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Sur la structure du groupe des difféomorphismes qui préservent une
forme symplectique

Augustin Banyaga

Introduction

Soit M une variété différentiable de classe C°° paracompacte connexe de
dimension n. Si Diffk(M)0 est le groupe des difféomorphismes h de M de classe
Ck tels qu'il existe une Ck-isotopie H de h à l'identité, fixe en dehors d'un
compact, les travaux d'Epstein [7], Herman [8], Mather [11] et Thurston [17],
montrent que pour tout fc 0, l,...,oofc^n + l, Diffk(M)0 est un groupe simple.

Par contre, si M est une variété différentiable de classe C°° close et connexe de

dimension n et si GVM est la composante connexe de l'identité dans le groupe des

difféomorphismes de M de classe C°°, qui préservent une forme-volume sur M,
GVM n'est pas simple. Thurston [16] a montré que l'abélianisé H1(Glf)
GmI[GvMj Gif] de GVM est isomorphe à un quotient de Hnl(M, R), mais cependant

que [Gif, GVM] est un groupe simple.
Nous démontrons ici un résultat analogue pour le groupe des

difféomorphismes qui préservent une forme symplectique. Plus précisément, soit
(M, iî) une variété différentiable de classe C°° close et connexe, munie d'une
forme symplectique û et soit Gn{M) la composante connexe de l'identité dans le

groupe des difféomorphismes de classe O° de M qui préservent la forme 12. Nous
démontrons que H^GaiM)) est isomorphe à un quotient de HX(M, R) et que
[Gn(M), Ga(M)] est un groupe simple. La démonstration de ce résultat occupera
le chapitre III de ce travail. L'idée de la démonstration est de raffiner et d'adapter
au cas symplectique les techniques employées par Thurston pour démontrer les

résultats de [16] et [17].
Nous obtenons aussi quelques résultats dans le cas où la variété symplectique

(M, il) est non compacte. Le résultat fondemantal dans le cas non compact
(théorème II.6.2) dit qu'un certain sous-groupe de [Gn(M), Ga(M)] est simple.
Par exemple il découle immédiatement de ce théorème qus si (M, Q) est une
variété symplectique ouverte, connexe dont le Hl(M, R) 0, alors
[Gn(M), Gn(M)] est simple et HxiGaiM)) est isomorphe à un quotient de R.

Nous démontrons aussi que si il est exacte et que si la dimension de M est au
moins 4, alors H1(Gn(Af)) H^(M,R)©R et [Gn(M), Gn(M)] est simple. Ceci

174



Sur la structure du groupe des difféomorphismes 175

est une conséquence du théorème II.6.2 et de quelques constructions données au
chapitre IL

Les méthodes de ce papier et le résultat principal (théorème II.6.2) ont permis
à G. Rousseau [13] de déterminer la structure du groupe Gn(M) dans le cas où M
n'est pas compacte. En particulier, il retrouve par une méthode différente notre
résultat ci-dessus concernant les variétés à formes symplectiques exactes.

Le chapitre I est consacré aux préliminaires. Nous y rassemblons quelques
notions et résultats classiques qui interviendront dans la suite et nous y
démontrons quelques faits qui seront utilisés dans le courant de ce travail.

Au chapitre II, nous construisons les invariants qui jouent un rôle clé dans
l'étude du groupe des difféomorphismes symplectiques. Ces invariants se trouvent
être des homomorphismes de Gn(M) ou de ses sous-groupes à valeur dans
certains groupes abéliens. Les résultats de ce travail, énoncés dans ce chapitre,
concernent la structure des noyaux de ces homomorphismes.

Le chapitre III est consacré aux démonstrations des résultats.
Tous les objets considérés ici sont de classe C°° et le mot "différentiable"

signifiera "de classe C°°." Les espaces d'applications seront toujours munis de la

topologie C°°.

Les résultats démontrés ici ont été annoncés dans [2], [3].
Ce papier est à quelques modifications près, la thèse que j'ai présentée à la

Faculté des Sciences de l'Université de Genève. Les modifications sont les

suivantes: le chapitre concernant les difféomorphismes qui préservent une forme
de contact a été omis. Les résultats de ce chapitre seront publiés ailleurs. En
outre, on a inséré quelques compléments sur les difféomorphismes d'une variété

symplectique non compacte.
Je suis très heureux d'exprimer ma profonde reconnaissance au Professeur

André Haefliger, qui a dirigé ma thèse, pour le rôle essentiel qu'il a joué dans ma
formation de mathématicien, et particulièrement dans l'élaboration de ce travail.
Par son aide vraiment efficace, ses encouragements et ses enseignements, il a été

pour moi un Maître remarquable; il m'a notamment communiqué et longuement
expliqué les détails non publiés des démonstrations des résultats de [17] de

Thurston, (voir [4]).
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CHAPITRE I

QUELQUES NOTIONS ET RESULTATS PRELIMINAIRES

1. Isotopies et familles de champs de vecteurs

Soit M une variété différentiable de classe C°°. Le support d'un
diflEéomorphisme fideM est l'adhérence de l'ensemble {jteM| h(x)^x}. Nous

désignerons par Diff° (M) le groupe de tous les difïéomorphismes de M de classe

C°° à support compact. Soit Diff£(M) le sous-groupe de DifP(M) dont les
éléments ont leur support dans un compact fixe K de M, muni de la C°°-topologie.
Alors DifT (M) linu Diff£ (M).

Soit I l'intervalle [0,1]. Une isotopie est une application c:I—> DiflT (M) telle

que c(0) idM et telle que l'application (t,x)*-*c(t)(x) de IxM dans M soit
diflférentiable. Nous dirons qu'une isotopie est un chemin différentiable dans

Diff° (M) d'origine idM. Un difféomorphisme h est dit isotope à idM s'il existe une
isotopie c:I-*DifF°(M) telle que c(l) h. Comme le groupe Diff°(M)'est
localement connexe par arcs différentiables, la composante connexe de idM dans

DifF° (M), notée DiflT (M)o, est l'ensemble de tous les difféomorphismes isotopes
à l'identité.
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Une isotopie h:I-> Diff°(M) définit un feuilletage sur Mx/ transverse aux
fibres de la projection MxI-^I. Soit xeM; la feuille passant par (jc, 0) est

l'ensemble {ht(x)}teI.
On définit une famille (différentiable) de champs de vecteurs ht en posant:

xeM

La famille de champs de vecteurs ht est la projection sur M du champ de vecteurs
sur Mxl qui se projette sur le champ constant d/dt de I et qui est tangent aux
feuilles du feuilletage défini par l'isotopie hv

PROPOSITION 1.1.1. Soit hst une famille différentiable à 2-paramètres de

difféomorphismes de M telle que hoo idM. Si Xst et Yst sont les familles de champs
de vecteurs sur M définies par:

xeMXst(x) ^f(h;J(x)); Yst(x) ^dt ds

alors, on a:

as dt

Démonstration. La famille hst définit un feuilletage sur Mx(IxI) transverse
aux fibres de la projection p:Mx(Ixl)-+ (Ix[). Soient d/dt et d/ds les champs
de vecteurs constants sur Ixl. Les champs X' Xst +d/dt et Y= Yst + d/ds sont
tangents aux feuilles. D'après le critère d'intégrabilité, [X', Y'] doit aussi être

tangent aux feuilles. Or p*[X', Y'] [d/dt, d/ds] 0. Donc [X', Y'] est vertical.
Comme les fibres sont transverses aux feuilles, [X\ Y'] doit être nul. Il en résulte:

ft-Tv yufl vl + IV Al-rV V 1 I
ÔYst ÔXst

LCf J L dSJ ut oS

La proposition est démontrée.

