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Comment. Math. Helvetici 53 (1978) 322-333 Birkhâuser Verlag, Basel

Quadratische Raume mit zwei Unterràumen

Werner Bàni

§1. Einleitung

1.1. Die vorliegende Arbeit beschâftigt sich mit dem Problem der Klassifika-
tion von Paaren von Unterrâumen quadratischer Ràume. Wir betrachten also

Quadrupel % (E, <P, U, V), wo E ein endlichdimensionaler Vektorraum ûber
einem fest vorgegebenen Kôrper k der Charakteristik # 2 ist, versehen mit einer
symmetrischen Bilinearform $:£x£^k, und wo L/, V Unterrâume von E sind.

Zwei solche "Râume" %9 %' heissen isomorph, %=%', wenn es eine Isometrie
T:(E, <P)->(E', 4>0 der unterliegenden quadratischen Râume gibt mit TU U',
TV V. Es ist klar, wie die direkte orthogonale Summe von zwei Râumen %x

und %2 definiert ist; wir bezeichen sie mit ^i©1 %2. Damit ist auch klar, was unter
einer (direkten orthogonalen) Zerlegung eines Raumes bzw. unter einem unzerleg-
baren Raum zu verstehen ist. Ist X ein Teilraum von E, so sei rX X D Xx und
dX dimkX. Statt % (E, <Ê, U, V) schreiben wir meist nur (E, U, V); die Ràume

Ijï, 12% seien definiert durch 11% (E, U"-, V) und ±2« (E, L7, Vx).
1.2. Sei % ®f%x eine direkte orthogonale Zerlegung von % in unzerlegbare

Summanden %v Wir vergrôbern die Zerlegung zu % %u®±<%s®±<ëT wie folgt:
%T bestehe aus denjenigen nichtentarteten Summanden %„ fur welche gilt £, •

Ut®Vt=Uî<B V,, rUt rVt 0; £s*bestehe aus denjenigen nichtentarteten
Summanden %„ welche £,= [/,©¥, UfB Vl9 rUt + rVt ï 0 erfûllen, und %D bestehe
aus allen ûbrigen Summanden. Es wird sich zeigen, dass die Summanden %D, %s,

%r durch dièse Bedingungen bis auf Isomorphie eindeutig bestimmt sind. In
Abschnitt 2 bzw. 3 wird die Struktur der Summanden %u bzw. %s mittels
geeigneter Funktoren D bzw. S untersucht. Eine Klassifikation dieser Râume ist
môglich, sofern die quadratischen Formen ûber k klassifiziert werden kônnen.
Das Problem der Klassifikation der Râume %T hingegen ist âquivalent zum
Problem der Klassifikation von Paaren nichtentarteter quadratischer Formen auf
einem Vektorraum U. Es ist bekannt (vgl. z. B. [2]), dass sich dièses Problem

Der Autor wurde wâhrend der Jahre 1976/77 teilweise vom Schweizerischen Nationalfonds
unterstûtzt.
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Quadratische Râume mit zwei Unterrâumen 323

darauf reduzieren lâsst, die quadratischen Formen ûber allen einfachen alge-
braischen Kôrpererweiterungen k[a] von k zu klassifizieren. Dies wird in Abschnitt
4 in einem begrifflichen Rahmen kurz skizziert ([2] arbeitet mit aufwendigen
matrizentechnischen Methoden).

Der Autor dankt P. Gabriel fur die Anregung zu dieser Arbeit.

§2. Reduktion auf den Fall E 1/0 V= 1/^0 V

2.1. Nebst den Râumen % (E,U,V) betrachten wir auch Râume %~
(É, 0, V, W), wo É mit einer nichtentarteten Form <J> versehen ist und W<=

ÛOV. Man erhâlt einen Funktor

A : >-> A& t (Ë, Û, V, W)

wenn man É E/rE setzt und fur 0, V, W die Bilder von U, V, L/flVunter der
kanonischen Projektion E—>Ê nimmt. Offensichtlich erhâlt A orthogonale Sum-

men. Ein Raum % heisse A-sauber, wenn A keinen orthogonalen Summanden

von % annulliert, d.h. wenn % keinen totalisotropen Summanden abspaltet. Dies
ist genau dann der Fall, wenn

0= VDrE, .rEc[/+V. (1)

LEMMA 1. Der Funktor A induziert eine Bijektion zwischen den Isomorphie-
klassen von A-sauberen Râumen % und den Isomorphieklassen von Râumen %.

