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Cohomology theories and infinite CW-complexes

MARTIN HUBER AND WILLI MEIER
Dedicated to Prof. B. Eckmann on the occasion of his sixtieth birthday

Introduction

Let h* be a representable cohomology theory on [[CW, the pointed homotopy
category of CW-complexes. Suppose that X € [[CW is an infinite complex and
that {X_,} denotes the system of all finite subcomplexes, directed by inclusion.
Then we consider the canonical map

6:h"(X) — lim h"(X,,);

by [1, Theorem 1.8] 0 is surjective. We are interested in the kernel of 6. For h* of
finite type it was proved in [5] that ker OEELnl h"~1(X,); in other words there
exists a (generalized) Milnor exact sequence

0— lim' h"}(X,) —> h™(X) —%> lim h"(X,) —> 0.

The main goal of this paper is to show that this sequence remains valid for
important classes of cohomology theories which are not of finite type. Instead we
assume that there exists a homology theory F, of finite type (defined by a
CW-spectrum F) and an abelian group G fitting into a natural short exact
sequence

0— Ext(F,_,(X), G)— h"(X)— Hom (F(X), G)— 0.
Under these conditions (Theorem 1.1)

(1) ker =lim}, h"~'(X,);

(2) ker 6 =Pext (F,_,(X), G);

3) lim; h"(X,)=0 for all i=2.

The second statement extends Theorem 3 of [19], while (3)

239



240 MARTIN HUBER AND WILLI MEIER
says that the Bousfield-Kan homotopy spectral sequence

E2*=lim” h*(X,) == h?*9(X)

collapses, which in fact implies (1). Our proof however does not rely on this
spectral sequence. It is rather based on several algebraic propositions which
partially seem to be new and which may also be useful in other contexts. Among
other results the following are established (Corollary 1.5):

Let {A,} be a direct system of finitely generated abelian groups, and G any
abelian group. Then

(i) lim' Hom (A,, G)=Pext (lim A, G);
(i1) l<i_r11i Hom (A, G)=0for all i=2;
(i1i) l*iil_‘li Ext(A,, G) =0 for all i=1.

In part II we use Theorem 1.1 (2) to investigate the structure of ker
(Proposition 2.2). In particular we give sufficient conditions for the vanishing of
ker 8 (Proposition 2.1).

In the third part we assume, for any abelian group G, the existence of a
universal coefficient sequence

0— Ext (F,_(X), G)— EG"(X)— Hom (F,(X), G)— 0,

where EG* is defined by a spectrum E with coefficients in G [2]. We study the
question whether such a sequence splits. The case E = KO (the spectrum of real
K-theory) shows that this is not always true. But we can give sufficient conditions
for such a universal coefficient sequence to split (Theorem 3.7). In particular we
show that in complex K-theory the sequence

0— Ext (K,_,(X), G)— KG"(X) — Hom (K, (X), G)— 0

is split exact under rather general conditions; e.g., if the torsion subgroup of G is
divisible or bounded (Corollary 3.8). To prove this corollary we use essentially that
G — KG*(X) is a functor (Proposition 3.3).

We would like to thank Prof. B. Eckmann and G. Mislin for their stimulating
interest and helpful discussions. *

1. The kernel of 0 and inverse systems {Hom (A,, G)}

I.1 We consider a representable cohomology theory h* on [[CW which
satisfies the following condition:
(C) There is a homology theory F;, of finite type (defined by a CW-spectrum F)
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and an abelian group G fitting into natural short exact sequences
0 — Ext (Fy_,(X), G) = h*(X) — Hom (Fy(X), G)— 0.

THEOREM 1.1. Let h* be a representable cohomology theory on [[CW
satisfying (C). If, for X e[| CW, {X,} denotes any directed system of finite subcom-
plexes of X with \J, X, = X, then, for every neZ,

(1) there is a short exact sequence

00— l(i_rp1 h" (X)) — h"(X)—">lim h"(X,) — 0;

(2) ker 6 =Pext (F,_,(X), G);
(3) lim' h"(X,)=0 for all i=2.