Soit A(M) @AP{M) l'algèbre des formes différentielles sur M. Pour tout
champ de vecteurs X, on définit les opérations de dérivée de Lie Lx et de produit
intérieur i(X). La dérivée de Lie Lx est l'unique dérivation de l'algèbre A(M) de
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degré 0, déterminée par les conditions suivantes:

Lx(f) df(X), Lx(df) dLx(f)

pour toute fonction /.
Le produit intérieur i(X) est l'antidérivation de degré -1 qui à la p-forme a

associe la (p-l)-forme i{X)a telle que pour (p-1) champs de vecteurs

Yl9 Y2,..., Yp_i, on ait:

(i(X)a)(Y1, Y2,..., Yp^) a(X, Yl9 Y2,..., Y^).

Si d est la différentielle extérieure, on a les formules suivantes:

Lx di(X) + i(X)d

i([X9Y]) Lxi(Y)-i(Y)Lx.

Les propositions suivantes (1.1.2 et 1.1.3) sont des faits bien connus que nous
utiliserons fréquemment dans la suite.

PROPOSITION 1.1.2. Soit at une famille de formes différentielles sur une
variété compacte M. H y a équivalence entre les énnoncés suivants:

(i) II existe une isotopie ht de M telle que h*at a0
(ii) II existe une famille de champs de vecteurs Xt telle que Lxat+daJdt 0

Démonstration (cf [12]). La proposition résulte immédiatement de la formule
suivante:

PROPOSITION 1.1.3. Soit a une forme fermée et soit ht une isotopie, alors

h*a -a d@t avec ft I hf(i(hs)a) ds.

Démonstration.

js (fcfa) h*(LKa) hf(di(hja) d(hf(i(hs)a)).
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On a donc:

k*a ~a=r fs {k*a) ds=4f

D'où la proposition

2. Formes symplectiques

Une forme-volume sur une variété différentiable M de dimension n est une
n-forme partout non nulle. Une telle forme existe si et seulement si M est
orientée.

Une forme symplectique sur une variété différentiable de dimension paire 2n
est une 2-forme fermée fi telle que fln =(IaOa - - aQ soit une forme-volume.
C'est une 2-forme de rang maximum: ceci veut dire que l'application ijl qui
associe à un champ de vecteurs X de M la 1-forme i(X)O est un isomorphisme
de l'espace des champs de vecteurs tangents à M sur celui des 1-formes. Si M est
munie d'une forme symplectique 13, nous dirons que le couple (M, (l) est une
variété symplectique.

Soit / une fonction de classe C°° sur une variété symplectique (M, fï). Le
champ de vecteurs Xf ix~1(df) sera appelé le gradient symplectique de /. Si X est

un champ de vecteurs tel que la 1-forme i(X)O soit exacte, une fonction / telle

que i{X)O df s'appelle un hamiltonnien de X.
Un champ de vecteur X sur (M, O) sera dit un champ de vecteurs symplectique

si le groupe à 1-paramètre qu'il engendre préserve la forme û. Si X est un champ
symplectique, on a: LXO 0. Comme il est fermée, cette condition exprime que
la 1-forme i(X)O est fermée.

Soit (M, O) une variété symplectique de dimension 2n. Pour tout point x de

M, il existe un voisinage U de x et un système de coordonnées locales h :R2n —> U
tel que si fl\v est la restriction de il à U, alors h*(O\u) soit la forme symplectique

canonique dxt a dx2 + dx3 a dx4 + • • • + dx2n-1 a dx2n de R2n. C'est le
théorème de Darboux (voir par exemple [10]). La carte (h, U) s'appelle une carte

canonique.

3. Plongements symplectiques des boules

Soient X et Y deux variétés symplectiques. Un plongement de X dans Y sera
dit symplectique s'il transporte la forme symplectique de Y sur celle de X. Deux
plongements symplectiques f0 et f1 de X dans Y seront dits isotopes s'il existe une
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famille (différentiable) à 1-paramètre de plongements symplectiques Pf:X—» Y
telle que Po /o et P1 f1.

L'analogue différentiable de la proposition suivante est bien connu:

PROPOSITION 1.3.1. Deux plongements symplectiques d'une boule B de R2n

dans R2n sont isotopes.

Démonstration. Il suffit de montrer que tout plongement symplectique h de B
dans R2n est isotope au plongement naturel i :B ^R2". Remarquons d'abord que
h est isotope à un plongement symplectique h tel que h(0) 0. En effet si T est

une translation telle que T(fo(0)) 0, on prend h T • h.

Pour tout fe]0,1], soit J?t l'homothétie de rapport t dans R2n. On a:

Rt(B)<^B et i^*/2 t2 • il, où il est la restriction à B de la forme symplectique
standard de R2n. Il est clair que R~x • h • JR, est un plongement symplectique de B
dans R2n et que sa dérivés en 0 est le plongement symplectique linéaire suivant:

h'(0)(x) lim^^ lim (jR^1 • h • £,)(*).

La famille:

(Ri'hRt pour
f"U'(0).'(0) pour r 0

est une famille continue de plongements symplectiques telle que Hx h. Cette
famille est homotope relativement aux extrémités à une famille différentiable (par
changement convenable de paramètre) de plongements symplectiques.

Nous venons de montrer que h est isotope à un plongement symplectique
linéaire. Comme le groupe symplectique linéaire Sp(n) est connexe par arcs

différentiables, tout plongement symplectique linéaire est isotope au plongement
naturel i:B<^R2n. La proposition est démontrée.

La proposition suivante donne une précision sur le support de l'isotopie entre
deux plongements symplectiques de boules.

PROPOSITION 1.3.2. Soit V un ouvert convexe de R2n contenu dans une
boule Brls de centre 0 et de rayon r/8. Il existe un e>0 tel que pour tout

difféomorphisme symplectique h:V-* Br/8 vérifiant:
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pour x et y dans V, il existe une isotopie symplectique Ht de R2n à support dans Br et
telle que Hx\v h.

Démonstration. En composant éventuellement avec une translation, on peut
supposer que h(0) 0. La condition plus haut et la formule de la moyenne
impliquent que pour tout te[0,1], xe V, on a: ||fi(tx)||^f ||jc||(l + e). Donc pour
fe[0,1], xeV, h(tx)/teBrf4. Si h'(0) est la dérivée en 0, on a aussi que
h'(0)(V)<^ Br/4. La condition (*) signifie que hf(0)eSp(n) est proche du compact
maximal U(n) de Sp(n). Soit p:T(U(n))-> U(n) un C°°-voisinage tublaire dans

Sp(n). Alors en identifiant T(U(n)) avec un voisinage de U(n) dans Sp(n), on
peut écrire que h'(0)eT(U(n)). Soit gteSp(n) l'isotopie de h'(0) à l'identité
obtenue en composant les chemins at et bt où at joint h'(0) à p(h'(0)) dans

T(U(n)) et bt joint p(h'(0)) à l'identité dans U{n). Alors gt(V)^Br/2. Soit Gt le
chemin reliant h à l'identité obtenu en composant le chemin allent de h à h'(0) et
le chemin g, ci-dessus. Alors Gt( V)<= £?r/2. Soit m une fonction C°° à support dans

Bn égale à sur Br/2 et soit ft un hamiltonnien de Gj, où Gj est l'isotopie obtenue

par lissage de Gt. Si Ht est l'isotopie symplectique obtenue en intégrant le

gradient symplectique de u • /„ alors supp (Ht)<^Br et H1|v fi. La proposition
est démontrée.

