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Ein geometrisches Endlichkeitskriterium fir Untergruppen von
Aut (C,0) und holomorphe 1-codimensionale Bliatterungen

BurcHARD KAup

1. Bezeichnungen, Ergebnisse

Es sei Aut (C,0) die Gruppe (beziglich der Komposition) der Keime von
biholomorphen Abbildungen zwischen offenen Umgebungen von 0 in C, welche 0
als Fixpunkt haben. Ist @:U — V ein Repréasentant von ¢ € Aut (C,0) und
ze U, so seil

B v)(2): ={xeU;3peN mit ®*(z)eU fir 0<wv<p und P°(z)=x}.

(dabei sei D°(z): =z, D" (z2): = D(P*(2)) fur v=0, falls @*(z)e U.) B, v)(2)
heisst Bahn von @ in U durch z.

SATZ 1. Es sei G< Aut (C, 0) eine endlich erzeugbare Untergruppe. Dann
sind folgende Aussagen dquivalent :
(1) G ist endlich.
(2) Jedes ¢ € G besitzt als Reprisentanten eine biholomorphe Abbildung @ :U — V
mit folgender Eigenschaft: fiir jedes z € U ist B, (z) endlich.
(3) Alle Elemente von G haben endliche Ordnung.

(4) G ist abelsch und hat ein Erzeugendensystem von Elementen endlicher Ord-
nung.

Zum Beweis von Satz 1 bendtigen wir

SATZ 2. Es seien U, V offene Umgebungen von 0 im R", f:U— V sei ein
Homdéomorphismus mit f(0)=0. Die Menge

A: ={xeU;3IpeN mit p=1, f(x)eU fir 1<sv<p, ff(x)=x}
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sei hochstens abzdhlbar. Dann gibt es zu beliebigem >0 mit
B, :={xeR";||x||<e}c UNYV ein z€B,, fir welches B g ,(z) oder By p,(z)
unendlich ist.

Eine leichte Folgerung von Satz 1 ist

SATZ 3. Es sei M eine komplexe Mannigfaltigkeit, versehen mit einer reguldren
holomorphen  Blitterung. Alle Blitter seien kompakt und komplex-1-
codimensional. Dann sind alle Holonomiegruppen der Blitterung endlich.

In [7] wird Satz 3 mit anderen Methoden von H. Holmann fiur holomorphe
Blitterungen auf komplexen Raumen (vgl. [4]) bewiesen, bei denen alle Blatter
kompakt und (komplex) eins-codimensional sind. Weitere Erlauterungen zu Satz
3 befinden sich am Ende dieser Note.

Wie in [6] folgt aus Satz 3, dass (mit den Bezeichnungen von Satz 3) der
Blatterraum M/B auf kanonische Weise eine Riemannsche Fliche und die
kanonische Abbildung 7 : M — M/B holomorph und eigentlich ist.

2. Beweis der Sitze 1 und 2

In Satz 1 sind die Implikationen (1) => (2) und (4) = (1) trivial. Zum Nach-
weis von (3) = (4) geniigt es zu zeigen, dass der Homomorphismus H: G — C*,
H(¢): = ¢'(0), injektiv ist. Dazu sei ¢ € Kern H, d.h. H(¢) = 1. Wire ¢ nicht das
neutrale Element von H, dann hitte .¢ eine Darstellung

e(z)=z+a,z°+... mit p=2, a,#0.

Man rechnet leicht nach, dass ¢"(z)=2z+na,z?+...fir neN, folglich hitte ¢
nicht endliche Ordnung.

Die Implikation (2) = (3) ergibt sich unmittelbar aus Satz 2, wenn man
beriicksichtigt, dass die Fixpunktmenge einer holomorphen Funktion f:U— V
(U, V offen und zusammenhangend in C) diskret ist, falls f(z)# z.

Beweis von Satz 2. Zu vorgegebenem ¢ >0 wihle r< e mit B, = U. Fiirr peN,.
definiere

Ep:={xeB,;f"(x)eB, fir 1<vs<p}.
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E, ist eine offene Teilmenge von B, die O enthdlt. Es sei E, die Zusam-
menhangskomponente von E,, die 0 enthélt. Dann gilt B,>E, > E,>.... Es sei
F:= f(B,).

1. FALL E, eN mit E, < F. Dann ist f(E,,,)=E, fir p=p, Denn: fir
beliebiges p ist f(épﬂ)c Ep, also auch f(E,.,) < E,; andererseits gilt E, < f(EpH)
(also auch E, < f(E,,,), weil f ein Hombomorphismus ist) fur p=p,, denn zu
xeE,<E, cF gibtes ye B, mit x =f(y); da f*(x)e B, fir 1<v=<p,ist f*(y)e B,
fur 1sv<p+1, also ye EDH, folglich x ef(Ep+1). —Also ist E, =f(E,.,) fur
P = Do

Wihle x, € E, \A, so ist x,: =f "(x,)€ E, ,, wohldefiniert fur alle veN, und
(x,),<n ist eine unendliche f~'-Bahn in B,.

2. FALL N, E,& A. Dann wihle man x,€((,-; E,)\A. Fir x,€E, ist
f(x,)€ B,; folglich ist (f*(x,)),.n eine unendliche f-Bahn in B, < B..