For abelian groups A and G, Pext (A, G) denotes the subgroup of Ext (A, G)
whose elements correspond to the classes of pure extensions (see e.g. [9]). Recall
that an extension 0 > G —— E — A — 0 is said to be pure provided w(G) is a
pure subgroup of E, i.e., for every neN, nE N u(G)=nu(G).

The assumptions of Theorem 1.1 are satisfied for every cohomology theory of
finite type [19]. Furthermore they hold for the theories HG*, KG*, KOG*
(ordinary cohomology, complex and real K-theory with coefficients in G, respec-
tively), as was shown by Anderson [3] and Yosimura [19]; these theories are not
of finite type if the group G is not. The corresponding homologies are Hy, Ky and
KSpy (ordinary homology, complex K-homology and symplectic K-homology,
respectively). Moreover, if E is a CW-spectrum with 74(E) of finite type, and G
is either a direct sum or a direct product of finitely generated abelian groups, then
condition (C) holds for h*=EG®* (which is defined by the spectrum E ASG,
where SG denotes the Moore spectrum of type G [2]). This follows immediately
from [19] (Theorem 2 and the proof of Lemma 7).

1.2 For the first step in the proof of Theorem 1.1 we consider the diagram
0— Ext(F,_(X),G) — h"(X) —— Hom(F(X),G)— 0
(D) ltp lo lw

0 — lim Ext (F,_(X.), G) — lim h"(X,) — lim Hom (F,(X,), G),

which is commutative and has exact rows. Since Fy is given by a spectrum, we
have lim, F,(X,)= F,(X) [17, Corollary 8.35], hence ¢ is an isomorphism. So the
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ker-coker-sequence of (D) yields isomorphims

ker p=ker 8 and coker ¢ =coker 6.
We therefore investigate the canonical map

¢ :Ext (lim A,, G) — lim Ext (A,, G),

where {A,} is an arbitrary direct system of abelian groups.

PROPOSITION 1.2. Let {A,} be a direct system of abelian groups over a
directed index set, and let G be any abelian group. Then there exist a 4-term exact
sequence

0—> lim' Hom (A,, G) —> Ext (lim A,, G) —*> lim Ext (A,, G) —>

l(i_rlr2 Hom (A, G)— 0
and isomorphisms

lim’ Ext (A,, G)~—>lim"*?> Hom (A,, G) for i=1.

This proposition is contained in [18]. It can be proved by a spectral sequence
argument of Roos. We give here an elementary proof which is based on the
following special case of a theorem of Nobeling [15].

LEMMA 1.3. Let D be an injective abelian group, and let {A, | €I} be a
direct system over a directed set 1. Then

l‘ir_ni Hom (A, D)=0 forall i=1.

Proof of Proposition 1.2. Suppose that 0—» G— D — S— 0 is an injective
presentation of G. Then there exist two commutative diagrams (E1) and (E2) with
exact rows:

0 — Hom (A, G) ———— Hom (A, D) —s K > ()

(E1) 1;. lg l
0 — lim Hom (A,, G) — lim Hom (A,, D)% lim K, —
lim' Hom (A,. G) — - --

0 > K >» Hom (A, S) ——— Ext (A, G)———— 0

I y I

0 —> lim K, — lim Hom (A_, S) = lim Ext (A, G) — lim' K, —> - - -
«— -« «— -
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Thereby A =li_rg A,, K denotes the kernel of Hom (A, S) — Ext (A, G) and K,
the kernel of Hom (A,, S) — Ext (A,, G) respectively. Since the bottom sequence
of (E1) is exact, by Lemma 1.3 there exist isomorphisms

(1) ljgl‘ K, T——'l(igli“ Hom (A,, G) for i=1
and coker & Elix_n‘ Hom (A, G). But imk=iméd, hence coker«k=
l‘ir_n1 Hom (A,, G). From this isomorphism and from the ker-coker-sequence of
the diagram (E2) it follows that

ker ¢ = l4iln1 Hom (A,, G).