CHAPITRE II

CONSTRUCTION DES INVARIANTS ET ENNONCE DES RESULTATS

1. L'invariant S

Soit ht une isotopie dans DifÇ (M). Nous allons montrer que la forme
Z(fot) Jù i(ht)f}dt est une 1-forme fermée dont la classe de cohomologie ne
dépend que de la classe d'homotopie de ht relativement aux extrémités. Plus

précisément, on a la proposition suivante, qui est due à Calabi [6]:

PROPOSITION IL 1.1. Soit (M, Q) une variété symplectique et soit GJM) le

revêtement universel du groupe Diff^(M)0= Gn(M). Il existe un homomorphisme
surjectif et continu:

S:GJM)^Hl(M,R)

où Hl(M, R) est le premier groupe de cohomologie de de Rham à supports compacts.
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Démonstration. D'après Weinstein [20], Gn{M) est localement contractible;
donc aussi localement connexe par arcs différentiables. Il en résulte que les

éléments h de Gn(M) sont des paires (h, {h,}) où h € Gn{M) et {ht} est une classe

d'homotopie d'isotopies symplectiques de h à VidM. Comme ht est dans Gn{M), ht

est un champ de vecteurs symplectiques, c.à.d. que iih^fl est une 1-forme
fermée. Il en est de même de la 1-forme:

Soit h{ une autre isotopie dans Diff^ (M) telle que h\ h1 h et qui est homotope
à hv Ceci veut dire qu'il existe une famille différentiable à 2-paramètres Hst
d'éléments de Diff^(M) telle que:

Hs0 idM HsA h pour tout sel
HOt 1% Hlt h't pour tout t e I.

Considérons les champs de vecteurs Xst et Yst définis par:

*,,(*)=-7T («:/(*)) n.(*)=-r* (h:?(x)).
or os

Si on pose: l (H*,) $> XXJfi dt, on a: I(tfo>,) KM et
Calculons la variation de la famille X (H,,t)'

La dernière ligne résulte de la proposition 1.1.1. Les champs Ys 0 et YStl sont nuls.

Il en résulte:

D'autre part:

L^i( YJO) dt d{ f
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Donc:

où a=[ {ï(Yst,Xst)dtAds.
Ixl

Ceci montre que la classe de cohomologie de la forme £ (K) est indépendante du
choix de ht dans sa classe d'homotopie relativement aux extrémités. La
correspondance h*->S(h), où S(h) désigne la classe de cohomologie de £ (ht) définit
une application continue:

Cette application est un homomorphisme de groupes: en effet soient gx =(g,, {c\})
deux éléments de Gn(M). Leur produit peut être représenté par l'isotopie ct

obtenue en faisant un changement convenable de paramètre dans le chemin
difïérentiable par morceaux c[ suivant (On dira que ct est un lissage de cj):

pour U < t < \

z\ pour | < r<;

Il est évident que Z(ct):=Z(Ct1) + Z (c?). L'application S est donc un homomorphisme.

Il est évidemment continu.
Soit 6 une 1-forme fermée à support compact représentant un élément [6] de

Hl(M, R). Le champ de vecteurs X défine par i{X)fl 0 est un champ symplecti-
que. Soit h (h,{ht})e Gn(M), où ht est le groupe à un paramètre engendré par
X, alors S(h) [d]. D'où la surjectivité. La proposition est démontrée.

Remarque IL 1.2. Soit y:I-+ M un 1-simplexe singulier différentiable dans M.
Pour toute isotopie symplectique ht, on considère 1' application G:IxI->M
définie par:

G(s,t) ht(y(s)).

On montre facilement la formule suivante [6]:

f G*r2=
Jlxl

D'autre part, les 1-formes Y*(K) et loh*i{ht)(ldt sont cohomologues. De là
résultent des définitions équivalentes de l'invariant 5.
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DÉFINITION DE L'HOMOMORPHISME S. Désignons par r l'image par S

du sous-groupe iri(Gn{M)) de Ga(M). Par passage au quotient, on obtient un
homomorphisme surjectif et continu:

S:Ga(M)-*Hl(M,R)/r.

Le sous-groupe F

Soit Pn le sous-groupe de R formé des périodes de O, c.à.d. que Pa est le
sous-ensemble de R formé des a tels que a Jc O, où c est un 2-cycle entier de M
II résulte de la formule (*) ci-dessus que F^z Hl(M, Pn). En particulier, F est
dénombrable si M est à base dénombrable. De plus, si la forme Q est à périodes
entières, alors F est discret. Nous allons montrer qu'il en est encore ainsi si la
forme symplectique û provient d'une métrique kâhlérienne sur M.

Soit (o une forme-volume sur une variété différentiable M de dimension n et
soit K un compact de M. On munit de la C°°-topologie le groupe Diff£ja> (M)
{fceDifr(M)|supp(/i)c=*: et h*<0 <o}. Soit DifÇ(M) lim^Diff£,J(A^ et
Diff^(M)0 la composante connexe de l'identité dans Difl^(M). Soit ht une
isotopie dans Diff^ (M) et {h} sa classe dans Difff (M)o. Thurston [16] a montré

que la classe de cohomologie V({h}) de la (n — l)-forme fermée Jo i(K)(o dt, ne
dépend pas du choix des représentants de {h} et que la correspondance {/i}»-*
V({h}) est un homomorphisme surjectif et continu VrDifïf(M)o-* H^~\M9R).

Soit (M, O) une variété symplectique de dimension 2n. Alors o> — fln est une
forme-volume. On a l'inclusion Diff^(M)c:Diff^(M). Soit ht une isotopie dans

DiflE^(M), alors:

f i(ht)wdt=n\(i(ht)n)Ann-ldt=nl\ ifaû) dt)

On a donc le diagramme commutatif suivant:

j A

a

La dernière flèche verticale étant induite par la multiplication par Qnl.
Supposons que la multiplication par (ln~l induise un isomorphisme

Hl(M,R)-^ H^n~1(M9 R). Ceci est le cas par exemple si û provient d'une
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métrique kaehlenenne sur M [19] II resuite de la commutativite du diagramme
ci-dessus, que F= S(7rA(Dif(^(Af)0)) est isomorphe à V(i(irA(DifÇi (M)o)) Or,
d'après [16], ce dernier groupe est discret II en est donc de même de F

Je n'ai pas d'exemple de variété symplectique (M, O) ou le sous-groupe F ne

soit pas discret

Construction directe de V invariant S dans le cas ou fl est exacte

D'après ce qui précède, si û est exacte, F est trivial On a donc un
homomorphisme S Gn(M)-* H* (M, R) Nous nous proposons de construire
directement cet homomorphisme sans utiliser les isotopies

Soit A une 1-forme telle que d\=O Pour tout h e Gn(M), la 1-forme Jt*A - A

est une 1-forme fermée à support compact Sa classe de cohomologie [Ji*A-A]g
H\(M, R) est indépendante du choix de A En effet soit A' une autre 1-forme telle

que dk' fl, alors A'-A est fermée Donc la 1-forme suivante est exacte

(/z*A'-A')-(h*A-A) /i*(A'-A)-(A'-A) Donc [Ji*A-A] est indépendante du
choix de A

On voit immédiatement que [h*A-A]= S(fr) En effet si ht est une isotopie
symplectique de h a l'identité, on a

f1 f1 /f1 \fi*A-A= hf(Lht\)dt=\ hti(ht)ndt + d[\ hf(i(ht)X)dt)

