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Comment. Math. Helvetici 53 (1978) 322-333 Birkhauser Verlag, Basel

Quadratische Riume mit zwei Unterriumen

WERNER BANI

§1. Einleitung

1.1. Die vorliegende Arbeit beschéftigt sich mit dem Problem der Klassifika-
tion von Paaren von Unterrdumen quadratischer Raume. Wir betrachten also
Quadrupel €=(E, ¢, U, V), wo E ein endlichdimensionaler Vektorraum iiber
einem fest vorgegebenen Korper k der Charakteristik # 2 ist, versehen mit einer
symmetrischen Bilinearform @ : EX E— k, und wo U, V Unterrdume von E sind.
Zwei solche ‘“Raume” €, €' heissen isomorph, €=%', wenn es eine Isometrie
T:(E, ®)— (E', @) der unterliegenden quadratischen Riume gibt mit TU = U’,
TV =V’. Es ist klar, wie die direkte orthogonale Summe von zwei Raumen €,
und %, definiert ist; wir bezeichen sie mit &, @ €,. Damit ist auch Klar, was unter
einer (direkten orthogonalen) Zerlegung eines Raumes bzw. unter einem unzerleg-
baren Raum zu verstehen ist. Ist X ein Teilraum von E, so sei ¥ X=X N X* und
dX =dim, X. Statt € = (E, @, U, V) schreiben wir meist nur (E, U, V); die Raume
1,98, 1,¥ seien definiert durch L,€=(E, U, V) und 1,€=(E, U, V*).

1.2. Sei € =@; &, eine direkte orthogonale Zerlegung von € in unzerlegbare
Summanden %,. Wir vergrébern die Zerlegung zu € =€, ®"* €,®* &, wie folgt:
€r bestehe aus denjenigen nichtentarteten Summanden €, fir welche gilt E; =-
UV, =U;®V, rU,=rV,=0; & bestehe aus denjenigen nichtentarteten Sum-
manden €, welche E; = U@V, = U; DV, rU,+rV,#0 erfiillen, und €, bestehe
aus allen iibrigen Summanden. Es wird sich zeigen, dass die Summanden 4p, &G,
&r durch diese Bedingungen bis auf Isomorphie eindeutig bestimmt sind. In
Abschnitt 2 bzw. 3 wird die Struktur der Summanden €, bzw. €5 mittels
geeigneter Funktoren D bzw. S untersucht. Eine Klassifikation dieser Rdume ist
moéglich, sofern die quadratischen Formen iiber k klassifiziert werden konnen.
Das Problem der Klassifikation der Rdume €, hingegen ist dquivalent zum
Problem der Klassifikation von Paaren nichtentarteter quadratischer Formen auf
einem Vektorraum U. Es ist bekannt (vgl. z. B. [2]), dass sich dieses Problem
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Quadratische Rdume mit zwei Unterraumen 323

darauf reduzieren lasst, die quadratischen Formen iiber allen einfachen alge-
braischen Kdrpererweiterungen k[o] von k zu klassifizieren. Dies wird in Abschnitt
4 in einem begrifflichen Rahmen kurz skizziert ([2] arbeitet mit aufwendigen
matrizentechnischen Methoden).

Der Autor dankt P. Gabriel fiir die Anregung zu dieser Arbeit.

§2. Reduktion auf den Fall E=U®dV=U'®V

2.1. Nebst den Riumen €=(E, U, V) betrachten wir auch Riume €=
(E, U, V, W), wo E mit einer nichtentarteten Form & versehen ist und Wc
UN V. Man erhilt einen Funktor

A: 8> AE=¢=(E, UV, W)

wenn man E = E/rE setzt und fiir U, V, W die Bilder von U, V, UNV unter der
kanonischen Projektion E— E nimmt. Offensichtlich erhiilt A orthogonale Sum-
men. Ein Raum € heisse A-sauber, wenn A keinen orthogonalen Summanden
von € annulliert, d.h. wenn ¢ keinen totalisotropen Summanden abspaltet. Dies
ist genau dann der Fall, wenn

UNrE=0=VNrE, _.rEcU+V. (1)

LEMMA 1. Der Funktor A induziert eine Bijektion zwischen den Isomorphie-
klassen von A-sauberen Rdumen € und den Isomorphieklassen von Rdumen €.