Now by Lemma 1.3 lim' Hom (A,, S)=0 for all i=1 since S is injective.
Hence by exactness of the bottom sequence of (E2)

(ii) lim' Ext (A,, G)=lim"' K, for i>1

and coker w=1lim' K,. The latter isomorphism together with (i) implies that
coker w = liglz Hom (A,, G). Thus, since im ¢ =im o, there exists an isomorphism

coker ¢ = l*i_r_n2 Hom (A_, G).
Finally, it follows from (i) and (ii) that
l(iLni Ext (A,, G)=lim""> Hom (A,, G) for i=1.

With regard to our main theorem 1.1 the above proposition gives us the
following partial result:

(1) ker #=lim' Hom (F,_,(X,), G);
(2) coker 9= lir_llz Hom (F,_,(X,), G).

1.3 Recall that F; is assumed of finite type. As is well-known this implies that
the groups Fy(X,) are finitely generated. To take advantage of this fact we need
another proposition.

PROPOSITION 1.4. Let {A,} be a direct system of abelian groups over a
directed index set, and let G be any abelian group. Then there exist a 4-term exact
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sequence

0— lenl Hom (A,, G) — Pext (lim A,, G) — lim Pext (A,, G) —>
lgr_n2 Hom (A,, G)— 0
and isomorphisms
li_rpi Pext (A, G)—;—ali_rg‘” Hom (A,, G) for i=1.
This will be proved in 1.4. We shall make use of the following consequence.
COROLLARY 1.5. Let {A, |a €I} be a direct system of finitely generated

abelian groups over a directed set I, and let G be any abelian group. Then

(i) lim' Hom (A,, G) = Pext (lim A,, G);
(ii) lim' Hom (A,, G)=0 for all i=2;
(iii) léi{_ni Ext(A,, G)=0 forall i=1.

Proof. Since every finitely generated abelian group is pure-projective, i.e.
projective relative to pure exact sequences [9, Theorem 30.2], we have
Pext (A,, G)=0 for every a€l. Now the corollary follows immediately from
Propositions 1.2 and 1.4.

Remark. The statements (i) and (ii) of Corollary 1.5 are implicit in [12, p. 37].
Proof of Theorem 1.1. The exact sequence of inverse systems
0 — {Ext (Fx-1(X,), G)} = {h*(X.)} = {Hom (Fy(X,), G)} — 0

induces a long exact sequence

0—> lim Ext (Fy_;(X,), G) = lim h*(X,) — lim Hom(F4(X,), G) —

lim' Ext (Fy_,(X,), G) - lim* h*(X,) - lim' Hom (Fy(X,), G) > - -

Now, since the systems {Fy(X,)} consist of finitely generated abelian groups, by
Corollary 1.5 we have Ilim;Hom (F(X,),G)=0 for all i=2,
lim, Ext (F,_4(X,), G)=0 for all i=1, as well as

lill'll Hom (Fn—l(Xa)’ G) = PeXt (Fn—l(X)’ G)
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Hence, using the result of 1.2, we obtain

(1) ker 6 Eli{_m1 Hom (F,_,(X,), G)= li@l h"1(X,);

(2) ker § =Pext (F,_,(X), G);
3) l*i_r_pi h"(X,)=0 for all i=2.

This completes the proof of Theorem 1.1.

Remark. Furthermore, we see that

coker 0= 1<i£12 Hom (F,_,(X,), G)=0;

thus our method provides us in addition with an alternative proof, in this case, for
0 being surjective.

1.4 An abelian group Q is called pure-injective or algebraically compact if, for
every pure exact sequence 0 > A'——> A — A”— 0 and for every a:A'— Q,
there exists a B: A — Q making

commute. For the structure of algebraically compact groups see [9, Ch. VII].
In the proof of Proposition 1.4 we shall make use of the following generaliza-
tion of Lemma 1.3.