Beweis. Zu jedem Raum % (Ë, 0, V, W) konstruieren wir Ât (E, U, V)
wie folgt. Sei R: ÛnV/W und E: Ê0xJR, i* totalisotrop, also rE R.

Wâhle eine beliebige lineare Abbildung / : V—» R, welche die kanonische Projektion

p:ÛnV-»R_fortsetzt und definiere l/:=Û, V: r(/) {x + /(x)| xe V}.
Offenbar erfûllt A% die Bedingungen (1), ist also A-sauber, und es ist AA%= t
Wir zeigen jetzt, dass der so konstruierte Raum AS bis auf Isomorphie unabhàngig
von der Wahl von / ist. Sei also /' eine weitere lineare AbbildungV-»R, welche p
fortsetzt, und V' r(f). Die Zuordnung x+f(x)*-+x+f(x) ist eine Isometrie

T0:V-*V\ welche VnU=VfDU=W punktweise festlàsst, mit 4>(z, Toy)
&(z, y) fur aile zeE, yeV. Man kann daher To zunâchst zu einer Isometrie

l/+V-»l/+V=l/+Vr erweitern, welche U punktweise festlàsst, und schliess-

lich zu einer Isometrie T\E-*E mit Tt/= 17, TV= V. Damit ist gezeigt, dass

die Wahl von / keine Rolle spielt. Sei jetzt umgekehrt ein A-sauberer Raum %

vorgelegt. Wir erhalten einen zu A% isomorphen Raum, indem wir E/rE mit
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einem Komplement É von rE in E identifizieren. Dabei sei U<^É, also Ù l/,
V=q(V), W^l/HV, wobei q.E^É die Projektion lângs rE ist. Wegen
VnrE O ist V von der Form T(/), wo f:V^rE eine lineare Abbildung mit
ker(/) =UHV=W ist. Wegen rE c [/+ V ist /(Û H V) rE, so dass man also rE
vermôge f\ÛH V mit jR ÛH VIW identifizieren kann. Dies zeigt dass ÀA% %.

KOROLLAR. In einer Zerlegung % go©x %x von % in einen totalisotropen
Raum %q und einen A-sauberen Raum %x sind ^0 und %i bis auf Isomorphie
eindeutig bestimmt.

Es ist nâmlich %t ÂA% und %0 ist eindeutig bestimmt durch die Dimen-
sionen von Uo H Vo, Uo, Vo, Eo.

2.2. Man hat auch einen Funktor

B:t (Ê, 0, V, W)^Bt «: (W±, Vx, t/-1),

der ebenfalls mit orthogonalen Summen vertrâglich ist. Der Raum % ist genau
dann B-sauber, d.h. spaltet keinen Summanden ab, der von B annulliert wird,
wenn W totalisotrop ist.

LEMMA 2. Der Funktor B induziert eine Bijektion zwischen den Isomorphie-
klassen von B-sauberen Râumen % und den Isomorphieklassen von Râumen %.

Beweis. Wir konstruieren wiederum zu jedem Raum % einen Raum B% : Sei
% (E, [/, V) gegeben, JR : rE. Wàhle É e E mit E É(BR und setze É :

E©i?* É©±CR©JR*). Dabei ist R* der Dualraum von JR, und die Form auf
R©R* die natûrliche, d.h. jR, R* totalisotrop und *(r,/) /(r) fur reR, feR*.
Schliesslich sei Û:=VPj", Vr:=l/±, W: R, wobei die Orthogonalrâume in É
gebildet werden. Offensichtlich ist B3? (É, 0, V, W) ein B-sauberer Raum, mit
BB% %. Wiederum hângt der Isomorphietyp von B% nicht von der Wahl des