Beweis. Zu jedem Raum &= (E, U, V, W) konstruieren wir A€=(E, U, V)
wie folgt. Sei R:=UNV/W und E:=E®*R, R totalisotrop, also rE=R.
Wihle eine beliebige lineare Abbildung f: V— R, welche die kanonische Projek-
tion p:UNV—R fortsetzt und definiere U:=U, V:=T(f)={x+f(x) x€ V}
Offenbar erfiillt AZ die Bedingungen (1), ist also A-sauber, und es ist AAZ =&
Wir zeigen jetzt, dass der so konstruierte Raum A€ bis auf Isomorphie unabhingig
von der Wahl von f ist. Sei also f' eine weitere lineare AbbildungV— R, welche p
fortsetzt, und V'=TI'(f). Die Zuordnung x+f(x)—x +f'(x) ist eine Isometrie
To: V> V', welche VNU=V'NU=W punktweise festlisst, mit ®(z, Tyy)=
&(z, y) fiir alle ze E, ye V. Man kann daher T, zunichst zu einer Isometrie
U+V— U+ V'=U+YV erweitern, welche U punktweise festldsst, und schliess-
lich zu einer Isometrie T: E — E mit TU= U, TV = V'. Damit ist gezeigt, dass
die Wahl von f keine Rolle spielt. Sei jetzt umgekehrt ein A-sauberer Raum €
vorgelegt. Wir erhalten einen zu A¥ isomorphen Raum, indem wir E/rE mit
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einem Komplement E von rE in E identifizieren. Dabei sei Uc E, also U= U,
V=q(V), W=UNYV, wobei q:E—E die Projektion lings rE ist. Wegen
VNrE=0 ist V von der Form I'(f), wo f: V—7E eine lineare Abbildung mit
ker(f)=UN V=W ist. Wegen rE< U+ V ist f(UN V)=rE, so dass man also rE
vermége flUN V mit R = UN V/W identifizieren kann. Dies zeigt dass AAE = €.

KOROLLAR. In einer Zerlegung € =,®D" %, von € in einen totalisotropen
Raum &, und einen A-sauberen Raum &, sind €, und &, bis auf Isomorphie
eindeutig bestimmt.

Es ist nimlich §,=AA%, und %, ist eindeutig bestimmt durch die Dimen-
sionen von U,NV,, U,, V,, E,.

2.2. Man hat auch einen Funktor
B:¢=(E, U, V,W)—»Bg=%:=(W*, V* UY,

der ebenfalls mit orthogonalen Summen vertriglich ist. Der Raum € ist genau
dann B-sauber, d.h. spaltet keinen Summanden ab, der von B annulliert wird,
wenn W totalisotrop ist.

LEMMA 2. Der Funktor B induziert eine Bijektion zwischen den Isomorphie-
klassen von B-sauberen Riumen & und den Isomorphieklassen von Riumen &.

Beweis. Wir konstruieren wiederum zu jedem Raum % einen Raum B%:Sei
€=(E, U, V) gegeben, R:=rE. Wihle ECE mit E=E®R und setze E:=
E®R*=E®(R®R*). Dabei ist R* der Dualraum von R, und die Form auf
R@® R* die natiirliche, d.h. R, R* totalisotrop und &(r, f) = f(r) fiir re R, fe R*.
Schliesslich sei U:=V*, V:=U"*, W:=R, wobei die Orthogonalriaume in E
gebildet werden. Offensichtlich ist B%=(E, U, V, W) ein B-sauberer Raum, mit
BB¢ =%. Wiederum hiingt der Isomorphietyp von B% nicht von der Wahl des
Komplementes E ab: Hat man noch ein weiteres Komplement E’, so sind
zunichst die beiden Formen @ und @' auf E= E® RO R* = E'® R® R* isomet-
risch, und wegen des Satzes von Witt kann man die Identitit E®GR— E'@®R zu
einer Isometrie (E, @)— (E, @) fortsetzen. Diese Isometrie lisst R fest und fiihrt
V* bzw. U* in V*" bzw. U* iiber. Ist umgekehrt ein B-sauberer Raum € =
(E, U, V, W) gegeben, also W totalisotrop, so ist W =r(W*), und es gibt eine
“Witt-Zerlegung” E=E®‘'Z wo W'=E®W und Z=W® W*. Daher ist
BB%=%.
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KOROLLAR. In einer Zerlegung € = €,®* %, von € in einen Raum €, vom
Typ (Eo, Eo, Eo, E;) und einen B-sauberen Raum &, sind €, und €, bis auf
Isomorphie eindeutig bestimmdt.