LEMMA 1.6. Let Q be algebraically compact. Then
l‘i_r_n" Hom (A_, Q)=0

for every direct system {A, | @ € I} of abelian groups over a directed set I, and for all
i=1.

Proof. The groups @z, Ag together with the natural injections form a direct
system over I. Define

(i @ Ag— A,

B=a
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by the maps A; — A, of the given system. Thus one obtains a short exact
sequence

0—{K,}— {a@a AB} —{A,}—0

of direct systems where K, is the kernel of {,. For every a €I the sequence

0-K,— D Ag—>A,—0

B=a

is split exact. Thus by [9, Theorem 29.4] the induced sequence

0—-limK,—>® A, —»limA,—0
- ael —
is pure exact. This sequence gives rise to a commutative diagram

0—> Hom (lim A,, Q)—> [[Hom(A,,Q) —> Hom (lim K,, Q)

l ael l l
0—> lim Hom (A,, Q)— lim [] Hom (A,, Q) —> lim Hom (K,, Q) —>

a sa

lim' Hom(A,, Q) — - - -
(—

with exact rows. Since Q is algebraically compact, x and thus ¢ are epimorphic.
On the other hand by [12, Théoréme 1.8]

lim' [] Hom (A, Q)=0 forall i=1.

e pea
Hence

l‘i_r_n1 Hom (A, Q)=0
and

[ilni Hom (K, Q)?:lil_t_l‘” Hom (A, Q) for all i=1.

Since we have proved this for an arbitrary system {A_.}, the lemma follows by
induction.
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Remark. Lemma 1.6 is sharp in the following sense: If G is an abelian group
such that, for every direct system {A,} and for all i=1, l(iLn" Hom (A,, G)=0,
then G is algebraically compact. This follows easily from Proposition 1.4.

Proof of Proposition 1.4. By [9, Corollary 38.4] there exists a pure exact
sequence 0 — G — Q - H — 0 with Q algebraically compact. Note that in this
situation H is algebraically compact as well. By [9, Theorem 53.7] this sequence
induces commutative diagrams

0 ——> Hom (A, G)— Hom (A, Q) > K
(P1) lg l; l
0— l(i_r_n Hom (A,, G)— 1(121 Hom (A,, Q) — 1£n K,—

lim' Hom (A,, G) — - - -
and A

0 -> > Hom (A, H) ——— Pext (A, G) —— 0

o |} |

0— 1}31 K,— lim Hom (A,H)—> 1i£1 Pext (Aa,G)—-—>li_rg' K,—- -

with exact rows. Thereby A =li_r_r)1 A,, K denotes the kernel of Hom (A, H) —
Pext (A, G), and K, the kernel of Hom (A,, H) — Pext (A,, G), respectively. We
may proceed now just in the same way as in the proof of Proposition 1.2, using
Lemma 1.6 instead of Lemma 1.3.

II. The structure of ker 6.

II.1. The functors h" are assumed to be representable; i.e., for every neZ
there exists a space B, such that h"(X)=[X, B, ]. The elements of the kernel of
0:h"(X)— lim, h"(X,) may therefore be interpreted as the classes of maps from
X into B, whose restriction to any finite subcomplex X, is nullhomotopic. If such
a map on X is not nullhomotopic it is called a phantom map.

As an application of Theorem 1.1 we can give sufficient conditions for the
non-existence of phantom maps from X into B,.

PROPOSITION 2.1. Let h* be a cohomology satisfying the assumptions of
Theorem 1.1 for some group G. If G is algebraically compact then

R*(X)=lim h*(X,).
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Proof. The natural map 6:h*(X)—>lim, h*(X,) is epimorphic and, by
Theorem 1.1, ker § =Pext (F,_,(X),G). If G .is algebraically compact then
Pext (F,_,(X), G)=0. Hence 6 is an isomorphism.

