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Asymptotic FitzGerald inequalities

Daoup BsHouTy AND WALTER HENGARTNER®

Dedicated to Professor Albert Pfluger on his seventieth birthday

Abstract. In this article we use the asymptotic behavior of the positive semi-definite FitzGerald matrix
to get by elementary means Hayman’s Regularity Theorem and a sharpening of an approximation
theorem of Lebedev. Moreover we show that there is an absolute constant n, such that for any
f=z+a,z2+--- €8 with |a,|]<1.78 we have |a,|<n for all n>n,.

1. Introduction

Let S denote the class of all normalized univalent functions f(z)=
z+Y5%_, a,z* defined in the unit disk U ={z; |z| <1}. The Bieberbach Conjecture
states that for functions in S one has b, =|a,|<n for all neN. It is known to be
true for n=<6. The best known estimate for all coefficients is b, <(1.069)n
(Horowitz [1976]). On the other hand Hayman’s Regularity Theorem (Hayman
[1955]) states that lim,,_,., b,/n <1 for each fe S, and that equality holds only for
the Koebe-functions k(z) = z/(1—nz)?, |n|=1, for which b, = n. This implies that
b, <n for n= ny(f).

The first author (Bshouty [1976a, 1976b]) has shown, that (a) if b,<1.61, then
b,<n for all neN, (b) if b,<1.75, then there is an absolute constant n,
(independent of f) such that a, <n for all n> n,.

The proofs of these two results were based on the FitzGerald inequalities and
uses lengthy calculations. In this paper we investigate the asymptotic behavior of
the FitzGerald inequalities to get by elementary means Hayman’s Regularity
Theorem, an improvement of the above result (b) and a sharpening of an
approximation theorem in S.

This research was done during our stay at the Forschungsinstitut fir
Mathematik der E.T.H. Ziirich. We wish to express our thanks to the members of
the institute as well as to the secretaries.

* This research was supported in part by the National Research Council of Canada A-7339 and the
Forschungsinstitut fiir Mathematik der E.T.H., Ziirich.
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Asymptotic FitzGerald inequalities 229

2. Asymptotic behavior of the elements of the FitzGerald matrix

The following theorem, due to FitzGerald [1972], is given in another formula-
tion (Pommerenke [1975]):

THEOREM A (FitzGerald Inequalities) Let f(z)=z+Y5%-, ac(f)z* be in S
and define

n+m—1

)= aun ()= (" 2, Bim WD) = B2OB) M
where b,(f)=1a;(f)| ; B;(m, n)= B;j(n, m), jeN, and for m <n:

B}_(m’n)z{(r)n—li—nl for lj=n|<m

if otherwise.

Then the FitzGerald matrix

Q(f) = (qm,n(f))m,neN (2)
is positive semi-definite.

The elements q,,, are complicated in themselves and it is not easy to handle
them, but asymptotically they behave nicely. The following lemma approximates
qmn for large n.

LEMMA 1. Let {f.}, k€N, be a sequence in S that converges locally uniformly
to a function fe S. Denote by

8, =sup  b,(f)/n and &=1lim sup &, (3)

n—»o0

Then for any B with

lim inf b, (f,)/n < B <lim sup b, (f,)/n (4)

n—o n—oo

there is a subsequence {f, }; k€N, k — «, such that for fixed m

0 G ()12 = [m? = b)) - B2 Q
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and

lim g, (f. )/ne<(7/6)8>—p* (6)

k—»o0

Proof. Let us first note that for m<n

n+m-—1 n+m-1

Y. Bi(m,n)= Y Bi(m,n)=m? (7)
j=1 j=n—m+1
and
2n—1
Y 2+ Bi(n, n)=n¥(Tn2=1)/6<Tn*/6 (8)
i=1

In addition, we have for k=+1,+2,...,+m
lba—b% il =0(n*?) for n— o %)

that follows directly from the FitzGerald inequalities (see e.g. Pommerenke
[1975] and Horowitz [1972]). Note that we could replace in (9) 0(n*?) by 0(n)
using a result of Milin that |b, —b,_,|<4.18 for feS.

The relations (1) and (7) and the definition of the B;(m, n) give for fixed
m<n:

)= (= B2 - A= Y, Bi(m, mIBF ()= b))
=Y aOmmIbiC)- SN0 a5 e

Now choose a subsequence {f, } of {f,} such that lim,_... b, (f,.)/m =B and (5) is
established.