Komplementes É ab: Hat man noch ein weiteres Komplement É', so sind
zunâchst die beiden Formen * und & auf É É©R©R* É'®R®R* isomet-
risch, und wegen des Satzes von Witt kann man die Identitât É©R-*É'©R zu
einer Isometrie (É, 4>)-»(JB, #') fortsetzen. Dièse Isometrie lâsst R fest und fûhrt
Vx bzw. l/x in Vr bzw. Ur ûber. Ist umgekehrt ein B-sauberer Raum f
(Ê, 0, V, W) gegebeç, also W totalisotrop, so ist W=r(W"L), und es gibt eine

"Witt-Zerlegung" Ê É©XZ, wo W^^ÉQW und Z=W®W*. Daher ist
Ë
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KOROLLAR. In einer Zerlegung t fo©""" *i von * in einen Raum f0 vom

Typ (Éo, JB0, Ëo, JB0) wnd einen B-sauberen Raum fx sind f0 und fi fcis au/
Isomorphie eindeutig bestimmt.

Denn es ist ^ BB^, und Éo ist ein Komplement von rW in W.

2.3. Wir betrachten jetzt den zusammengesetzten Funktor

D BA : % (JE, U, V) ^ D? (17 n V1, V\ [7"1),

wobei die Orthogonalrâume in É E/rE zu bilden sind. Sei ferner D ÂB (mit
einem offensichtlichen Notationsmissbrauch). Fur jedes À e fc definieren wir einen

Raum k(À) durch

k(À) (k, 0,0), *A(1,1) A.

Die von D annullierten unzerlegbaren Râume sind genau die Râume k(0),

lik(0), l2k(0), ±2±!k(0) sowie l2l1fc(À) fur A^O. Jeder Raum % besitzt

gemâss 2.1 und 2.2 eine bis auf Isomorphie eindeutig bestimmte Zerlegung

% %{\)®1-%' (2)

in einen D-sauberen Raum %' { DD%) und einen Raum ^(1) mit Dg(l) 0.

Der Raum ^(1) besitzt eine bis auf Isomorphie eindeutig bestimmte Zerlegung

o,Eo) (3)

wobei Eo nichtentartet ist. Fur jedes peN, p^2, definieren wir

was uns eine orthogonale Zerlegung

8(oo) (4)

liefert, in welcher %{p) ein Dp-1-sauberer Raum mit Dp<%(p) 0 ist und «(») fur
jedes p ein Dp-sauberer Raum. Die Râume £(p), ^(<») sind durch dièse Bedin-

gungen bis auf Isomorphie eindeutig bestimmt. In einer orthogonalen Zerlegung
% ©^ %x von % in unzerlegbare Summanden %x besteht %(p) genau aus den-
jenigen Summanden %x mit Dp~x%x^^ und
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Tabelle 1
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2.4. Mit Hilfe von 2.1 und 2.2 lâsst sich die Struktur der Ràume %(p) in (4)
bestimmen. Es genûgt dabei, die "Bahnen" der in der Zerlegung (3) auftretenden
unzerlegbaren Râume unter der Opération von D zu ermitteln. Das nachfolgende
Lemma ergibt eine Uebersicht ûber die Dimensionen der auftretenden Râume,
und die daraus abgeleitete Tabelle 1 versucht die Situation etwas zu ver-
anschaulichen. Der Defekt d% eines Raumes % ist definiert durch

a«: drE + d(UD V) + d(E/U+ V)

LEMMA 3. Sei % ein beliebiger Raum und D£ (£', U', V). Dann gilt
(a) dE' dE + drE + d(E/U+V), dU' dE + drE-dV
(b) drU' drV, d(U'x n V) d(Ux n V)
(c) drE' d(E/U+V), d(U'n V') drE, d(E'/U'+V') d(UnV). Insbeson-

dere ist dD% d%. Weiter gilt fur D3« (ET, Um, V)
(d) dE»' dE + 2d%, dU"'=dU+d%.
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Wir verzichten auf den einfachen Beweis dieser Formeln. Aus dem Lemma

folgt sofort, dass der Raum «(«)= :(E0, ^o, Vo) in (4) Defekt Null hat, d.h. also

dass Eo nichtentartet ist und Eo l/0© Vo.