In particular there exist no phantom maps if G is compact or a vector space
over an arbitrary field. Thus the above Proposition is a generalization of a
statement in [8, Ch VIII]. By the way, for h" = EG" and G =Q or Z the group
EG™(X) coincides with [X, (B,)] or [X, (B,)"] respectively, where (B, ), is the
rationalization of the classifying space B, of E™ and (B,)" is the profinite
completion of B, in the sense of [16]. Furthermore Proposition 2.1 holds if G. is
a direct product of finite groups. It fails however for direct sums of finite
groups (see example below).

For a representable cohomology theory h* of finite type the following holds
[18]: The kernel of 6:h"(X)— lim_h"(X,) is the maximal divisible subgroup of
h"(X). This is not true in general for theories h™* which satisfy the assumptions of
Theorem 1.1.

Example. Take X = M(Z(p™), 2), the Moore space of type Z(p™) in dimension
2, G=®%_,Z/p*Z and h*=H*( ,G). Then
ker (: H*(X, G) — lim H’(X,, G))=Pext (H, X, G)=Pext (Z(p~), G)
"="Li_1_T_11 Hom (Z/p"Z, G)#0

(cf. [7, Ch. VI]), and ker 8 is reduced (by [9, Lemma 55.3}), i.e. it doesn’t contain
divisible elements.

However we can extend the above result of [18] as follows.

PROPOSITION 2.2. Let h* be a cohomology theory satisfying the assumptions
of Theorem 1.1 for some group G. If Pext(Q/Z,G)=0, then the kernel of
6:h"(X)— lim, h"(X,) is divisible for every X € [[CW and every n € Z. Suppose in
addition that G is reduced. Then ker 0 is the maximal divisible subgroup of h"(X).

Remark. The assumption Pext(Q/Z, G)=0 is not very restrictive. It is
satisfied e.g. if the p-torsion subgroup of G is finite for every prime p or if the
torsion subgroup tG is algebraically compact. In particular Pext (Q/Z, G) =0 if tG
is divisible or bounded.

I1.2 For the proof of Proposition 2.2 we need two lemmata.

LEMMA 2.3. Let A, G be arbitrary abelian groups. Then Pext(A, G) is
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divisible if and only if Pext (tA, G)=0 (where tA denotes the torsion subgroup of
A).

Proof. Since 0 — tA — A — A/tA — 0 is pure exact, it gives rise to an exact
sequence

Pext (A/tA, G) — Pext (A, G) — Pext (tA, G) — 0.

Now Pext (A/tA, G) = Ext (A/tA, G) is divisible. Hence Pext (A, G) is divisible if
and only if Pext(tA, G) is divisible. But by [9, Lemma 55.3] Pext (T, G) is
reduced for every torsion group T. Thus Pext (A, G) is divisible exactly if
Pext (tA, G)=0.

LEMMA 2.4. A group G has the property that Pext (A, G) is divisible for every
A if and only if Pext (Q/Z, G)=0.

Proof. Let first G be a group with the property that Pext (A, G) is divisible for
every A. Then in particular Pext (Q/Z, G) is divisible. Hence by Lemma 2.3
Pext (Q/Z, G)=0.

Now assume that G satisfies Pext (Q/Z, G)=0. By Lemma 2.3 it is sufficient
to prove that this implies Pext (T, G) = 0 for every torsion group T. Let first p be a
prime and P a p-group. Then there exists a pure subgroup B of P with the
properties that B is a direct sum of cyclic p-groups and P/B is a divisible p-group,
i.e. a direct sum of groups Z(p~) [9, Theorem 32.3]. The inclusion B < P gives rise
to an exact sequence