For (6) we use this argument. Given y > §, then there is an ny(y) such that
b,(fi)<vy - n for all keN and for all n> ny(y). Choose {f..} as before; thus for
n. > no(y) we have by (1), (8) and using the fact that B;(n, n,)=j for 1<j=<

no(y) <my:

no(y)  2n—1

G )06 = (T + T )8 mIBEC)

j=1  i=noly)+1

"o(‘Y) 2"!(—1
<(1.069) - Y, Bi(mo m) - 2+ Y ¥ -+ Bilmo m)
j=1 no(y)+1

<const (y)+7y%n}/6.
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Divide both sides by ni and pass to the limit. The result (6) follows, if we let vy
tend to 8 by choosing simultaneously an appropriate subsequence of {f, }.
Let now {g, € S}, n e N, satisfy

sup {b.(f); f € S} = b.(g.). (10)

The asymptotic Bieberbach limit « is given by

a =lim sup b,(g,)/n. (11)

n—»oo

Evidently a = 1.

COROLLARY. There exists a subsequence {g, }, k€ N of {g.}, n€eN, such
that

(a) g, converges locally uniformly to a function ge S

(b) lim g, (g,)/ni=(m*-b7(g))- o

k—o0

(c) lim sup q,,,, (g, )/ni<(a?/6)—a*.
k—>o0

Proof. Take first a subsequence {g,}, keN of {g,}, neN, such that
lim, .. b,, (g, )/n. = @ and then a subsequence of it such that (a) holds.

3. Hayman’s regularity theorem:

Before we study the asymptotic FitzGerald inequalities in the general form, we
want to show the procedure at the simple case f, =f€ S for all n e N, by proving
in a elementary way Hayman’s Regularity Theorem. The idea of the method is
significant for all what follows. Another lengthier proof was done by Horowitz
[1972].

We consider for j; <j,<...<j, the principal minor

Q(jla Jos= -~z ]p)(f) = (qj.j,(f))1<s<p,1<t<p (12)

of the positive semi-definite matrix Q(f) in (2) corresponding to the FitzGerald
inequalities for a given function fe S. The matrix (12) is again positive semi-
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definite. Denote by
a=limsup b,(f)/n and 7=lim inf b,(f)/n.

n—»00 n—»o0

We apply Lemma 1 with f,=f, §=0 and B, €[, o] to the last row and last
column of Q(j,, ..., j,)(f), after dividing both of them by jﬁ. This means that we
let jy, ..., j,—1 to be fixed and pick then according to Lemma 1 a subsequence {n,}
from j, such that limy_,., b, (f)/n =B, €[, o]. Since the elementwise limit of a
finite positive semi-definite matrix stays positive semi-definite and since the
addition of a positive term to a diagonal element does not effect the positive
semi-definiteness, we conclude that the matrix Q(js, jz, . . ., j,—1, Bp)(f) with the
elements:

rqj,j.(f) for 1ss<p-1,1st<p-1
) B2(jZ—b?.(f)) forlss<p-1,t=p

B2(jZ—b}(f)) fors=p,1<t<p-1
L702/6~B; fors-_—p’t—_-P

is positive semi-definite. Note that B, <1.07. Therefore there is no confusion
about j, and B, in the above notation. This same procedure we apply to the
(p—1)™ column and (p—1)™ row in letting jy, j,, ..., j,—, fixed. After dividing
both of them by jZ_, we choose again a subsequence {n,} from j,_,, such that
limy_,, b, (f)/n, =PB,-1€[r,0]. Then the matrix Q(jy, ja, .-, jp-2, Bp—15 Bp)(f)
with the elements:

’qi,i‘(f) for 1ss<p-2,1stsp-2
ﬂ?(]?"’b;z,(f)) for 1$ssp—2?p_1<tgp
< Bf(]:z—b,z'(f)) for p—lsssp lstsp-2 (13)

70%/6— B} for t=s,p—1=<t<p

ka,(l—-Bﬁ_l) for s=p—-1,t=p and s=p,t=p—1

is again positive semi-definite.
We continue by the same way for the (p —2)™ column and (p —2)™ row and so
on. We finally get that the p X p matrix Q(B;, ..., B,) with the elements

BX(1—-B?) for s>t
Bi(1-B2) for t>s (14)
70%/6—B¢ for t=s1<t<p '

is again positive semi-definite.
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Now we want to show that ¢ =7<1 and that equality holds only for the
Koebe-functions.

First we put in (14) B, =B,=...=B,=0. The matrix Q(o,0,...,0) we
denote (for later purposes) by M,(o) and their elements are

70%/6—0* for s=t

. 1
oc*(1-0%) for s#t (15)

mg (o) = {

The determinant of M, (o) is o*?(6p—60°p+1)/6° and has to be non-negative for
all peN, that implies o<1.

