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Ein geometrisches Endlichkeitskriterium fur Untergruppen von
Aut (C, 0) und holomorphe 1-codimensionale Blàtterungen

BURCHARD KAUP

1. Bezeichnungen, Ergebnisse

Es sei Aut (C, 0) die Gruppe (bezûglich der Komposition) der Keime von
biholomorphen Abbildungen zwischen offenen Umgebungen von 0 in C, welche 0

als Fixpunkt haben. Ist <P:U -> V ein Repràsentant von <p e Aut (C, 0) und

z e U, so sei

B((PjU)(z):={xeU;3peN mit <Pv(z)eU fur O^v^p und 0p(z) x}.

(dabei sei 4>°(z): z, <Pv+1(z): &(<Pv(z)) fur i/2*0, falls <Pv(z)e U.) JB(<Î> u){z)
heisst Bahn von <P in U durch z.

SATZ 1. Es sei G^Aut (C, 0) eine endlich erzeugbare Untergruppe. Dann
sind folgende Aussagen âquivalent :

(1) G ist endlich.

(2) Jedes ce G besitzt als Repràsentanten eine biholomorphe Abbildung <P:U-> V
mit folgender Eigenschaft: fur jedes zeU ist Bi4> u)(z) endlich.

(3) Aile Elemente von G haben endliche Ordnung.
(4) G ist abelsch und hat ein Erzeugendensystem von Elementen endlicher

Ordnung.

Zum Beweis von Satz 1 benôtigen wir

SATZ 2. Es seien U, V offene Umgebungen von 0 im Rn, /: C/-> V sei ein

Homôomorphismus mit /(0) 0. Die Menge

A: ={xeU;3peN mit p&l9f(x)eU fur l^v^p, fp(x) x}
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sei hôchstens abzàhïbar. Dann gibt es zu beliebigem e>0 mit
Be: {xeRn;||x||<e}c:[/n V ein zeBe9 fur welches B^Be)(z) oder B(ri,Be)(z)
unendlich ist.

Eine leichte Folgerung von Satz 1 ist

SATZ 3. Es sei M eine komplexe Mannigfaltigkeit, versehen mit einer regulâren
holomorphen Blâtterung. Aile Blâtter seien kompakt und komplex-l-
codimensional. Dann sind aile Holonomiegruppen der Blâtterung endlich.

In [7] wird Satz 3 mit anderen Methoden von H. Holmann fur holomorphe
Blâtterungen auf komplexen Râumen (vgl. [4]) bewiesen, bei denen aile Blàtter
kompakt und (komplex) eins-codimensional sind. Weitere Erlâuterungen zu Satz
3 befinden sich am Ende dieser Note.

Wie in [6] folgt aus Satz 3, dass (mit den Bezeichnungen von Satz 3) der
Blàtterraum M/B auf kanonische Weise eine Riemannsche Flâche und die
kanonische Abbildung tt:M-+ M/B holomorph und eigentlich ist.

2. Beweis der Sâtze 1 und 2

In Satz 1 sind die Implikationen (1) =£> (2) und (4) ^> (1) trivial. Zum Nach-
weis von (3) ^> (4) genûgt es zu zeigen, dass der Homomorphismus H: G —> C*,
H(cp): <p'(0), injektiv ist. Dazu sei <p e Kern H, d.h. H(<p) 1. Wâre cp nicht das

neutrale Elément von H, dann hâtte <p eine Darstellung

mit

Man rechnet leicht nach, dass çn(z) z + napzp+ .fur hgN, folglich hâtte <p

nicht endliche Ordnung.
Die Implikation (2) ^ (3) ergibt sich unmittelbar aus Satz 2, wenn man

berûcksichtigt, dass die Fixpunktmenge einer holomorphen Funktion f:U-*V
(U, V ofïen urid zusammenhângend in C) diskret ist, falls

Beweis von Satz 2. Zu vorgegebenem e > 0 wâhle r < e mit Br c JJ. Fur p e N+
definiere

Êp:={xeBr;f(x)eBr fur l^v**p}.
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Êp ist eine oflEene Teilmenge von Br, die 0 enthâlt. Es sei Ep die Zusam-

menhangskomponente von Êp, die 0 enthàlt. Dann gilt Br^>E1^>E2=> Es sei

F:=f(Br).

1. FALL EPogN mit EPo<^F. Dann ist f(Ep+1) Ep fur p^po. Denn: fur
beliebiges p ist /(Êp+1)<= Êp, also auch f(Ep+1)<^ Ep\ andererseits gilt Ep af(Êp+1)
(also auch Ep<^f(Ep+l), weil / ein Homôomorphismus ist) fur p^po, denn zu

x g Ep c jEPo c F gibt es y g Br mit x /(y); da f (x) G Br fur 1 ^ i/ ^ p, ist /v(y) g Br
fur l^i/^p + 1, also ye^+i, folglich jcg/(Êp+1). -Also ist Ep=f(Ep+1) fur
P^Po'

Wâhle xoeEPo\A, so ist xv: =f~v(xo)eEPa+v wohldefiniert fur aile veN+ und

(xJ,eN ist eine unendliche /^-Bahn in Be.

2. FALL Hp^iÉp+A. Dann wâhle man xoe(f]p^l Ëp)\A. Fur xoeÉp ist

f(xo)eBr; folglich ist (f (xo))VGN eine unendliche /-Bahn in Br<^Be.