DER DRITTE FALL, dass namlich E, ¢ F fur alle p und () ,~, Ep c A, kann
nicht auftreten, denn anderfalls wire

dB,NN,-1 E,# fiirjedes p>0 mit B,cF, *)

P

das widerspricht aber ,-, E,,CA und der Voraussetzung, dass A hochstens
abzahlbar ist.

Beweis von (*): Fir festes p und p mit B—pCF gilt: 0e E,NB,, EpCF,
E,¢ F, B, und E, sind zusammenhéngend; folglich ist dB, N E,# (J, insbeson-
dere 6BpﬂE_p7é @, und wegen E,>E,>..., folgt (*) aus dem Cantorschen
Durchschnittssatz.

BEISPIELE. Die Voraussetzung in Satz 2, dass A hochstens abzahlbar ist, ist
wesentlich, wie folgendes Beispiel zeigt: Definiere f: R*> = R? durch f(x, y): =
(x+7y,y). Dann ist A ={(x, 0); x € R} nicht abzahlbar. Eine beliebige Bahn von f
im R? hat die Gestalt {(x +ny, y); neN}, sie besteht also entweder aus einem
Punkt (falls y=0) oder sie ist unendlich und unbeschrinkt; Analoges gilt fir

Bahnen von f'. 11
Bezeichnet G < GL(2,C)< Aut (C? 0) die durch ( 0 1) erzeugte Unter-

gruppe, dann ist G unendlich; fiir beliebiges ¢ € G und beschranktes U < C? sind
andererseits alle Bahnen By ,(z) endlich. Satz 1 ldsst sich also nicht direkt
verallgemeinern fiir Untergruppen von Aut (C", 0) fur n=2.
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3. Regulire holomorphe Blitterungen; Beweis von Satz 3.

Es sei M eine komplexe Mannigfaltigkeit. Eine regulare holomorphe Blatterung
von M ist eine Menge B ={(U, ¢;); i€ I} von paarweise vertriglichen lokalen
reguliren holomorphen Blétterungen von M mit | J;.; U, = M; unter einer loka-
len regularen holomorphen Blitterung von M verstehen wir dabei ein Paar
(U, ¢), wobei U eine offene Teilmenge von M ist und ¢: U — BXV eine
biholomorphe Abbildung auf ein Produkt zweier Gebiete B<C™, V < C™. Zwei
solche Paare (U, ¢;) mit ¢, = (¢;, ¢5): U, — B; XV, i=1, 2, heissen vertraglich,
wenn es zu jedem x € U, N U, eine offene Umgebung U von x in U, N U, und
eine biholomorphe Abbildung ¢: W; — W, gibt zwischen offenen Umgebungen
W; von ¢;5(x) in V, mit ¢,,(U)c W, fiir i =1,2 und @o¢,, = ¢,, Uiber U.

Jede regulare holomorphe Blatterung ist eine differenzierbare Blitterung im
Sinne von [3]; damit sind die Blitter einer reguliren holomorphen Blitterung
wohldefiniert. Falls alle Blitter kompakt sind (was wir ab jetzt stets voraussetzen
wollen), kann man jedem Blatt eine Holonomiegruppe zuordnen; alle
Holonomiegruppen sind endlich erzeugbar. Ist (U, ¢) mit ¢:U—> BX YV ein
Element der Blatterung B und sind alle Blitter (komplex) 1-codimensional, so
ist V eindimensional; ist x€e U und L das Blatt durch x, so kann man die
Holonomiegruppe G von L auffassen als Untergruppe von Aut (C, ¢,(x)). Ware G
nicht endlich, gabe es wegen Satz 1 ein Element ge G derart, dass g in jeder
Umgebung von ¢,(x) in V eine unendliche g-Bahn hat.

Das kann aber nicht sein, denn alle Elemente einer g-Bahn liegen im gleichen
Blatt (dabei nehmen wir an, dass V eine Teilmenge von M ist und geniigend klein
gewdahlt wurde); weil alle Blitter kompakt sind, muss der Durchschnitt eines
beliebigen Blattes mit einer relativkompakten Umgebung V von ¢,(x) in V stets
endlich sein. '

4. Bemerkungen zu Satz 3

Es gibt einfache Beispiele fiir nicht-kompakte differenzierbare Mannigfaltigkei-
ten M mit (reell) 2-codimensionalen Blatterungen, bei denen alle Blatter kompakt
sind, wo jedoch unendliche Holonomiegruppen auftreten (vgl. [2]). Ist jedoch M
kompakt, sind alle Holonomiegruppen endlich (vgl. [2], [1], [10]).

Bei (=4)-codimensionalen differenzierbaren Blatterung mit kompakten
Blattern konnen, auch bei kompaktem M, unendliche Holonomiegruppen auftre-
ten (vgl. [9]).

Holomorphe Blitterungen wurden von H. Holmann in [4] definiert; regulare
holomorphe Blitterungen sind spezielle holomorphe Bldtterungen im Sinne von
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[4]. Satz 3 wird in [7] mit anderen Methoden fur holomorphe Blatterungen auf
komplexen Raumen mit kompakten Blittern der Codimension 1 bewiesen. (Vgl.
auch [5] und [6]).
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