2.5. Wir geben jetzt ohne Beweis die Gestalt der nichtentarteten Ràume in
den "D-Bahnen" der Râume in (3). Die entarteten Ràume lassen sich durch
einfache Anwendung von D oder D aus diesen gewinnen, wie aus Tabelle 1

ersichtlich ist.

(a) Der Raum D^^kiO) hat folgende Gestalt:
E k2p©± fc2p (kex® • • • ®ke2p)®±{kë1® • • • ©kê2p) mit hyperbolischen
Basen el9...,e2p und êl9..., ë2p von fc2p©xO und OS^fc21*, d.h.

t/=k2pe±0, V=fc p p

(b) Der Raum D3p+1±2±!&(()) hat die Gestalt

E k2©-1 k2p©x k2p (kx©ky)©±(fc61© • • • ©ke2p)©-L(kê1© • • • ©kê2p),

wobei wieder die angegebenen Basen der drei orthogonalen Summanden hyper-
bolisch sein sollen.

wobei a ^
(c) Der Raum D^^l^O) hat folgende Gestalt:

E k2(p+1)©x k2p (ket® • • • © kc2p+2)©J-(kê1© • • • ©kê2p) mit hyperbolischen
Basen der beiden Summanden, [7= k2(p+1)©-L0, V= k(ë1Jtel)® • • •

©k(ê2p + c2p)©ke2p+1.
Es gilt D6p+2l1k(0) (E, V, U*).

(d) Der Raum D6*'2!^®) sieht so aus:

E k2p©±fc2p (fce1©---©ke2p)©±(kê1©---©kê2p) wie in a), LT=fce1©
k(e2 + ê1)©k(e3 + ê2)_©- • •@k(e2p + ê2p..1)@kê2p, V 0©±fc2p.

Der Raum D^^lMO) ist: E wie oben, l/=k2p©±0, V

(e) Die entsprechenden Râume fur ±2fc(0) erhâlt man aus c) und d) durch
Vertauschen von U and V.

(/) Sei »= ±2l1fc(A) mit A^O. Fur D6p+1? erhâlt man:
E (kp©k©fcp)©xfc2p (ket® • •

Dabei sind (ex,..., ep, ep+2,..., e2p+i) und (él9..., ë2p) hyperbolische Basen,
ferner
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Der Raum D6p+4<ë hat die Gestalt

U=kp@k®kp®±0, V= p p

(eu e2p+1) wie oben und (ël9..., ê2p+2) hyperbolisch.

2.6. Der Raum «(«) in (4) ist nichtentartet und erfùllt D2%(™) ï(oo). Wir
definieren

fur p l,2,...,œ und

sodass also (wie in (4))

*(«)=© *[?]©«[»]. (5)

Dabei ist jetzt %[*>] ein nichtentarteter Raum ^o mit Eo= U0(BVo= Ut®Vo.
Aus 2.4 Tabelle 1 ist ersichtlich, dass die einzigen nichtentarteten unzerlegbaren
Râume % mit dg# 0 aber d± ^ 0 in den D-Bahnen von k(0) und 121 ^(A) fur
À/0 auftreten, sodass also gilt: Fur p 0 mod 3 hat %[p] die Form
l1(Dp"1k(0))N mit NeN. Fur p^O mod 3 ist %[p] orthogonale Summe von
Râumen der Form l1Dp~1{l2l1k(k)) mit À^O (siehe 2.5a) und /)).