Remarque Dans les constructions de l'invariant S, nous n'avons utilisé que le
seul fait que û est fermée Soit donc G^iM) la composante connexe par arcs
différentiables dans le groupe des C°°-difféomorphismes d'une variété
differentiable M, à support compact et qui préservent une p-forme fermée co, et

soit G^iM) son revêtement universel On obtient avec les mêmes constructions,
un homomorphisme §„ ^(Af)—>H^ ^M, R) et si <o est exacte, S^ C

Hpc r(M,R)

2. L'invariant S comme obstruction à l'extension des isotopies symplectiques

Dans la suite, nous aurons à résoudre le problème suivant étant donnés une
variété symplectique (M, O), un sous-ensemble fermé F dans M et ht une isotopie
de M qui préserve la forme û sur un voisinage de F, trouver une isotopie ht

symplectique partout et qui coïncide avec ht au voisinage de F C'est un problème
d'"extension des isotopies symplectiques " La solution est donnée par le résultat
suivant
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THÉORÈME II.2.1. Soit (M, 13) une variété symplectique compacte, F un
fermé dans M et fy une isotopie symplectique au voisinage de F. Supposons que

I hfn-n=o

pour toute 2-chaine singulière différentiable c dont le bord est dans F. (c.à.d. que les

périodes relatives de hfO-O modulo F sont toutes nulles) II existe alors une

isotopie symplectique ht qui coincide avec ht au voisinage de F. De plus, pour tout
voisinage V de V identité (pour la C°°-topologie) dans C°°(I, Diff°(M)), il existe un
voisinage de Videntité W tel que si ht appartient à W, alors h~l • ht est dans V.

Ce théorème résulte du lemme suivant, qui est un "théorème de de Rham
relatif avec paramètre."

LEMME II.2.2. Soit M une variété différentiable et 0t une famille à 1-

paramètre de p-formes, nulles au voisinage d'un fermé F de M et dont les périodes
relatives modulo F sont toutes nulles. Il existe alors une famille à l-paramètre de

(p — 1)-formes at nulles au voisinage de F et telles que 6t dat.

Avant de démontrer ce lemme, nous allons rappeler quelques notions sur les

produits tensoriels d'espaces vectoriels topologiques (EVT) (cf. par exemple [14]
ou [18]).

Soient Ex et E2 deux EVT localement convexes. On note par EX®^E2
respectivement Et&eE2 leur produit tensoriel complété avec la topologie tt
respectivement avec la toploogie e (voir [14] pour la définition de ces topologies).
Un EVT localement convexe E est dit nucléaire si pour tout EVT localement
convexe F, alors E®CF et E®^F coincident. On montre que l'espace C°°(U) des

fonctions de classe C°° d'un ouvert U de Rn dans R est un EVT nucléaire.
Soient m, : J% -* Ft deux surjections linéaires d'EVT, où les Et sont métrisables,

alors u1®7ru2:E1^7TE2'^Fl®irF2 est une surjection.
Soit U un ouvert de Rn et E un EVT complet. Si C°(U, E) est l'espace des

applications de classe C°° de U dans E, on a l'isomorphisme:

On omet la mention tt ou e et on écrit: C°{U9E)^C~(U)&E.

Démonstration du lemme 1122. Soit AP(M, V) (respectivement BP(M, V))
l'espace des p-formes nulles sur un voisinage convenable V de F (respectivement
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des p-formes fermées dont la classe de cohomologie relative modulo V sont
nulles), muni de la topologie C°°. Par voisinage convenable V de F, nous
entendons une sousvariété à bord approximant F. Le théorème de de Rham
relatif dit que

d:Ap~\M, V)-»£P(M, V)

est une surjection linéaire d'espaces de Fréchet. D'après ce qui précède,

1(M, V)-> C°°(J)<g)J3p(M, V)

est encore une surjection.
Une famille à 1-paramètre de p-formes n'est rien d'autre qu'une application

de classe C°° de 1 dans l'espace des p-formes, c.à.d. un élément de C°°(7, AP(M)).
Comme C°°(I, AP~\M, V)) C~(I)&Ap-1(M9 V) et même chose en remplaçant
AP~\M, V) par BP(M, V), on obtient la surjection

CT(I9 Ap-\M, V))-> C°°(/, Bp(M, V))

Le lemme est démontré.

Démonstration du théorème II.2.1. La famille à 1-paramètre

ùt=-nt où nt h*a
ot

vérifie les hypothèses du lemme II.2.2. Il existe donc une famille à 1-paramètre de

1-formes at nulles au voisinage de F telles que dat ïit. Suivant Moser [14], on
définit une famille à 1-paramètre de champs de vecteurs symplectiques Xt par
l'équation: i{Xt)Ût —at. On aura alors que LxQt + Ùt 0. Si if/t est la famille de

difïéomorphismes symplectiques obtenue en intégrant le champ Xt (avec la
condition initiale (/^M *)> alors d'après la proposition 1.1.2, if/fOt — fl0 il. De
plus, \ltt identité au voisinage de F; ainsi ht ht • ^t est une isotopie symplecti-
que et coincide avec ht au voisinage de F.

L'isotopie if/t dépend continueront de <xt: donc pour tout voisinage V de
l'identité dans C°°(J, Diff°° (M)), il existe un voisinage T de 0 dans

C°°(/, A1(M, V)) tel que si at est dans T, alors t/ft soit dans V. D'après le théorème
de l'application ouverte, l'image de T par la différentielle extérieure est un
voisinage S de 0 dans C~(I, J32(M, V)).

D'autre part, il est clair que pour tout voisinage U de 0 dans C°°(I, B2(M, V)),
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il existe un voisinage W dç l'identité dans C°°(/, DiflT (M)) tel que si ht est dans

W, alors Ùt est dans U.

On choisit U=S. Soit W=W(S) le voisinage de l'identité dans

CUDifï00(M)) correspondant. Si hf est dans W, alors ÙteU=S d(T). c.à.d.

que Ût dat avec atel II en résulte que \\tt h~l - hteV. Le théorème est

démontré.

Formulation du théorème II.2.1. à Vaide de Vinvariant S

Soit ht une isotopie de M, symplectique sur un fermé FcJVfet soit Xst la

famille de champs de vecteurs définie par:

xst(x)=^-hst(h:\(x)).
ds

D'après la proposition 1.1.3, on a pour tout t

hfn-n dY(K) où Y(K)

La restriction£" (hst) de Y,' (Kt) à F est une famille de 1-formes fermées dont les
classes de cohomologie ne dépendent que de la classe d'homotopie d'isotopies
symplectiques sur F, reliant pour tout t, ht à l'identité.

Dans le cas où ht est une isotopie symplectique sur M, la classe de

cohomologie de £ (Kt)= Jo KXst)O ds (qui est la même que celle de £' (Kt)) est la
valeur de l'invariant S sur ht, où ht est l'élément de Gn(M) représenté par
l'isotopie s>-> hs.t. Par analogie, on peut dire que la classe de cohomologie de

E" (Kt) est la valeur SF(/if) d'un "invariant SF relatif" sur l'élément ht.

Soit a l'opérateur cobord diJJ^F)-^ H^M, F) dans la suite exacte de

cohomologie réelle de la paire {M, F). Le théorème II.2.1 prend alors la forme
suivante:

THÉORÈME II.2.3. Soit ht une isotopie de M, symplectique sur un fermé
F a M. La condition nécessaire et suffisante pour qu'il existe une isotopie ht,

symplectique partout et qui coincide avec ht sur F, est que Vêlement d(SF(ht)) de

H2(M, F) soit nul.