Denn es ist ;= BBE, und E, ist ein Komplement von rW in W.
2.3. Wir betrachten jetzt den zusammengesetzten Funktor
D=BA:%=(E, U, V)~ D%=(UNV*+, V*, UY),

wobei die Orthogonalrdume in E = E/rE zu bilden sind. Sei ferner D = AB (mit
einem offensichtlichen Notationsmissbrauch). Fiir jedes A € k definieren wir einen
Raum k(A) durch

k(r)=(k,0,0), d,(1,1)=A.

Die von D annullierten unzerlegbaren Riume sind genau die Raume k(0),
1,k(0), L,k(0), L,1,k(0) sowie L,L k(A) fir A#0. Jeder Raum & besitzt
gemass 2.1 und 2.2 eine bis auf Isomorphie eindeutig bestimmte Zerlegung

€=8(1)D"¢ (2)

in einen D-sauberen Raum ¢’ (= DD¥) und einen Raum %(1) mit D&(1)=0.
Der Raum ¥(1) besitzt eine bis auf Isomorphie eindeutig bestimmte Zerlegung

E(1) = k(0" (L,k(0)= D" (L k(0)™D" (L, L k(0))B*(E,, Eo, Eo) (3)
wobei E, nichtentartet ist. Fiir jedes pe N, p=2, definieren wir
&(p):=DP(D"¥)(1)),
was uns eine orthogonale Zerlegung

2= B 2(p)D" B(x) (@)

p=1

liefert, in welcher é(p) ein D?~'-sauberer Raum mit D?%(p) =0 ist und () fiir
jedes p ein DP-sauberer Raum. Die Riaume &(p), &€(«) sind durch diese Bedin-
gungen bis auf Isomorphie eindeutig bestimmt. In einer orthogonalen Zerlegung
€=@®; % von € in unzerlegbare Summanden &; besteht €(p) genau aus den-
jenigen Summanden &; mit DP"'%,# 0 und D?¥, =0.
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2.4. Mit Hilfe von 2.1 und 2.2 lisst sich die Struktur der Rdume &(p) in (4)
bestimmen. Es geniigt dabei, die “Bahnen” der in der Zerlegung (3) auftretenden
unzerlegbaren Riaume unter der Operation von D zu ermitteln. Das nachfolgende
Lemma ergibt eine Uebersicht iiber die Dimensionen der auftretenden Réaume,
und die daraus abgeleitete Tabelle 1 versucht die Situation etwas zu ver-

anschaulichen. Der Defekt 0€ eines Raumes € ist definiert durch

0é:=drE+d(UNV)+d(E/U+ V)

LEMMA 3. Sei € ein beliebiger Raum und D% = (E’, U’, V'). Dann gilt

(@) dE'=dE+drE+d(E/U+ V), dU'=dE+drE—-dV

(b) drU’'=drV, d(U*NV)=d(U'NV)

(c) drE'=d(E/U+ V), d(U'NV')=drE, d(E'/U'+ V')=d(UNYV). Insbeson-
dere ist 9D% = 9¥. Weiter gilt fiir D*€ = (E”, U", V")

(d) dE"=dE+23%, dU"=dU+4€.
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Wir verzichten auf den einfachen Beweis dieser Formeln. Aus dem Lemma
folgt sofort, dass der Raum 4(») = :(E,, U,, V,) in (4) Defekt Null hat, d.h. also
dass E, nichtentartet ist und E,= U,® V,,.

2.5. Wir geben jetzt ohne Beweis die Gestalt der nichtentarteten Riume in
den “D-Bahnen” der Riume in (3). Die entarteten Riume lassen sich durch
einfache Anwendung von D oder D aus diesen gewinnen, wie aus Tabelle 1
ersichtlich ist.