2.7. Wir fassen unsere Resultate zusammen im

SATZ 1. Der Raum % besitzt eine orthogonale Zerlegung

± ±

in welcher die Summanden ?[«>], ^(p), ^[p] durch die folgenden Bedingungen bis

auf Isomorphie eindeutig bestimmt sind:

(a)

(b)
(c)

Die Struktur der Râume î?(p) wird in 2.5, die der Râume £[p] in 2.6 beschrieben
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§3. Reduktion auf den Fall drU 0 drV

3.1. In diesem Abschnitt betrachten wir nur Râume % mit % %[<*>], also

nichtentartete Râume % mit

£=U0V=[/ieV, also auch £=l/eVi=[/i0Vi. (6)

Die Einschrànkung von <î> auf UxVcExE induziert eine lineare Abbildung
y:U—> V*, welche wegen (6) ein Isomorphismus ist. Ferner definiert <I> lineare
Abbildungen a : U -* 17*, 0 : V -* V*. Wir setzen j3 : y"1^*"1:17* -^ 17

(wobei V** mit V identifiziert wurde) und erhalten so ein Quadrupel 3if(^)
(17, 17*, a, /3) mit a a*, /3 j3*. Umgekehrt definiert ein solches Quadrupel
3if (17, [7*, a, (3) einen Raum «(30 vermôge

«(30 (U® 17*, [7, [7*) mit der Forai:

') <au,u'> (u,iïeU)

*(/, u) *(u, /) </, u) (/g 17*, u e 17),

wobei (,): 17* x [7-> k die kanonische Bilinearform ist. Offenbar erhàlt man eine

Isomorphie « %(${%)), indem man V vermôge y* mit 17* indentifiziert.
Ausserdem ist 3C 3f(^(3T)). Die Bedingung, dass % nichtentartet ist, lautet jetzt:
j3a-iist invertierbar.

3.2. Unter einer Vektorraumkrone, kurz Krone, verstehen wir ein Quadrupel
3if (C7, V, £, t}), wo 17, V (endlichdimensionale) k-Vektorràume und Ç:U-+ V,

tj : V—> 17 lineare Abbildungen sind. Es ist klar, wie Morphismen zwischen

Kronen, direkte Summen von Kronen und Unterkronen von Kronen definiert
sind. Die Krone % heisst selbstdual, wenn sie isomorph zu ihrer dualen Krone
3T* (V*, l/*,£*,V) ist. Die in 3.1 eingefûhrten Kronen % %(%) erfùllen

sogar 3if 3if* (nach der Identifikation 17** =17). Wir nennen solche Kronen
reflexiv. Ein Isomorphismus fi,:3if—»3T zwischen reflexiven Kronen 9iT, 3if'

induziert genau dann einen Isomorphismus £(3O^*?(3if')> wenn ju,*jll=1. Ist
SK*! (t/i, Vl9 a, ]8) eine Unterkrone der reflexiven Krone 9îf, dann ist auch
3if? (V?, 17?, a, j3) eine Unterkrone von % wobei z.B. 17? {/g 17* | f(Ur) 0}.
Falls 3iT 3if1©3if;, dann hat man eine orthogonale Zerlegung «(30
«(3iTi)©±«(3if?). Man beachte, dass dabei Xt vermôge des kanonischen
Isomorphismus Vi (V?)Oj:> 17* als reflexive Krone aufgefasst wird.
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3.3. Die Nûtzlichkeit dieser Interprétation besteht in einer Anwendung des

Austauschsatzes von Krull-Schmidt, âhnlich wie in [1]. Sei nâmlich 2 eine
selbstduale Menge von unzerlegbaren Kronen, d.h. 2 enthâlt mit jeder Krone
auch ihre duale. Sei % eine reflexive Krone und 3if %X(&JCX> eine Zerlegung in
Unterkronen, wo jeder unzerlegbare Summand von 3fx isomorph ist zu einer
Krone aus 2, und wo JC^ keinen zu einer Krone aus 2 isomorphen Summanden

abspaltet. Dann hat man wegen des Austauschsatzes auch eine Zerlegung 3C

(denn %l %% Xr), also nach 3.2 eine orthogonale Zerlegung

%(3CX) s*n^ durch 2 bis auf IsomorphieLEMMA 4. Die Summanden

eindeutig bestimmt

Beweis. Wir betrachten zwei Zerlegungen 3£ 3if2©3rx if2©«SP| der obigen
Art. Damit der Isomorphismus /ut : Xx °-> % -*? iP2 einen Isomorphismus £(3ifx) ^»
£(i?x) induzieren wûrde, mùsste /li*/ll =1 gelten (3.2). Nun ist aber /x* der