3. Quelques propriétés du groupe Ker S (M)

Dans ce paragraphe, nous démontrons quelques propriétés topologiques du

groupe Ker S(hf). Rappelons qu'un élément he Gn(M) est dans Ker S(M) s'il
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existe une isotopie symplectique ht de h à idM telle que la forme £ (K) s°it
exacte.

PROPOSITION II.3.1. Le groupe Ker S (M) est connexe par arcs
différentiables.

Démonstration. Soit h e Ker S(M) et soit ht une isotopie symplectique de h à

idM telle que £ (K)= dg, où g est une fonction à support compact. Si on fixe t e 2,

alors hs t, sel, est une isotopie de ht à idM. Soit Xst la famille de champs de

vecteurs définie par:

Posons:

Soit Y, la famille de champs de vecteurs définie par: i(Yt)fl j3, où /3, a, — ta,.
On a:

Si Hst est la famille à 2-paramètres de difféomorphismes symplectiques définie par
intégration (en 5) de la famille de champs de vecteurs Zst Xst - Yt autrement dit
Hst est la famille de difféomorphismes telle que HOt idM et

as

II est clair que Hsl hs pour tout s g I et que Hlt e Ker S(Af) pour tout t Comme

HlA h et que Hlf0 idM, ffu est un chemin différentiable dans Ker S(Af) qui
relie ?i à l'identité. D'où la proposition.

Remarque II.3.2. D'après la proposition II.3.1, Ker S(M) est connexe. Mais
en général, Ker S(M) pourrait ne pas être localement connexe. En fait, on a

équivalence entre les énnoncés suivants:

(i) Ker S (M) est localement connexe
(ii) Le groupe r=S(7r1(Gf2(M)) est un sous-groupe discret de Hl(M,R).
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C'est par exemple le cas si O est une forme symplectique à périodes entières ou si

elle provient d'une métrique kâhlérienne sur M.

PROPOSITION II.3.3. Soit ct une isotopie dans Ker S(M). Alors pour tout t, la

1-forme i{ct)il est exacte.

Démonstration. Le groupe tt^G^CM)) agit sur Gn(M). Désignons par

ir^Gu(Af^Ker S(M) l'ensemble des orbites des points de Ker S(M). Il est clair

que si p\Ga(M)-^> Gn(M) est la projection de revêtement, alors:

p-HKer S(M)) vAG^M)) • Ker S(M).

Tout chemin continu dans Ker S(M) se relève en un chemin continu dans

iri(Ga(M)). KerS(Af). Soit ct un relèvement continu de l'isotopie ct tel que
c(0) idM. Pour tout t, S(ct) e F. L'application t *-> S(ct) est donc une courbe
continue dans F. Comme F est dénombrable, cette courbe est constante. Donc
S(ct) S(c0) 0, pour tout t, c.à.d. que ct e Ker S(M).

D'après la démonstration de la proposition II.3.1, il existe pour tout t, une
isotopie s *-> Hst représentant ct (i.e. HOt idM, Hlt ct) telle que l'image dans

Ga(M) de l'isotopie s •-> Hst soit dans Ker S(M), et que l'application (s, t) »-> Hst
soit continue.

Pour tout tel, l'application:

Ix Ib(v, s) *¦+ Hivis-1)+imi_v)s+v)te Ker S(M)

est une homotopie entre les chemins s •-» Hst et s *-* cs.,. Si Hlt et ct sont les

images de ces chemins dans Gn(M), on a donc que: S(ct) S(HU). Mais la classe

S(HU) (et donc aussi la classe S(ct)) est nulle. Si Xst est la famille de champs de

vecteurs symplectiques définie par:

Alors la 1-forme:

est exacte. D en résulte que i(c,)/2 df, avec /, dgjdt, où g, est une famille de
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fonctions telle que:

\i(c

La proposition est démontrée.

Le noyau de la surjection Ker S(M)-> Ker S(M) est ^(G^M)) H Ker S(M).
D'autre part, Ker S (M), ayant le type d'homotopie de Gn(M), est simplement
connexe. Il en résulte que si l'on munit Ker S (M) de la topologie quotient de

KerS(M) par l'action de 7r1(Gf2(M))nKer S (M), alors Ker S(M) est le
revêtement universel de Ker S (M); on a donc que ir1 (Ker S (M))
7ri(Gf2(Af))nKer S(M)- En résumé, on a le diagramme suivant, avec les lignes et
les colonnes exactes.

0

t(Ker S(M)) ->

Ker S(M) -*

i
Ker S(M) -+

I
0

0

I

GXm

Gn(M)

I
0

0

I

I
^ Hl(M, R)/r

i
0

-+ 0

-» 0

^ 0

Remarque II.3.4. Pour terminer ce paragraphe, signalons une propriété de

transitivité du groupe Ker S(M). Soit (M, fl) une variété symplectique close et
connexe. Boothby [5] a montré que Ga(M) est transitif. Pour x, y e M, il construit
un difféomorphisme heGn(M) tel que h(x) y comme le composé de

difïéomorphismes symplectiques à supports dans de petites boules. Il est clair que
de tels difïéomorphismes sont dans Ker S(M). Il en résulte que h e Ker S(M).

4. L'invariant R

La proposition suivante est due à Calabi [6], mais nous allons en donner une
démonstration directe.
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PROPOSITION II.4.1. Soit (M,û) une variété symplectique ouverte et soit
Ker S(M) le revêtement universel de Ker S(M). Il existe un homomorphisme
surjectif et continu:

La démonstration utilise le lemme suivant:

LEMME II.4.2. Soit (M, ft) une variété symplectique non compacte, sans bord.

Soit Êa{M) Valgèbre de Lie des champs de vecteurs symplectiques X sur M à

support compact et tel que la forme i{X)ù soit exacte. Pour tout X dans Ên{M) soit

fx Vunique hamiltonnien de Xà support compact. Alors Vapplication ri^
définie par:

fxnn

est un homomorphisme surjectif d'algèbre de Lie

Démonstration. Il est clair que l'application r est additive et surjective. Il ne
reste qu'à vérifier qu'elle s'annulle sur les crochets. Soient Xx et X2 dans Ên{M),
on a:

x2])n Lxj(x2)n

Donc:

Or:

o=i{x){(
=hxux^n - n • nx2)n a i(xx)a a nnl

c.à.d.

n • dfX2 a dfXl a Onl d(nfX2-dfXl a n^1).

La conclusion résulte de la formule de Stokes. Le lemme est démontré.
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Démonstration de la proposition II.4.1. Soit h (h,{ht}) un élément de

Ker S(M). D'après la proposition II.3.3, ht eÊn(M)9 pour tout t.

En reprennant les notations de la proposition II. 1.1. soit h\ une autre isotopie
dans Ker S(M) telle que h[ h1 h. On suppose que h\ est homotope à ht par
une homotopie différentiable Hst dans Ker S(M). Soient Xst et Yst les champs de

vecteurs définis comme dans la démonstration de la proposition IL 1.1, on a:

La dernière ligne résulte de la proposition 1.1.1 et du lemme II.4.2

Or:

Il en résulte que l'application:

h -+ [ r(ht) dt

est bien définie. On montre que c'est un homomorphisme de Ker S(M) dans R

comme dans la proposition IL 1.1. La surjectivité ainsi que la continuité sont
évidentes. La proposition est démontrée.