(a) Der Raum D®"~'k(0) hat folgende Gestalt:

E=k*@®" k*® = (ke;®D - - - Dke,,)D" (ké,D - - -@Dké,,) mit hyperbolischen
Basen e;,...,e,, und &;,...,&, von k*?@®*0 und 0D*'k?, dh. P(e,e¢)=
d(e, éj) = 6i+j,2p+1‘

U= k2p®l0, V= ke1® k(e2+ é1)® k(e3+ éz)@ t @k(ezp + éZp-—l)'
(b) Der Raum D***' 1, 1,k(0) hat die Gestalt
E = k2®l k2p @l k2p = (kx@ k)’)®l(ke1® ¢t @kezp)®l(kél@ tee @kézp),

wobei wieder die angegebenen Basen der drei orthogonalen Summanden hyper-
bolisch sein sollen.

U=ke, D - Dke,Dkadke, Dk(e,.1+&,.,)D - Dkley,_1+8&,,),

V=ké,®D: - - Dke,DkaDke,., Dk(E,.1+e,.2)D - Dk(&,,_1+ey,),

wobei a=x+(e,+¢,)—(e,_,+e,_,)+(e,,+e,_,)— (e +¢).

(c) Der Raum D°*! 1 ,k(0) hat folgende Gestalt:

E=k***" V@' k> = (ke,®D - - - Dke,,,,)D* (ké; D - - - Dké,,) mit hyperbolischen
Basen der beiden Summanden, U=k2®*V®*0, V=k(e,+e,)D---
D k(e + e2,)D kezp. .

Es gilt D®"*? 1 k(0)=(E, V, U").

(d) Der Raum D®~21 ,k(0) sieht so aus:

E=k*®®" k* = (ke;®D - - - Dke,,) D" (ké,D - - - Dke,,) wie in a), U=ke,®
k(ey+€)Dk(es+&)D - - - Dk(ey, +&,,_1)Dke,,, V=0D"k?>.

Der Raum D%~ '1,k(0) ist: E wie oben, U=k?®'0, V=
k(e;+&)D - - - Dk(ey,—1+83,).

(e) Die entsprechenden Raume fiir 1,k(0) erhdlt man aus c) und d) durch
Vertauschen von U and V.

(f) Sei €= 1,1 ,k(A) mit A# 0. Fir D®*'¥ erhilt man:
E=(kP@k®KkP)D* k= (ke;® - - - Dkeyy ) B (k&,® - - Dkey,),
U=k(e,+&)D - Dk(ey, +&,,), V=0 k.

Dabei sind (ey,..., €y, €,42,...,€.1) und (é;,...,8&,) hyperbolische Basen,
ferner P(e;, €,.1)=A8; ;.11
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Der Raum D°**€ hat die Gestalt
E=(k*@k@®kP)®" k***V = (ke;@ - - D kesp)) D" (kE,® - - - Dkeyys),
U=k?OkDkPD"0, V==k(e;+&)D - - Dk(eypr1+Erp41),
(ey,...,€41) wic oben und (€, .. ., &,,.,) hyperbolisch.

2.6. Der Raum %(«) in (4) ist nichtentartet und erfilllt D>&(x) = &(x). Wir
definieren

€((p)=(L,8(x)(p) fir p=12,...,2 und
¢[p]= L.%((p)),

sodass also (wie in (4))

E(@)= ® E[p]® B[], 5)

p=1

Dabei ist jetzt €[] ein nichtentarteter Raum €, mit E,= U,® V,= U;® V,.
Aus 2.4 Tabelle 1 ist ersichtlich, dass die einzigen nichtentarteten unzerlegbaren
Riume € mit 9€# 0 aber 8 L ;€ =0 in den D-Bahnen von k(0) und 1,1 ,k(A) fiir
A#0 auftreten, sodass also gilt: Fir p=0 mod 3 hat ¢[p] die Form
1,(DP'k(0))¥ mit NeN. Fir p#£0 mod 3 ist €[p] orthogonale Summe von
Riumen der Form L,D? (1,1 ,k(A)) mit A#0 (sieche 2.5a) und f)).

2.7. Wir fassen unsere Resultate zusammen im

SATZ 1. Der Raum ¥ besitzt eine orthogonale Zerlegung

% = E[<]1D* ® E(p)D* ® E[pl,

p=1 p=1

in welcher die Summanden &[], €(p), é[p] durch die folgenden Bedingungen bis
auf Isomorphie eindeutig bestimmt sind:

(a) 3%[x]=231,%[=]=0,
(b) &(p)=Dr"'D*"'¥(p), D*%(p)=0,
(c) 8[pl=L1,D*'D?"' 1,%[p], D* L,%[p]=0, 9€[p]=0.