Next put j =2, B,=B3=...=B,,1=0. The determinant of
Q12,0,0,...,0)(f) is then

Gzy " 07(6p—60°p+1)/6° —p - (4—b3)’a* /6P =0
for all peN. We assume now that ¢ =1, then
g..=(4—b3)*6p forall peN

that implies b, =2. By the area theorem it follows that f is a Koebe-function for
which b, =n and therefore o =7=1.

It remains to show that o =7 for 0<o <1. Choose 3,=8,=...=8,=7 and
B.i1=PBn+2=...=By,=0. The determinant of Q(r,7,...,7,0,0,....,0) is
o6 2" V(7?2 -67)" 1 {n *1 -1 - ) —c*(1-7>?]+0(n)}=0 for all
neN. Since <1 and o >0 we have 7?(1 - 0?)= ¢*(1 - 7°) that implies 7=o; i.e.
T=o0.

4. Asymptotic FitzGerald inequalities

Let {f.}, neN, be a sequence of univalent functions in S that converges locally
uniformly to a function fe S. With ¢(f,) we denote the limit

c(f.) = lim by (f,)/k (16)

k—>o0

which by Hayman’s Regularity Theorem exists. We may assume that the limit

d = lim c(f,) 17)

n—oo

exists. Otherwise we pick a subsequence of {f,}, neN.
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For each fixed f,n>q—1 we consider the principal minor
Q(jla j2a LR ] jq—la n, jq+1’ v ]p)(.fn) of Q(fn) in (2) where jl <j2< s <jq—1< n<
Ja+1<...<j,- We apply now the same procedure as before in section 3 to the
columns and TOWS Jpr Jo=1> - + = » Jq+1- The obtained matrix

Q(jla j2a ) jq-—la n, C(fn)7 c(fn)’ SR C(fn))(fn) is pOSitiVC semi-definite.
Next, we go with n to infinity and keep j;, ..., j,_; fixed. Choose B with

lim inf b,(f,)/n<p <lim sup b,(f,)/n.

n—»w n—00

By Lemma 1 we have a subsequence {f,}, keN,of {f,}, neN, such that
lim;_,, b,, (f..)/m =B and such that the relations (5) and (6) in Lemma 1 hold.
After dividing the jqth column and row of Q(jy, ..., j;—1, Mo c(f), - - ., (£ )(fr)
by ni we let n, go to infinity. The elements g;;(f, ), 1<s,t<q—1 contain only
the first 2, _, coefficients of f,, ; therefore lim, ... q;; (f..)=gq;; () for1<s,t<q—1.
We denote the so obtained positive semi-definite matrix with
Q(jl’ MR jq—la Ba da d: et d)(f)

Once more we apply the procedure described in section 3 to j,_1, jo—25- - -, Ji
with respect to the function f. The result is

THEOREM 1 (Asymptotic FitzGerald inequalities) Let {f,}, neN, be a
sequence of functions in S, such that

a) f, converges locally uniformly to a function fe S

b) lim inf b,(f,)/n <pB < lim sup b,(f,)

n-—»coo n—»o

¢) c(f)=lim b,(f)/n

d) d = lim c(f,)

Then A = Q(j1, jay -+ + 5 jy—1, €(f), - . ., c(f), B, 4, . . ., A)(f) is a positive semi-definite
matrix.

Denote by E,,, the m Xn matrix whose elements are all equal to be one.
Moreover let H,,,(f) be the m X n matrix defined by its elements h,(f) = j7 — b2(f).
With the notation of Q(jj, ..., j,-1)(f) in (12), M,(x) in (15), and & in (3) the



Asymptotic FitzGerald inequalities 235

matrix A has the following form:

Q(jl’ s ey jr—](f), C(f)Hr—l,q~r(f)9 Bz r-l,l(f)a dzI_Ir—l,p—q(f)
c(NDH 1 4—.(f), M, _.(c(f), B*(1—c*(ME,-,;, d*(1~c*(fNE,-.,,
BZHVT—q.l(f)a 32(1”Cz(f))E1,q—n (752/6“34)151,1, dz(l“’Bz)El,p—q

dzHT-—l,p»q(f), d2(1 - Cz(f))Ep—q,q—r’ dz(l - Bz)Ep—q,la Mp—q(d)

where H” is the transposed matrix of H.

5. Applications
For the first two applications we need

LEMMA 2. Let {f,}, neN be a sequence of univalent functions in S, that
converges locally uniformly to a function f in S and suppose that c(f)>0. Then
78%c*(f)=6B", where B is choosen as in Theorem 1 and 8 is defined in (3).