Définition de Vinvariant R

Désignons par A l'image par R du sous-groupe Ker P de Ker S(M), noyau de

la projection naturelle P: KeT^S(M)-*Ker S(M). Par passage au quotient, on
obtient un homomorphisme surjectif et continu

R: Ker S(M)-^ RIA

Construction directe de V invariant R dans le cas où la forme O est exacte

Notation: si co est une forme à support compact de degré maximum sur une
variété différentiable M, nous dénoterons par [<o] son intégrale sur M
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Soit À une 1-forme telle que dk /2. Si fie Ker S (M), il existe une fonction
unique à support compact f(h, A) dépendant de h et de À telle que h*A-A
df(h, A). On a:

PROPOSITION II.4.3. Soit (M, Q) une variété symplectique de dimension 2n
dont la forme symplectique est exacte. Alors pour tout h e Ker S(Af), le nombre

[f(h, A) • On] est indépendant du choix de A tel que d\ (ï. De plus la correspondance

h »-»[/(h, A) • Hn] est un homorphisme surjectif et continu p qui coincide à

une constante près avec Vhomomorphisme R. Plus précisément, on a:

p(h) (n +1) • R(h), Vh e Ker S(M).

COROLLAIRE. Soit (M, û) une variété symplectique dont la forme symplectique

est exacte. Alors le groupe A est trivial

Démonstration. Soit A' une autre 1-forme telle que dk' il. On a:

où \ est une isotopie dans Ker S(M) de h à l'identité. On a donc:

Soit ft une famille de fonctions à support compact telle que i(ht)O dft, on a:

(h*i(fii)(À'- A) • On d(-n • h*(ft • (A'-A) • fT"1). Il en résulte donc que
[/(h, A')fln] [/(h, A)fln]. Donc p est bien définie.

D'autre part, on a: fc*A - A =£ ^(LfJA ds duf où

fs°K)ds.

On a: [(h*i(hs)k) • On] [i(hs)k)i2n] et [(/s °hs)On] [fs • iln\ De plus:
i(fis)A • ûn n • /s • ûn - d(n • /s • A au""1). Il en résulte que [i(hs)k • On]
w-[/s/2n]. Or par définition, p(h) [w1-/2n]. On a donc: |>i/2n]
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5. L'invarient fx

Si M est une variété symplectique de dimension 2n^4, dont la forme
symplectique est exacte, alors l'homomorphisme i?:Ker S(M)—»R s'étend en un
homomorphisme /ll : Gn(M)-»R. L'objet de ce paragraphe est de construire cet
homomorphisme. On a:

PROPOSITION II.5.1. Soit M une variété différentiable de dimension
munie d'une forme symplectique exacte. Soit A une 1-forme telle que d\ fi. Pour
tout h e Gn(M), on pose:

Alors ii(h) est indépendant du choix de A. De plus, h*-+ii(h) est un homomorphisme,

et la restriction de \ià Ker S(M) est Vhomomorphisme R. (En particulier, jx
est surjectif).

Remarque. Si a est une 1-forme fermée sur une variété différentiable de

dimension 2n^4, munie d'une forme symplectique exacte et si ht est une isotopie
symplectique, alors la forme ffln, où f So(h*i(ht)a)dt, est exacte. En effet:

i(ht)a • On dWt où Wt n • ai{ht)Q a A a nn~2, si d\ O.

Preuve. Désignons par o)(h, A) la 2n-forme: /i*A a A a/2""1. C'est une
Informe à support compact, car hors du support de h, <o(h, A) devient àaàa/]""1
qui est nulle.

Montrons que le nombre réel [<o(h, A)] est indépendant du choix de A. Soit A'

une autre 1-forme telle que fi dkf. Alors A' A + a où a est une forme fermée.
On a:

D'après la proposition 1.1.3,

°ù / Jo h*i(ht)adt et où ht est une isotopie symplectique de h à l'identité.
Donc:

h*A a a a Ûnl + h*a a A a Onl (fr*A - A) a a a (lnl + dfA A a iln\
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On a:

(h*k-\)AaAnn-1 d<Pu où 01 (h*A-A)AaA
h* a a a a £}nl d<f>2, où <P2 h*a a a a A a On~2.

Donc:

(o(hy A') a>(h, A) + d(0x + #2) + d/a A a nnl

Mais d'après la remarque ci-dessus, / • On est exacte. Il en résulte donc que

La correspondance /i«-»[<c>(ft, A)] est un homomorphisme:
En effet, si hx et h2 sont deux éléments de Gn(M), alors:

où g Jâ(^l)*K^2)(^ie^ ~^) dt et où ft2 est une isotopie symplectique de h2 à

l'identité. Donc:

D'après la remarque ci-dessus, g • f2n est une forme exacte. Il en résulte donc que

il est un homomorphisme de groupes.
Si JteKerS(M), alors /i*A À + d/(fe, A). Dès lors:

-/(fc, a) • rr+d(/(h, a) • a a nn~l)

c.à.d

La proposition est démontrée.

6. Ennoncé des résultats

Rappelons qu'un groupe G est dit parfait s'il est égal à son sous-grouppe des

commutateurs [G, G], c.à.d. si l'abélianisé G/[G, G] de G, noté H^G) est trivial.
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Un groupe G est dit simple s'il ne possède pas d'autres sous-groupes normaux
que le groupe G lui-même et le groupe trivial (réduit à l'élément neutre).

Les résultats principaux de ce travail sont les suivants:

THÉORÈME II.6.1. Soit (M,O) une variété symplectique close et connexe.
Alors:

(i) Le noyau Ker S (M) de S : Gn(M) —> HX(M, R) est un groupe parfait égal à

(ii) Le noyau Ker S(M) de S: Gn(M)-^H1(M, R)/F est un groupe simple égal
à [Gn(M), Gn(M)l

COROLLAIRE. Soit (M, (2) une variété symplectique close et connexe. Alors:

(i) H^
(ii) H1(G

Remarques, (a) Ce théorème est l'analogue d'un théorème de Thurston pour
les difféomorphismes qui préservent une forme-volume [16]. Sa démonstration

occupera le prochain chapitre.
(b) comme le montre la proposition II.4.1, le théorème II.6.1 est faux si M est

non compacte.
On a le résultat suivant:

THÉORÈME II.6.2. Soit (M, O) une variété symplectique connexe, non
compacte. Alors le noyau Ker R, de Vhomomorphisme R, est un groupe simple.

COROLLAIRE. Soit (M, Q) une variété symplectique non compacte, connexe
et telle que Hj(M, R) 0, alors:

(i) H1(Gf2(
(ii) [Gto(M), Gn(M)] est un groupe simple

Remarque. Si en plus des hypothèses du corollaire, la forme Q est exacte,
alors //1(Gr2(M)) R.

Comme conséquence du théorème II.6.2, on obtient:

THÉORÈME II.6.3. Soit M une variété différentiable de dimension
munie d'une forme symplectique exacte il. Alors:

(i) H1(Gn(
(ii) [Gn(M), Gn(M)] est un groupe simple
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Remarque. Rousseau [13] a déduit du théorème II.6.2 la structure du groupe
Ga(M) si M est non compacte. En particulier, il retrouve par des méthodes
différentes le théorème II.6.3.