Die Struktur der Raume &(p) wird in 2.5, die der Raume &[p]in 2.6 beschrieben.
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§3. Reduktion auf den Fall drU=0=drV

3.1. In diesem Abschnitt betrachten wir nur Riume & mit & = €[], also
nichtentartete Rdume & mit

E=U®V=U'®V, also auch E=U®V'=U'®V*. (6)

Die Einschrinkung von ® auf UX V< EXE induziert eine lineare Abbildung
v:U — V* welche wegen (6) ein Isomorphismus ist. Ferner definiert ® lineare
Abbildungen «:U— U*, B:V— V*. Wir setzen B:=y 'fy* 1:U*-> U
(wobei V** mit V identifiziert wurde) und erhalten so ein Quadrupel ¥(%)=
(U, U*, a, B) mit a=a*, B=pB* Umgekehrt definiert ein solches Quadrupel
¥ = (U, U*, a, B) einen Raum &(X) vermoge

E(H)=(UBU* U, U*) mit der Form:
®D(u, u’)=(au, u’) (u,u’'e U)

o(f, f)=<BfY (f,f'eU¥
O(f,u)=P(u, f)=(f,u)  (feU* uel),

(7)

wobei (,): U*x U — k die kanonische Bilinearform ist. Offenbar erhélt man eine
Isomorphie €= %(¥(%)), indem man V vermége y* mit U* indentifiziert.
Ausserdem ist X = H(€(X)). Die Bedingung, dass & nichtentartet ist, lautet jetzt:
Ba —1ist invertierbar.

3.2. Unter einer Vektorraumkrone, kurz Krone, verstehen wir ein Quadrupel
X=(U,V,¢n), wo U, V (endlichdimensionale) k-Vektorrdume und £: U—V,
n:V—U lineare Abbildungen sind. Es ist klar, wie Morphismen zwischen
Kronen, direkte Summen von Kronen und Unterkronen von Kronen definiert
sind. Die Krone X heisst selbstdual, wenn sie isomorph zu ihrer dualen Krone
H*=(V* U* £¢* 7n*) ist. Die in 3.1 eingefiihrten Kronen ¥ = ¥(%) erfiillen
sogar X =X* (nach der Identifikation U**= U). Wir nennen solche Kronen
reflexiv. Ein Isomorphismus w:X— X' zwischen reflexiven Kronen X, X’ in-
duziert genau dann einen Isomorphismus &(X)=>&(¥'), wenn p*p =1. Ist
X,=(Uy, Vi, a, B) eine Unterkrone der reflexiven Krone ¥, dann ist auch
*9=(VY, U}, a, B) eine Unterkrone von ¥, wobei z.B. U] ={fe U*| f(U,) = 0}.
Falls X =%X,®%9%, dann hat man eine orthogonale Zerlegung &(¥X)=
E(H,) D €(K9). Man beachte, dass dabei ¥, vermoge des kanonischen Isomor-
phismus V,=(V?9)°> U¥ als reflexive Krone aufgefasst wird.



330 WERNER BANI

3.3. Die Niitzlichkeit dieser Interpretation besteht in einer Anwendung des
Austauschsatzes von Krull-Schmidt, dhnlich wie in [1]. Sei nidmlich 3 eine
selbstduale Menge von unzerlegbaren Kronen, d.h. 3 enthdlt mit jeder Krone
auch ihre duale. Sei X eine reflexive Krone und ¥ = ¥5® X5 eine Zerlegung in
Unterkronen, wo jeder unzerlegbare Summand von X5 isomorph ist zu einer
Krone aus 3, und wo ¥ keinen zu einer Krone aus 2% isomorphen Summanden
abspaltet. Dann hat man wegen des Austauschsatzes auch eine Zerlegung X =
Hs DK (denn H3=K% =H;), also nach 3.2 eine orthogonale Zerlegung

E(X) = E(Hs) D" E(X3).

LEMMA 4. Die Summanden 8(¥Xs), €(¥X2) sind durch X bis auf Isomorphie
eindeutig bestimmt.