Morphismus «S?x <-> % -*? 3ifx, so dass also /u,*/i =1 -o-, wo
<r : 3ifx <-* 3f —* i?x ^ 3if -*? 3ifx im Radikal des Endomorphismenringes von %x

liegt und somit nilpotent ist. Wir ersetzen fx durch jjl1=i ii(t+a1<r + a2(r2+' • •)

mit atek und erhalten p*jxt (i-o-)(i+ «jcr + • • -)2, so dass also die Gleichung
1+ ata + • • -)2 14- cr + a2 + • • • zu lôsen ist. Das geht sicher, da ja char k ^ 2 ist.

3.4. Wir rufen jetzt die Klassifikation der unzerlegbaren Vektorraumkronen
in Erinnerung. Jede solche ist isomorph zu einer der folgenden Kronen:

(I) %(<r) (V, V,l, a), wo cr:V—>V ein Automorphismus von V ist,

bezûglich welchem V unzerlegbar ist.

(II) $p (fcp, fcp,i, t), wo t durch die Jordanmatrix

/O • • 0\
1 0

0 1 •

0

1 0

0 1 0/
definiert ist, p3= 1.

(III) %p (fcp, fcp, t,1), t wie in (II), p s* 1.

(IV) ip - (k>-\ k", & t,), p > 1, ((xlt..., Vi) (0. *i, • • •. x^-i).

(IV)* *p (fcp, k"-1, t,, f), p > 1, ^ und r, wie in (IV).
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Die Kronen vom Typ (I), (II), (III) sind aile selbstdual, wâhrend 3^p=9ifp.
Gemâss 3.3 hat man also eine orthogonale Zerlegung

è± è &(iip)0x è ^(in^e^ à «ovp, iv*) (8)

wobei die dem Summanden S?(IL) bzw. &(IIIp) bzw. ^(IVP, IV*) zugeordnete
reflexive Krone isomorph ist zu (9ifp)N bzw. (fp)N bzw. {Èp®$p)N fur ein Ne N.
Die Râume vom Typ £(o-) werden im nâchsten Abschnitt untersucht.

3.5. Sei von jetzt an % (17, 17*, a, /3) eine reflexive Krone, isomorph zu $*
bzw. #£ bzw. (#p03îfp)N. Wir definieren

S3C : (im |3/ker a H im /3, im a/ker /3 n im a, a, f$)

rad3if/soc3iTn rad^
rad 3if/soc 3if in den Fàllen, wop^2). (9)

Fur p 1 ist S3if 0; in diesem Fall ist also 3C von der Form (17, 17*, a, 0) bzw.
(17, 17*, 0, 0) bzw. (17, [7*, 0,0), wobei a,/3 invertierbar sind. Damit ist «(3if)
charakterisiert durch die a (bzw. |3) entsprechende symmetrische nichtentartete
Bilinearform auf U (bzw. 17*) bzw. die Dimension von 17. Es ist klar, dass in
diesen Fàllen auch orthogonale Zerlegungen in zweidimensionale Ràume exis-
tieren, d.h. Râume von der Form

(a) E=ku®kv,
(b) E=ku@kv,
(c) E=fcu©fct;, 4>(u, u) 0=*(u, u), <P(u,v)=l.

3.6. Wir fûhren jetzt den Fall p> 1 auf den Fall p 1 zurûck. Sei also p^2,
S3^" (im 0/ker a, im a/ker 0, a, j3). Wegen ker j3 (im 0)° und im a (ker a)0

hat man eine kanonische Isomorphie im a/ker j3 (ker a)°/(im j3)°->
(im j3/ker a)*, sodass man also S% wieder als reflexive Krone auffassen kann. Ist
% vom Typ $p, dann SX vom Typ 3fp_i, und analog fur die anderen Fàlle.

SATZ 2. (i) Sei % 9(X), wobei % von einem der drei Typen #p, #p,
ist (d.h. 9if i?N, wo 5£ eine dieser Kronen ist). Dann ist % eindeutig bestimmt durch

1^), und 9(SP'XX) kann "beliebig" {me in 3.5) vorgeschrieben werden.