CHAPITRE III

DEMONSTRATION DES RESULTATS

1. L'invariant R et l'obstruction à l'extension des isotopies symplectiques

Soit M une variété différentiable de dimension n et U un ouvert de M
difféomorphe à une boule de Rn. On dira que U est une boule de M Si U et V
sont deux boules telles que V£U, on dira que Ù-V est une couronne de
dimension n. La couronne de dimension n est homéomorphe à Sn~x x L

Soit (M, 12) une variété symplectique compacte et soit U une boule de M.
Désignons par Gn (respectivement Gcq) le sous-groupe de Ker S(M) formé des

éléments à support dans U (respectivement hors de Û). Soit heôu (resp.
he Gco) et ft le hamiltonnien à support dans U (respectivement dans M- Ù) du
champ ht, où ht est un chemin différentiable dans Ker S(M) à support dans U
(resp. hors de Ù) représentant h. Alors la correspondance:

•L *

est un homomorphisme surjectif Rv (resp. Ray) de Gv (resp. de Gcû) dans R.
Soient A, AUf Acq, les images par i?, RU9 Rcû, des sous-groupes

Tr^Ker S(M)) (où M est une variété symplectique ouverte), tt^G^), tt^Gcq) (où
U est une boule dans une variété symplectique compacte) de KerSlM), Gu, Gco,
on obtient par passage au quotient des homomorphismes surjectifs

Soit C= Û— V une couronne dans une variété symplectique compacte. Alors
les invariants Rv et Rçy sont bien définis. La proposition suivante montre que la
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différence des invariants RCy et Ru peut s'interpréter comme une obstruction à

l'existence d'extensions d'isotopies symplectiques définies sur une partie de la

couronne. On met également en évidence le lien qu'il y a entre RCy — Rjj et
l'invariant S.

PROPOSITION III. 1.1. Soient Q Ot - Vt, i 1, 2, deux couronnes dans une
variété symplectique compacte (M, il) se coupant comme dans la figure 1. Soit ht

une isotopie symplectique de M proche de Videntité à support dans Cx. L'obstruction
6 à Vexistence Vune isotopie symplectique à support dans C1C\ U2 et égal à ht sur
Cx fl V2 est le nombre réel:

€ (M)

où Vol (M) JM Qn et {h} est Vimage de ht dans le revêtement universel.

Démonstration. Il existe une isotopie ht non symplectique à support dans

Cx H U2 et qui est égale à ht sur Cx 0 V2. Soit ft le hamiltonnien à support dans

Ux de ht et soit 0 un point de Vu on a:

Ru(W) f fr
JMxI

(ft-ft(O)) dtAÛ" ft(0)

Soit D le 2-cycle relatif hachuré sur la figure 1. Sur dD, ht= identité sauf sur
le segment y ab d'extrémités a et b sur lequel ht ht. D'après la proposition

Figure 1
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1.1.3 est le théorème II.2.1, on a:

J J* h*(dft) dt= f (ft(K(b))-ft(ht(a))) dt

Donc: Rc^({ht})-Ru({h}) €. Vol (M), cqfd.

2. Recouvrement associé à une triangulation

Suivant Thurston [16] nous associons à toute C°°-triangulation T (Ak)ieIk,
k 0,1, 2,..., n, d'une variété différentiable M de dimension n, un recouvrement

ouvert ^ (V^)ieIk, k 0,1, 2,..., n par des boules Vk indexées comme
les simplexes de la triangulation. Ce recouvrement sera construit par récurence

sur les squelettes. Les ouverts V°t sont des boules contenant A°t telles que
V°inV°J 0 si iïj. Supposons construites les boules {Vj}jeIl, / 0,1,..., fc-1,
qui recouvrent le (fc-l)-squelette de manière que:

Ak=àk~ u v\
(lel,,/=Sfc-l)

soit un rétrécissement du simplexe Ak. Soit Ak un léger épaississement de Âk. On
prend pour Vk un C°°-voisinage tubulaire de Ak. Le voisinage tubulaire Vk sera
choisi suffisamment petit pour que Vk HVk 0 pour tout k et i^j.

Soit °U (Uk)ieIk, k 0,..., n un recouvrement construit de la même manière

que V9 mais où chaque Uk est un épaississement de Vk de telle sotte que
Vk c: Uk pour tout k et tout i et que UkCiUk 0 pour tout k et iV /.

Nous dirons que les recouvrements °U et Y sont des recouvrements associés à
la triangulation T.

Dans la suite, nous envisagerons de tels recouvrements et nous nous
intéresserons aux sous-ensembles de M suivants:

Fk=-Ûk-\J V1 où VJ U V\
/âk le!.

Gk]l=(uknu])-(\J v>) Fknulr

D'après la manière dont sont construits les ouverts Uk et Vk on voit que Fk est

homéomorphe à Ak xCn~fc, où Cn~k est la couronne de dimension n-k, qui est
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Figure 2

homéomorphe à S" k 1 x /. On voit aussi (cfr figure 2) que Gk}1 est homéomorphe
à A1 xCn~kxDk~\ où Dkl est le disque de dimension fc-1.

Soit W= (Wl)l€El un recouvrement ouvert de M. On choisit une C°°-

triangulation T^ (4^)lGlk, fc 0,..., n telle que l'étoile de chaque sommet de
Ak soit contenue dans l'un des Wr On construit comme plus haut les recouvrements

°U et Y associés à la triangulation Tw dont les ouverts Vk et Uk sont
suffisamment petits pour que chaque Uk soit contenu dans un Wr

Ainsi donc pour tout recouvrement W de M, il existe des recouvrements °U et
y associés à la triangulation Tw qui sont plus fins que le recouvrement donné W.

3. Le lemme de fragmentation

Soit M une variété différentiable et h un difféomorphisme de M isotope à

l'identité. Il est bien connu que pour tout recouvrement ouvert % de M, h peut
s'écrire: h hl9h2,...9 hm, où chaque ht est un difféomorphisme isotope à

l'identité à support dans un ouvert de °U. Nous allons montrer que le groupe
Ker S (M) jouit de cette propriété (Lemme de fragmentation). Nous aurons besoin
de la proposition suivante:
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PROPOSITION III.3.1. Soit (M, O) une variété symplectique compacte et soit
ht une isotopie dans Ker S(M). Si U et U' sont deux boules de M telles que

U' il existe des isotopies h) et hf dans Ker S(M) telles que:

supp (h])cz U'; supp (/i?)c= M- Û; ht h\- h2t

Ru(h)) Rcû(hlt) 0, pour tout t.

Démonstration. Soit À une fonction C°° à support dans U et égale à 1 sur
Uteiht(Ù) et soit ft une famille de fonctions telle que i(ht)O dfv Si<pt est la
famille de difféomorphismes symplectiques obtenue on intégrant le gradient
symplectique de A • ft, alors supp (<pr)<= U' et <pt ht sur U. Posons:

r1(0 «cr(^) et r2(t) Rcu(ç't\ où <p't= ç'1 - ht.

Soit ut une famille de fonctions C°° à support dans U' telles que:

(i) iit -(r1(r) + r2(r))/Vol(Af) sur U, où

(ii)

Le groupe à 1-paramètre 13 s*-*vst engendré par le gradient symplectique de ut a

son support dans U'- U et l'on a:

Si h) <pry) et fc? (7Î)-1-^î, on a: fi^feî-fe?, supp (fcî)c [/'supp (fc?)

M—U et i?Lr'(^î) i?cû(^?):=0 pour tout t. D'où la proposition.

LEMME DE FRAGMENTATION (IIL3.2). Soit (M, Q) une variété symplectique

compacte et soit € (Ot) un recouvrement ouvert fini de M par des boules Ov
Toute isotopie hteKer S(M) peut s'écrire comme un produit d'isotopies h\e
Ker S(M) à support dans des boules Ot et telles que ROl(h$ 0.