Proof. Consider the (n +1)x(n +1) principal minor Q(c(f), ..., c(f), B) of the
matrix A in Theorem 1. Then its determinant is with ¢ = c¢(f):

(c?/6)"(1—c®)[n(76%—6B*/c®)+ B*/c*]+ "6 "*(762-6B*/c) =0,

THEOREM 2. For neN, let g, be in S such that b,(g,)=sup (b,(f); feS)
(see (10)). Then we have for any limit function g of {g,}, neN: c(g)=0.92.

Proof. Let {g, }, keN be a subsequence of {g,}, n €N, that converges locally
uniformly to g. We take B = §. Note that § of this subsequence is at least one.

First we show that c(g)>0. In fact the determinant of the 2 X2 submatrix
Q(c(g), 8) of A is

(7c*(8)—6¢*(g))(787—68%)/36 — 6*(1 - c*(g))*=0
that excludes c(g)=0.

Now apply Lemma 2 to f, =g, and we get c¢*(g)=68%/7=6/7 or c(g)=
v6/7>0.92.

THEOREM 3. Let f(z)=z+Y5-, az" be in S. If |a,|<1.78, then there is an
absolute constant n, (independent of f), such that |a,|<n for all n> n,.
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Proof. Suppose, to the contrary, that there exists a sequence {h.}, k€N, of
univalent functions in § such that
a) h, converges locally uniformly to a function hy€ S,

b) b,(h,)<1.78,
c) b, (h)=n; for a sequence n, going to infinity.

We pick now for each n, one of the functions of {h}, j=0,1,..., that
maximizes b, and denote it by f,. We choose a subsequence {f.},j€N, of
{fc}, keN, that converges locally uniformly to a function fe S and we take
B =6= 1. Evidently b,(f)=<1.78.

As before c(f)> 0, since Det Q(c(f), 8) =0 implies for c¢(f)=0 that § =0. By
Lemma 2 we have

7¢%(f)82-68*=0 or c*(f)=68%/7=6/7.

This implies by a theorem of Jenkin and Hayman (see Hayman [1958]), that
b,(f)>1.78 that contradicts the assumptions.

Let S, ={feS; c(f)=x}. Given 0<x,<x,<1, Lebedev [1941] proved that
each function in S,, can be approximated locally uniformly by univalent functions
in S, . We show that the converse is not true for any function in S, .

THEOREM 4. Let 0<x,<x,=<1. Then no function in S, can be approxi-
mated locally uniformly by functions in S,,.

Proof. Let {f.}, n€N, be a sequence in S,, that converges locally uniformly to
a function feS. We consider the 2nX2n  principal minor
Q(c(f),...,c(f),d,...,d) with n elements d = x, of the matrix A in Theorem 1.
Its determinant is

" (f)d* 6> {n*(1-c>(1—-d?*/c*+0(n)} as n—x,

For ¢(f)=0 we get from the determinant of Q(c(f), d) that d =0, what is a
contradiction of the assumption. Let c(f)>0. Then we have, for n — «, that
cA(f)=d? ie. fe S, x=x,.

COROLLARY. The functional c(f) is upper semi-continuous on S.

Proof. Let {f,}, neN, be sequence in S. We pick a subsequence {f, }, keN of
{f.}, neN, such that

a) f, converges locally uniformly to a function fe S

b) lim c(f,, ) =lim sup c(f,) = d.

k—»00
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Applying the proof of Theorem 4 the Corollary follows.

Remarks. Using the same method as above for Theorem 2, 3 and 4 we get the
following results:

1) The principal minor Q(k, c(f), ..., c(f)) of the matrix A gives rise to
G (1= ()= 2(f)(k>— bi(f))*> for all keN

This gives a bound of c¢(f) in terms of b, (f). Take for example k =2. Then
(1+2b3+b3-b)(1—c*(f)) = *(f)(4 - b3)*.

Note that the problem of estimating c(f) as a function of b,(f) was completely
solved by Jenkins [1954] even for a larger class of functions.

2) Let {g,}, neN be a sequence in S that satisfies (10) and denote by a the
asymptotic Bieberbach limit in (11). Take a subsequence {g,}, k€N of {g.},
n €N, such that

a) g, converges locally uniformly to a function g in S,

b) lim b, (g, )/n = a,

k—>o0

The (2n +1) X (2n + 1) principal minor Q(c(g), ..., c(g), a, d, ..., d) gives rise to
(7c*(g)—6a®)(6a*—5d%*) = d*c*(g).

This inequality does not say much unless some lower bound of d is known. If one
can show the continuity of the functional c¢(-) for a specific subsequence {g, },
k eN, of above, then one can conclude the Asymptotic Bieberbach Conjecture
a=c(g)=d=1.
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