DER DRITTE FALL, dass nâmlich Ep<t F fur aile p und f|P^i Ép c A, kann
nicht auftreten, denn anderfalls wâre

dBpnr\p^Épï0 fùrjedes p>0 mit J3pc:F, (*)

das widerspricht aber Ç\p5slËpa A und der Voraussetzung, dass A hôchstens

abzàhlbar ist.

Beweis von (*): Fur festes p und p mit £p <= F gilt: 0g£pHBp, Bpcf,
Ep+F, Bp und Ep sind zusammenhângend; folglich ist dBpDEp9^ 0, insbeson-
dere dBpC\Ëpi£ 0, und wegen ^ =>Ë2 =>..., folgt (*) aus dem Cantorschen
Durchschnittssatz.

BEISPIELE. Die Voraussetzung in Satz 2, dass A hôchstens abzàhlbar ist, ist
wesentlich, wie folgendes Beispiel zeigt: Definiere /: R2 —» R2 durch f(x, y):
U + y, y)- Dann ist A {(x, 0); jc g R} nicht abzàhlbar. Eine beliebige Bahn von /
im R2 hat die Gestalt {(x + ny, y); jîgN}; sie besteht also entweder aus einem
Punkt (falls y 0) oder sie ist unendlich und unbeschrànkt; Analoges gilt fur
Bahnen von f~l. /l 1\

Bezeichnet G a GL(2,C)c: Aut (C2,0) die durch (^ ^ J erzeugte Unter-

gruppe, dann ist G unendlich; fur beliebiges ç e G und beschrânktes L/ciC2 sind

andererseits aile Bahnen B(l/i<p)(z) endlich. Satz 1 lâsst sich also nicht direkt

verallgemeinern fur Untergruppen von Aut (Cn, 0) fur n^2.
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3. Regulâre holomorphe Blâtterungen; Beweis von Satz 3.

Es sei M eine komplexe Mannigfaltigkeit. Eine regulâre holomorphe Blâtterung
von M ist eine Menge B={(UO <pt); iel} von paarweise vertràglichen lokalen
regulâren holomorphen Blâtterungen von M mit IJiei U% —M\ unter einer lokalen

regulâren holomorphen Blâtterung von M verstehen wir dabei ein Paar

(U,<p), wobei U eine offene Teilmenge von M ist und <p: U-* BxV eine

biholomorphe Abbildung auf ein Produkt zweier Gebiete BcCn>, VczO. Zwei
solche Paare (Ul9 <pt) mit çt (<ptl, <pl2): U, -> Bt x V,, i 1, 2, heissen vertrâglich,
wenn es zu jedem x e U1 C\ U2 eine offene Umgebung U von x in U1H l/2 und
eine biholomorphe Abbildung <p: Wx —> W2 gibt zwischen offenen Umgebungen
Wt von <pl2(x) in V, mit <pl2(U)<^ Wt fur i 1,2 und <po<p12 <p22 ùber C7.

Jede regulâre holomorphe Blâtterung ist eine differenzierbare Blâtterung im
Sinne von [3]; damit sind die Blâtter einer regulâren holomorphen Blâtterung
wohldefiniert. Falls aile Blâtter kompakt sind (was wir ab jetzt stets voraussetzen
wollen), kann man jedem Blatt eine Holonomiegruppe zuordnen; aile
Holonomiegruppen sind endlich erzeugbar. Ist (£/,<p) mit <p:£7—»BxV ein
Elément der Blâtterung B und sind aile Blâtter (komplex) 1-codimensional, so
ist V eindimensional; ist xeU und L das Blatt durch x, so kann man die

Holonomiegruppe G von L auffassen als Untergruppe von Aut (C, ç2(x)). Wâre G
nicht endlich, gàbe es wegen Satz 1 ein Elément geG derart, dass g in jeder
Umgebung von <p2(x) in V eine unendliche g-Bahn hat.

Das kann aber nicht sein, denn aile Elemente einer g-Bahn liegen im gleichen
Blatt (dabei nehmen wir an, dass V eine Teilmenge von M ist und genùgend klein
gewâhlt wurde); weil aile Blâtter kompakt sind, muss der Durchschnitt eines

beliebigen Blattes mit einer relativkompakten Umgebung V von ç2(x) in V stets
endlich sein.

4. Bemerkungen zu Satz 3

Es gibt einfache Beispiele fur nicht-kompakte differenzierbare Mannigfaltigkei-
ten M mit (reell) 2-codimensionalen Blâtterungen, bei denen aile Blâtter kompakt
sind, wo jedoch unendliche Holonomiegruppen auftreten (vgl. [2]). Ist jedoch M
kompakt, sind aile Holonomiegruppen endlich (vgl. [2], [1], [10]).

Bei (^4)-codimensîonalen differenzierbaren Blâtterung mit kompakten
Blâttern kônnen, auch bei kompaktem M, unendliche Holonomiegruppen auftreten

(vgl. [9]).
Holomorphe Blâtterungen wurden von H. Holmann in [4] definiert; regulâre

holomorphe Blâtterungen sind spezielle holomorphe Blâtterungen im Sinne von
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[4]. Satz 3 wird m [7] mit anderen Methoden fur holomorphe Blatterungen auf

komplexen Raumen mit kompakten Blattern der Codimension 1 bewiesen (Vgl
auch [5] und [6])
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