(ii) Die unzerlegbaren Râume haben die folgende Gestalt :

(a) Typ#p: E= U® V=(kex® • • • 0^)0(^0 • • • 0kêp). Falls p gerade:
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Falls p ungerade: 4>(ef, e,) À8I+lfP+1, &(ën ë,) 8I+J,P, <J>(e,, ê,) 8ir
In beiden Fâllen À 5* 0,

(b) Typ tp\ analog.
(c) Typ Xp®Xp\ E

ë,, cf) 8I+J,2p-i, #(«., «,) 8,r

Beweis. (i) Fur die Eindeutigkeit genùgt es zu zeigen: Sind X, X' von einem
dieser Typen (p^2), und ist %(SX) %(SXf), dann ist auch %(X) %(X'). Die
Voraussetzung 3?(S3if) S?(S3T) bedeutet, dass es einen Isomorphismus /u,0 : SX —>

S3iT' gibt mit julo*Mo :IL- Nun lâsst sich aber /x0 : rad 3f/soc 3if -> rad 3if'/soc 3iT' zu
einem Isomorphismus /i :3ST-> 3if' hochheben, und /ll*jll-i :tr liegt im Radikal
von End(3if). Jetzt folgt die Behauptung wie in 3.3. Die Existenz von X zu
vorgegebenem %{SP~XX) folgt aus (ii) und 3.5. Der Beweis von (ii) ergibt sich
durch Induktion, indem man S anwendet und die Eindeutigkeitsaussage in (i)
benutzt.

KOROLLAR. Ist % %{X) unzerlegbar, dann ist X isomorph zu einem Xp, Xp

§4. Paare quadratischer Formen

4.1. Nach Abspalten der in 3.5 und 3.6 beschriebenen Summanden haben wir
es mit einem Raum % $(3if) zu tun, wo a, p beide invertierbar sind. Ersetzen
wir p durch jS"1, so erhalten wir das klassische Problem der Klassifizierung von
Paaren nichtentarteter quadratischer Formen auf einem Vektorraum U. Da dièses

Problem in der Literatur "gelôst" ist (vgl. z.B. [2]), begnûgen wir uns damit, die
ResUltate zu skizzieren. Dabei betrachten wir statt jS"1 den Automorphismus
cr : /3a von U und statt a : U -» 17* die entsprechende Form <P : U x U —? k, d.h.
wir betrachten Tripel (U, $, cr), wo $ eine nichtentartete symmetrische Bilinear-
form auf U ist und a ein bezûglich <P selbstadjungierter Automorphismus von 17.

4.2. Gemâss 3.4 (8) dûrfen wir annehmen, dass (U, a) als Modul ûber dem

Polynomring k[T] von der Form U (k[T]/(qn))N ist, wo qn das Minimal-
polynom von a ist und q irreduzibel. Man kann dann auf U/qU=:O eine
nichtentartete Form é definieren durch ^(x, y) 0(qn~1x, y) (wo U-» O, x >-* x
die kanonische Projektion ist). Aehnlich wie in 3.6 zeigt man, dass der Isomor-
phietyp von (U, <P, a) bereits eindeutig festgelegt ist durch den Isomorphietyp von
(JÎ7, $, â). Dies fûhrt uns zurûck auf den Fall n 1, wo wir also U als Vektorraum
ûber dem Kôrper K: fc[cr]= k[T]/(q) auffassen kônnen. Man wâhle dann eine



Quadratische Râume mit zwei Unterrâumen 333

beliebige nichtverschwindende fc-Linearform f:K-*k und erhâlt eine Bijektion
<$>*-> <p fo<p von der Menge der symmetrischen K-bilinearen Formen #:l/x
17—»K auf die Menge der symmetrischen k-bilinearen Formen <P: Ux 17—» k,

fur welche a selbstadjungiert ist. Die Isomorphieklasse von (17, $, a) hângt nur
ab von der Isometrieklasse von (17, <P). Damit ist unser Problem reduziert auf die
Klassifikation der quadratischen Formen ûber allen einfachen algebraischen
Kôrpererweiterungen k[cr] von fc.
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