Pext (P/B, G) — Pext (P, G) — Pext (B, G)=0.
Since Pext (Q/Z, G) =0, one has Pext (P/B, G) =0 and thus Pext (P, G) =0. Sup-
pose now that T is an arbitrary torsion group. Then T=@, T, where T, is the

p-primary component of T. Hence

Pext (T, G) =[] Pext (T,, G)=0.
p

Proof of Proposition 2.2. The first part is an immediate consequence of Lemma
2.4 and Theorem 1.1. Suppose in addition that G is reduced. Then

Hom (Q, Hom (F.(X,), G))=Hom (Q® F.(X,), G)=0,

hence Hom (F,(X,), G) is reduced. Since F,_,(X,) is finitely generated,
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Ext (F,_,(X,), G) is isomorphic to Ext(#(F,_,X,), G) and thus reduced [9,
Lemma 55.3]. As an extension of reduced groups h"(X,) is reduced again, and
therefore lim, h"(X,) is reduced, too. But then, by the first part, ker 6 is the
maximal divisible subgroup of h"(X).

III. On the splitting of universal coefficient sequences

III.1 We now assume that the cohomology theory E* and the homology
theory F; are related, for any abelian group G, by a universal coefficient sequence

0— Ext (F,_(X), G)— EG"(X)— Hom (F(X), G)— 0, (3.1)

as in the case of H*, K* and KO*. The natural question arises whether such a
sequence is split exact as in the case of ordinary cohomology. Mislin [14] as well
as Hilton and Deleanu [11] have discussed the corresponding question for
Kiinneth theorems and universal coefficient sequences of the form

0— h"(X)® G - h"(X, G)— Tor (h"*(X),G)— 0 (3.2)

where h*(X, G) denotes the cohomology h* with coefficients in G in the
definition given by Hilton [10]. For infinite complexes X and h = H Hilton’s
definition doesn’t agree in general with the ordinary cohomology H*(X, G) [10]
and therefore doesn’t coincide with HG*(X).

We proceed as follows. First we discuss pure exactness of (3.1) as it is done in
[11] for the sequence (3.2). In III.2 we give then conditions for the groups A, B
and G in order that every pure exact sequence of the form

0—>Ext(A,G)>H—->Hom(B,G)—0
splits.

PROPOSITION 3.1. [11] Let 0— R — S — T— 0 be a short exact sequence
of additive functors: C— Ab, where C is either the category Ab of all abelian
groups or the category Ab, of 2-torsion-free abelian groups. If T is left exact, the

sequence 0 — R(A)— S(A)— T(A)— 0 is pure exact for every A € C.

To apply the criterion to the sequence (3.1) we have to know whether
putting coefficients into E* (in the sense of [2]) is a functorial process.
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PROPOSITION 3.2. Let Xe[[CW and E an arbitrary spectrum. Then
G — EG"(X) is a functor Ab, — Ab.

Proof. Obviously it is enough to show that G — SG is a functor from Ab, into
the homotopy category of spectra. Since Hy(SG) = G, this is done by proving that
the map

@ :[SG,, SG,]— Hom (Hy(SG,), Hy(SG,))

is an isomorphism if G, is 2-torsion-free.

The map @ corresponds to
@':[M(Gy, 3), M(G,, 3)] = Hom (H5(M(G,, 3), H;(M(G,, 3)))

where M(G, 3) is the Moore space of type G in dimension 3. Now the universal
coefficient theorem for homotopy groups gives an exact sequence

0 — Ext (G, m(M(G,, 3)) = m3(G;, M(G,, 3)) —>
Hom (G,, m5(M(G,, 3))) —>0.

To determine the kernel of @’ we compute 7,(M(G,, 3)):
74(M(G, 3)) = 7i(M(G,, 3)) = (7G3),(S°)

(the first stable homotopy group of S° with coefficients in G,). From the universal
coefficient theorem for stable homotopy [2] we have

(7G3)(S)=71(S°)® G, =Z2Z @ G,.
This implies ker @' =Ext (G,, Z/2Z ® G,) =0, since G, € Ab,.