Beweis. Wir betrachten zwei Zerlegungen ¥ = X5 ® ¥3 = LD £3 der obigen
Art. Damit der Isomorphismus u : ¥5 & ¥ — &5 einen Isomorphismus &(¥5)=>
%(¥s) induzieren wiirde, miisste p*u =1 gelten (3.2). Nun ist aber p* der
Morphismus s O X >»Hs, ) dass also p*p=1-o0, WO
o Hs O X >»L: K —»Hy im Radikal des Endomorphismenringes von ¥
liegt und somit nilpotent ist. Wir ersetzen u durch p,= u(1+a,0+ao*+- )
mit o; € k und erhalten p¥u,=(1-o)(1+a,0+- - +)? so dass also die Gleichung
(I+ a0+ - -)*=1+0+0%+- - - zu 18sen ist. Das geht sicher, da ja char k# 2 ist.

3.4. Wir rufen jetzt die Klassifikation der unzerlegbaren Vektorraumkronen
in Erinnerung. Jede solche ist isomorph zu einer der folgenden Kronen:

@) X(@)=(V,V,1,0), wo o:V—>V ein Automorphismus von V ist,
beziiglich welchem V unzerlegbar ist.
(I ¥*,=(k? kP,1, 1), wo 7 durch die Jordanmatrix

0o - - 0
1 0 ‘
01 -

P 1 0 - definiert ist, p=1.
0 -0 10
(1) %, = (k?, k?, 7,1), 7 wie in (II), p=1.
(IV) %p = (kp-ly kp’ g’ n)9 P = 1’ g(xly L xp——l) = (Os > SRR xp—l)a

Ny 5 Yp) = (Y1 -+ o5 Yp—1)-
AV)* %, =(k? kP!, m, &), p=1, £ und 7 wie in (IV).
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Die Kronen vom Typ (I), (II), (III) sind alle selbstdual, wihrend 5[:%3[,,.
Gemiss 3.3 hat man also eine orthogonale Zerlegung

€= 619"5(0)89l €B g(11,)D EB €11, )EBl €B AV, IVY) (8)
p=1 p=1
wobei die dem Summanden %(II ) bzw. €(III,) bzw. %(IV IV*) zugeordnete
reflexive Krone isomorph ist zu (7{ )N bzw. (.% )N bzw. (7{ EB?{ )N fiir ein Ne N.
Die Riaume vom Typ €(o) werden im nichsten Abschnitt untersucht

3.5. Sei von jetzt an ¥ = (U, U*, a, B) eine reflexive Krone, isomorph zu .%’N
bzw. &Y bzw. (%, @% )N. Wir definieren

SX :=(im B/ker a Nim B, im a/ker B Nim «, a, B)
=rad ¥/soc ¥ Nrad ¥
(=rad ¥/soc ¥ in den Fillen, wo p=2). 9)

Fiir p=1 ist S¥ = 0; in diesem Fall ist also ¥ von der Form (U, U*, a, 0) bzw.
(U, U*,0, B) bzw. (U, U*,0,0), wobei a, 8 invertierbar sind. Damit ist €(¥)
charakterisiert durch die a (bzw. ) entsprechende symmetrische nichtentartete
Bilinearform auf U (bzw. U*) bzw. die Dimension von U. Es ist klar, dass in
diesen Fillen auch orthogonale Zerlegungen in zweidimensionale Raume exis-
tieren, d.h. Rdume von der Form

(a) E=ku®kv, ®(u,u)=A#0, &(u,v)=1, &(v,v)=0
(b) E=ku®kv, ®(u,u)=0, ®(u,v)=1, ®(v,v)=Ar#0
(c) E=ku®kv, ®(u, u)=0=P(v,v), ®(u, v)=1.

3.6. Wir fiihren jetzt den Fall p>1 auf den Fall p=1 zuriick. Sei also p=2,
S¥ = (im B/ker @, im a/ker B, a, B). Wegen ker g =(im 8)° und im a = (ker a)°
hat man eine kanonische Isomorphie im a/ker B = (ker a)°/(im B8)°—
(im B/ker a)*, sodass man also S¥ wieder als reflexive Krone auffassen kann. Ist
X vom Typ fkp, dann S¥ vom Typ 3?,,_1, und analog fiir die anderen Fille.

SATZ 2. (i) Sei €=¥(X), wobei ¥ von einem der drei Typen %, X,, X, %,
ist (d.h. X =", wo £ eine dieser Kronen ist). Dann ist € eindeutig bestimmt durch
E(SP'¥), und €(SP7'X) kann “beliebig” (wie in 3.5) vorgeschrieben werden.

