,)h,_;11h;, - h, are linearly
independent in H*(BI",,R).

In particular for dimension q(c,,...,c,)=2n these classes are of the form
q(cl, v e ey Cn)hlhil A hi‘.
However, when k>1 and dimension q(cy, ..., ¢,)=2kn the non-vanishing

classes are all of the form

q(cys . o5 Co)hihy -+ hehy - -

iy

h.‘.

£

These classes are all divisible by h, and so they are not in the image of n*. Thus
we get no information about H*(WO,,, R) from these examples. We reduce by
SO(n)x SO(k) to rectify this situation.

THEOREM 5.17. Suppose k=n and consider the characteristic map
& : H*(WO,,,R) > H*(I'\SL(n+k,R)/SO(n) X SO(k),R)  induced by the
foliation determined by the parabolic Lie algebra

P ={la,l€ st(n+k)|a;=0,i>k,j=<k}.

Then the classes P(ci"(Tioaasi M), -+ h, where k<i;<::--<i,<n and
i1,...,1, are odd, are linearly independent.

Remark. Note that k = n is now allowed. This is because the cancellation in
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Equation 5.6 which occurs when k =n happens only when dealing with h; for i
even.

Proof. A= S vtoxum/ I® Ssowxsom®@ H*(U(k) x U(n)). Let 1% (resp. U)
denote the i™ Pontrjagin class in SO(k) (resp. SO(n)). H*(A,C)=~
H*(U(n+k)/SO(n)xSO(k),C)=~ EQP. Here E is an exterior algebra on the
suspensions of the odd Chern classes in U(n+ k), and in A generators are of the
form

1= ). &®1®d,+ ) d®1®e

s+t=2i—1 s+t=2i—1
s odd t odd

where 2i—1=<n+k. P is the algebra C[U, V,, X, X, J/J where X, (resp. X,) is
the Euler class in Sgou, (resp. Ssowm)) if k (resp.n) is even, and X, =O
(resp. X, = O) otherwise. J is generated by the relations (Y U,)(¥ V,)=1 and
X2=V,, (for k even), X2=U,, (for n even).

The proof now proceeds along lines similar to the proof of Theorem 5.3. We
multiply the class A*(c5"([1; oaa=i B)h, - - - ;) by the class [],ioqawi,...i, & tO
obtain a non-zero multiple of the top dimensional class VQ(]; oaa<x €)
(I1; oaa<n d;) in A. (When n or k is even, we must also multiply by the Euler classes
X, or X, to get a top dimenisonal class.) At any rate since
A*(ct(Tic=i oaa Ai)hy, - - + h;,) cups with a non-zero class to give a non-zero multi-
ple of the top dimensional class, it must also be non-zero. We leave the rest of the
details to the reader.

An analogue to Proposition 5.10 and the computations done in 1(a) yield:
COROLLARY 5.19. In H*(BI'},,R), r=2 the set of classes

{C%nhlhil...hi’ 1<i1<...<iesn}
Czc%n—zhlhil M hi( il’ .oy i( odd

is linearly independent.

In Examples 2 through 4 the techniques for calculations are the same as in
Examples 1(a) and (b). We state the results but omit the details.

EXAMPLE 2. The Dynkin diagram for Sp(n, C) is o ° c o & o
with n vertices. By removing the vertex with a double bond at the end, we obtain
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a parabolic with 4$@ IT= ¢€(n,C). In

wum-([25)

where A € ¢€(n,R) and S,, S, are symmetric n X n matrices,

P ={Xeap(n,R)| S, =0}
<g1®g'1 ={X€d/l(n, R) I Slz Sz=0}
and
N={Xesp(n,R)|S;=A=0}
The representation o is the usual representation of GL(n,C) on symmetric

2-tensors on C".

THEOREM 5.20. In H*(I'\Sp(n, R), R) the classes
D (" V(=i 0ad h)hy;, - - h2il for2=2i;<-:-<2i,=n

are linearly independent for the codimension n(n+1)/2 foliation determined by .

To obtain linear independence relations as the monomial q(cy, - .., Chpis1)/2)
varies, one can use an analogue to Propositions 5.10. For example,

PROPOSITION 5.21. (i) In H*(BF;(n+1),2, R), r=2, n=3, the classes
e DRT . sa b and 3t VRI=ATT L o kg are linearly independent.
(i) In H*(FT, .12, R), r=2, n=3, the set of classes

(n+1)/2 .
cr ( H hi) hzi1 h2i¢

n=i odd
< 1Si1<"'<iesn/2

C%C[ln(n+1)/2]—4( H h,) h2i1 C h2i¢

n=i odd

\ P

v

are linearly independent.

Proof. One compares the ratios of Chern numbers c3 and ¢}V
for the codimension n(n + 1)/2 foliations on I'\Sp(n, R) and on I'\SL(n(n+1)/2+
1, R). These ratios are always different and the proof proceeds as in Proposition
5.10.

c[in(n+1)/2]—4
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EXAMPLE 3. Consider SO(2n, C) as all non-singular complex n X n matrices
which preserve the bilinear form

ax

Then
—A' B, .
a0(2n,C)= { B A A € ¢€(n,C) and B; are skew symmetrlc}.
1
The Dynkin diagram for SO(2n,C) is o ° < oL .By removing a

vertex at the fork, we get the parabolic P€ with Lie algebra ™

PC€={Xecs0(2n,C)| B,=0}
4CDIC={Xecs0(2nC)| B,=B,=0}=g¢€(n C)
N €={Xes0(2n,C)| A=B,=0}.

For a real form we use

(542

THEOREM 5.22. Suppose n is not a power of 2. Then the set of classes

7)) (C?(n—l)/Z( H hi) h2i1 SR hﬁ() ]

n—1=i odd

A € ¢€(n,R) and B, are real skew symmetric}.

b <C;l(n—1)/2< H hi) hnh2i1 . h2ie)

n—1=i odd
are linearly independent in H*(I'\SO(n, n),R) for the codimension n(n—1)/2
foliation determined by 2.

EXAMPLE 4. Let SO(2n+1,C) be all non-singular complex matrices pre-
serving the form

0

0|1 .
110 .

0
| 0 - 0] 1]
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Then
—-A'| B, al||Aecgfl(nC)
s0(2n+1,C)= B, A b B, are skew symmetric
-b | —a 0 anda, beC"
The Dynkin diagram for SO(2n+1,C), is o 0 - o= By removing

the end vertex with the double bond, we get

PC={Xcao(2n+1,C)| B,=0, b =0}
N €={Xeso(2n+1,C)|A=B,=0,a=0}.

For a real form we use SO(n+1, n),

~A' | B,]| a
sgo{n+1,n)= B, A b | all entries are real
-b | —a] O

THEOREM 5.23. Suppose n+1 is not a power of 2. Then the classes
D (" P 2(1,zi0aa M), * * - ha,) where 1=<i,<--- <i,<n/2 are linearly inde-
pendent in H*(I'\SO(n, n+1),R).
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