Proposition 3.2 is analogous to a result of [10]. However for “good theories”
E*, i.e. cohomology theories which don’t detect the Hopf map n:S> — S?, we are
not able to prove that G+~ EG"(X) is a functor on Ab, corresponding to [11,
Appendix). But we can show this in an important special case.

PROPOSITION 3.3. Let Xe[[CW. Then G+~ KG"(X) is a functor
Ab — Ab, where K* is complex K-theory.
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Proof. Let G,, G,€ Ab. We claim that the map

K/\ - :[SGl, SGz]'—) [K/\ SGl, K/\ SGz],

defined in the obvious way, factors through ®:

[SG,, SG,] —25 Hom (G,, Gy)

’
.
.
T r’
lK/\ ot .
4
"
(A

[KASG,, KASG,]

From the existence of 7 it follows easily that G+ KG"(X) is a functor.
We prove the claim by showing that

ker @ cker (KA —).

Let f:SG,— SG, be a map whose homotopy class is in the kernel of @. Then
there is a factorization of f (up to homotopy)

SG,—L> SG,

\ /

Y. SR

where 0> R—->F—> G,—0 is a free presentation of G;. From the induced
diagram

7x(K ASG,) %> (K ASG),)

\ /

m(KAY SR)

we see that f, is trivial. By the Kiinneth theorem for complex K-theory we have
the diagram

K, (X)®K, (X SR)—> K., .(X AL SR)

| l

Km (X) ® Kn (SG2) -_—> Km+n(X A SGZ)
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Hence fg:(KG)x(X)—= (KG,)x(X) is trivial for any X e [[CW (or spectrum X).
If V is any finite spectrum and V* its S-dual, KG™"(V)=KG,(V*) and
(KAf)g: KG¥(V)—> KG*(V) is the zero map. In particular (KAf)g:
[V, KASG,]—[V,, KASG,] is trivial for every finite subspectrum V_ of
K A SG;. Therefore, to prove that KA f is nullhomotopic we only need to show
that there exist no phantom maps (in the category of spectra) from K A SG; into
K A SG,. For this purpose we extend our result (Theorem 1.1)

ker 0 %lj_rpl KG"'(X,)=Pext (K,_(X), G)

to arbitrary spectra X. This is possible since the universal coefficient sequence in
K-theory is valid for arbitrary spectra. Moreover the relation

E4(X)=lim Ex(X.)

subsists for spectra E and X, where {X_,} runs over all finite subspectra [17,
p. 331, Remark 1]. By definition [KASG,, KASG,]=(KG,)’(KASG),).
Therefore, the phantom maps correspond to Pext (K;(KASG,),G,). But
K,(KASG,)=(KG),(K)=0, since K;(K)=0 and Ky(K) is torsion-free [17,
p. 423]. Hence K Af is nullhomotopic.

COROLLARY 34
(a) Let E* be a cohomology theory with a universal coefficient sequence
0— Ext(F,_,(X), G)— EG"(X)— Hom (F,(X), G) — 0.

Then this sequence is pure exact for every 2-torsion-free group G.

(b) The sequence
L

0— Ext(K,_(X),G)— KG"(X)— Hom (K,(X),G)—0

is pure exact for every group G.

For E = KO the condition on G is necessary.

Example. The sequence

0— Ext (KO,(S5°),Z/2Z) — KO~ *(S° Z/2Z) — Hom (KOx(S°), Z/2Z) — 0
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doesn’t split because KO™%(S°, Z/2Z) = Z/4Z [4]. Moreover it can’t be pure exact
since Hom (KO,(S°), Z/2Z) is pure-projective by [9, Theorem 30.2].

III.2 It remains to give conditions for the groups A, B and G in order that
every pure extension of Hom (B, G) by Ext (A, G) splits or, equivalently, in order
that Pext (Hom (B, G), Ext (A, G))=0.