(ii) Die unzerlegbaren Rdume haben die folgende Gestalt:

(a) Typ f[l,: E=U®V=(ke,®"- - Dke,)D(kée;D - Dké,). Falls p gerade:
P(e;, e,-) =8isjp+1s d(e, éj) = A sjps D(e;, éj) = §yj.
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Falls p ungerade: ®(e;, €;)=Ad;.p+1, P&, &)=3..;, Dle;, &)=25;
In beiden Fillen A # 0, fest.

(b) Typ 3??: analog.

€ Typ H,®K,: E=UDV=(ke,® - -Dke,, ,)D k&, D -Dké,,_,),
D(e;, €;) = 8isj2p+1s d(e, éj) = 8i4+j2p—1 D(e;, €)= &y

Beweis. (i) Fiir die Eindeutigkeit geniigt es zu zeigen: Sind ¥, ¥' von einem
dieser Typen (p=2), und ist E(S¥)=¥(SA'), dann ist auch &(¥)=¥&(¥X’). Die
Voraussetzung €(S¥)= €(SX') bedeutet, dass es einen Isomorphismus w,: S¥ —
S’ gibt mit wo*wy=1. Nun ldsst sich aber po:rad ¥/soc ¥ — rad ¥'/soc X' zu
einem Isomorphismus w:¥ — ¥’ hochheben, und pw*u —1=:0 liegt im Radikal
von End (¥). Jetzt folgt die Behauptung wie in 3.3. Die Existenz von X zu
vorgegebenem &(SP~'¥) folgt aus (ii) und 3.5. Der Beweis von (ii) ergibt sich
durch Induktion, indem man S anwendet und die Eindeutigkeitsaussage in (i)
benutzt.

KOROLLAR. Ist € = €(X) unzerlegbar, dann ist ¥ isomorph zu einem fﬁﬂ,, ?Zp
oder 4, %,

§4. Paare quadratischer Formen

4.1. Nach Abspalten der in 3.5 und 3.6 beschriebenen Summanden haben wir
es mit einem Raum & = &(X) zu tun, wo «, B beide invertierbar sind. Ersetzen
wir B durch B, so erhalten wir das klassische Problem der Klassifizierung von
Paaren nichtentarteter quadratischer Formen auf einem Vektorraum U. Da dieses
Problem in der Literatur “gelost” ist (vgl. z.B. [2]), begniigen wir uns damit, die
Resultate zu skizzieren. Dabei betrachten wir statt 8~' den Automorphismus
o := Ba von U und statt a : U — U* die entsprechende Form @: Ux U — k, d.h.
wir betrachten Tripel (U, &, o), wo &P eine nichtentartete symmetrische Bilinear-
form auf U ist und o ein beziiglich @ selbstadjungierter Automorphismus von U.

4.2. Gemiss 3.4 (8) diirfen wir annehmen, dass (U, o) als Modul iiber dem
Polynomring k[T] von der Form U= (k[T)/(q"))" ist, wo q" das Minimal-
polynom von o ist und q irreduzibel. Man kann dann auf U/qU=:U eine
nichtentartete Form @ definieren durch ®(%, )= ®(q" 'x,y) (wo U— U, x> %
die kanonische Projektion ist). Aehnlich wie in 3.6 zeigt man, dass der Isomor-
phietyp von (U, @, o) bereits eindeutig festgelegt ist durch den Isomorphietyp von
(U, @, ¢). Dies fiihrt uns zuriick auf den Fall n = 1, wo wir also U als Vektorraum
iiber dem Korper K: = k[a]= k[T]/(q) auffassen k6nnen. Man wihle dann eine
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beliebige nichtverschwindende k-Linearform f:K — k und erhilt eine Bijektion
@ — @ =fod von der Menge der symmetrischen K-bilinearen Formen &: U x
U — K auf die Menge der symmetrischen k-bilinearen Formen @: UX U — k,
fir welche o selbstadjungiert ist. Die Isomorphieklasse von (U, @, o) hingt nur
ab von der Isometrieklasse von (U, ). Damit ist unser Problem reduziert auf die
Klassifikation der quadratischen Formen iiber allen einfachen algebraischen
Korpererweiterungen k[o] von k.
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