PROPOSITION 35. Let A, B and G be abelian groups. Then
Pext (Hom (B, G), Ext (A, G))=0, if (i) or (ii) is satisfied:

(i) Pext (tA, G)=0;
(ii) t(Hom (B, G)) is a direct sum of cyclic groups.

Remark. Condition (i) holds if tA is a direct sum of cyclic groups or, by
Lemmata 2.3 and 2.4, if Pext (Q/Z, G)=0. Condition (ii) is satisfied e.g. if B is a
bounded torsion group.

For the proof of Proposition 3.5 we need the following lemma:

LEMMA 3.6. For arbitrary abelian groups A, C and G
Pext (C, Ext (A, G))=Pext (tC, Ext (tA, G)).

Proof. From
Ext (C, Ext (A, G))=Ext (Tor (C, A), G)

we deduce that
Pext (C, Ext (A, G))=Pext (Tor (C, A), G).

Now the lemma follows from the fact that Tor (C, A)=Tor (tC, tA).

Proof of Proposition 3.5. By Lemma 3.6 Pext (Hom (B, G), Ext (A, G))=0, if
Ext (tA, G) is algebraically compact or if t(Hom (B, G)) is a direct sum of cyclic
groups. Thus it remains to prove that Ext (tA, G) is algebraically compact suppose
Pext (tA, G) = 0. But this follows from [9, Proposition 54.2], since Ext (tA, G) is
reduced and »

Ext (Q, Ext (tA, G))=Ext (Tor (Q, tA), G) =0.

III.3 We are now ready to state our main result about the splitting of
universal coefficient sequences.
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THEOREM 3.7. Let E* be a cohomology theory with a universal coefficient
sequence

0— Ext(F,_,(X), G)— EG"(X)— Hom (F(X), G)— 0.

Suppose that G is 2-torsion-free or that G — EG"(X) is a functor Ab — Ab. Then
each of the following conditions implies the splitting of this sequence:

(a) Pext (Q/Z, G)=0 (cf. II1.1);

(b) t(F,_1X) is a direct sum of cyclic groups;

(¢) F(X) is a bounded torsion group;

(d) E* is of finite type and there exist no phantom maps from X into ihe
representing space of EG".

Proof. Suppose that G is 2-torsion-free or that G — EG"(X) is a functor on
Ab. Then by Corollary 3.4 the sequence

0— Ext(F,_,(X), G)— EG"(X)— Hom (F(X), G)— 0
is pure exact. Hence it is sufficient to prove that
Pext (Hom (F.(X), G), Ext (F,_,(X), G)) =0,

if any of the conditions (a)—(d) is satisfied.
If (a), (b) or (c) holds, then

Pext (Hom (F,(X), G), Ext(F,_,(X), G))=0
by Proposition 3.5 and the remark following it. Now suppose that condition (d) is

satisfied. Then by [6, Lemma 2.6] F; is of finite type. Thus it follows from
Theorem 1.1 that

Pext (F,_,(X), G)=ker (0: EG"(X)— li_rp EG" (X)),

hence Pext (Fn_l‘(X ), G)=0. Then by exactness of
Pext (F,_, X, G) — Pext (t(F,_;X),G)— 0
one has Pext (¢(F,_,X), G)=0 and thus, by Proposition 3.5,

Pext (Hom (F,(X), G), Ext (F,_,(X), G))=0.
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As a consequence the universal coefficient sequence for complex K-theory
splits under rather general conditions.

COROLLARY 3.8. Suppose that G has divisible or bounded torsion. Then the
sequence

0— Ext(K,_,(X), G)—» KG"(X)— Hom (K, (X), G)— 0

(cf. [19]) is split exact for every X e [[CW.

Proof. Suppose that tG is divisible or bounded. Then Pext (Q/Z, G) =0 by the
remark following Proposition 2.2. The assertion follows now from Theorem 3.7
since G — KG"(X) is a functor on Ab (Proposition 3.3).
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