Nous aurons besoin du résultat intermédiaire suivant:

LEMMA III.3.2'. Soit (M, fi) une variété symplectique compacte de dimension
2n et soit °U (t/^)l€lk, fc 0,..., 2n, un recouvrement associé à une triangulation.
Toute isotopie assez petite % dans Ker S(M) est homotope relativement aux
extrémités à une isotopie <Pt qui est un produit <Pt <po,..., <P2* d'isotopies (pi dans
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Ker S(M) à support dans la réunion disjointe Uk U»eik Uk. &e P^us si <PÎc,i est la
restriction de <pl à la boule L/k, on a:

(i) i?Lr^(<pL) O' Pour tout * et tout k<2n, et tout tel
(ii) I,ei2n#Lrf (<P2n,j) 0> pour fou* re/
Démonstration. D'après la proposition III.3.1, il existe des isotopies symplecti-

ques ht et & telles que supp (fcf) <= M- V?, supp (gt) <=£/?,¥; &• /it et Rm(gt)

Le lemme III.3.2' résultera du sous-lemme suivant:

SOUS-LEMME III.3.3. Il existe des isotopies symplectiques h(tk\ fc

0,..., 2n, dans Ker S(M) telles que:

(i) K0) <

(ii) hik)=<

ht sur V° (où Vk

identité sur [/?

identité hors de h

fo(tk-1) hors de Uk

ht sur U V] pour

U vk)

f° (où Uk U

On convient que ftJ"1) idM

(iii) si <K,i est la restriction de ^i (Mk"1))"1 • h(tfc) à l/k, alors:
(a) i^L/^C^Sc^O pour tout i, fc k<2n et pour tout te/
(b) I^i^^Lr^C^n,^0' P°ur tout teL
Le lemme III.3.2' en résultera immédiatement. En effet: h(t2n)= hty h(~1) idM.

Si on pose <pl0 gt • i/tq et <p^ i/r^ pour k>0, on a: ^ <p,5,..., <p2n et chacun
des <Pk vérifie les conditions du lemme.

Démonstration du sous-lemme. Les isotopies h(k) seront construites par
récurence. Pour pouvoir mener à bien cette construction, nous imposerons encore
la condition suivante:

(iv)(k) Etant donné un voisinage Wik) de idM dans C°°(/, Diff°(M)), il existe un
voisinage W(k~l) de idM tel que si h\k"^ et ht sont dans W(k-X\ alors h(k)e Wik\

Les voisinages W(k) seront choisis suffisamment petits pour que si Vfk
Ut.iKiV1:) et si l/ffc(±) M-(LI(6i(Mk"1))±1(M-l7f)), on ait:

(v) V?k c L^k(±). On posera: LTfk= U*k(+) et U'k= Uf\-)
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Construction de fi(r0)

Soit rt une isotopie. On considère les 1-formes suivantes:

a(rt) et p(rt)= i(rs)nds.

Puisque ht est une isotopie dans Ker S(M), la forme @(ht) est exacte d'après la

proposition II.3.3. Il en est de même de la forme a(ht) qui lui est cohomologue.
Soit ft l'unique fonction qui s'annulle sur un voisinage 0 de 4Je V° et telle que
a(ht) dft et soit gt la famille de fonctions à support hors de B telle que
i{ht)il dgv On a alors:

/,(*) I gs(hs(x))ds

pour tout xgM. Soit [/? la boule contenant A, 4? et X, une courbe dans

[/?- C/1 joignant A, à un point F, de a<L^ (voir figure 3).

Nous nous proposons de construire un Ji(f0) qui vérifie, en plus des conditions
énumérées plus haut, la condition suivante, dont l'intérêt n'apparaitra que
ultérieurement pour pouvoir construire h(f1}:

(vi) $Kta(h[0)) -ft(Al) pour tout /

II existe un voisinage W{~x) de idM dans C°°(/, DifF°(M)) dépendant des boules
U°% et V? tel que si ht e W^, alors Vt°c: U°t. On supposera donc que h, e W{~1\
Soit À une fonction C°°, à support dans t/°, nulle sur U° et égale à 1 sur

U;^i ^î° et s°it g] la restriction à L^ de À • gr. Pour tout ;g/0, on choisit une
fonction C°° rj à support dans U0,- V^° telle que r[ =0 et si /^ 1, on ait:

Posons: gj r{ + g]. Si Xf est le gradient symplectique de gt X, gj, alors la famille

Figure 3
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de difféomorphismes symplectiques fi(t0) obtenue en intégrant Xt vérifie les conditions

(i), (iii) et (iv)(0). Comme:

On aura:

Le point At étant dans Vf, on a: hio)(Al) hs(Al) et comme hs est proche de

l'identité, hs(A%) est dans V? pour tout s. Mais sur Vf, gf g[= gt. Il en résulte

que:

La condition (vi) est donc aussi vérifiée.

Construction de h[k) pour k > 1

On suppose construites les isotopies h(tj) pour / ^ fc -1 avec toutes les conditions

requises.
Soit (Àj, À2) une partition de l'unité subordonnée au recouvrement {(M—

V*k), (7*k} de M. Le champ de vecteurs X k1- fî|fc-1) + A2 • /ir sur Mx/ définit
une isotopie Hkt de M qui coincide avec /it sur [jj^k ^J et avec h{k~x) hors de [/k.
Cette isotopie est donc symplectique partout sauf sur Uk - [jj^k V1 UI€iK ^*

D'après le théorème II.2.1, l'obstruction 6k à étendre symplectiquement Hkt

est:

où akt=(Hk)*Q

c parcourt l'espace H2(M, M-Fk), pour tout i et fc.

Par construction du recouvrement associé à une triangulation, Fk Ak x Cn~k

(voir le paragraphe 4). Un petit calcul montre que: H2(M, M—Fk) H2(Fk, dFk)
est isomorphe à JR si fc 1 et est trivial si fc^l. Il en résulte donc que
l'obstruction 6k est nulle si k^ 1.

Occupons-nous du cas k 1. D'après la proposition 1.1.3, iï\ — il da(Hî) et
l'on a: C1 $dCa(H)), où c est un générateur de H2(Fl,dFl).
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Soit v un 1-simplexe orienté de la triangulation partant d'un O-simplexe Ax et
aboutissant à un autre O-simplexe Ar Sur la figure 3, nous avons hachuré un
générateur c de H2(Fl,dFl). Soit c' une 2-chaine contenant c dont le bord est
constitué par v, Kv K} ainsi que par une courbe L située hors de U1 joignant les

extrémités Px et P} de Kt et Kj (voir figure 2). Comme sur c' — c, la forme û\ — Q
est nulle, on a que

n)-n={ n)-a

En tenant compte que sur y, H) coincide avec ht, qu'au voisinage de Kt et Kp H)
n'est rien d'autre que hf* et que la forme a(H)) est identiquement nulle sur L, en
utilisant enfin la condition (vi), on a:

On voit donc que il n'y a aucune obstruction à étendre symplectiquement H).
Pour fc^ 1, il existe donc des isotopies symplectiques h[ik) qui coincident avec H)
hors de U Fkt. Ces isotopies satisfont à la condition (ii). Nous allons les modifier

pour qu'elles satisfassent aussi la condition (iii), ceci sans tuer la condition (ii).
Pour tout voisinage Wtk, fe^ 1, de l'identité dans C°°(/, DiflT (M)), il existe un

voisinage W(k~iy tel que si h^ et ht sont dans Wik~x\ alors h'tik)eW'k. Ceci
résulte de la continuité des opérations avec lesquelles on a fabriqué h[ à partir de
h{k-1} et de hty et du théorème 112A.

Le nombre R^dh^'^Y1 • Kk)\u*) atlM est proche de zéro. Soit sk une
famille de fonctions proches de la fonction nulle, à support dans (Uk - (Jj^k V*1)
pour fc^2n-l, telle que si sk'1 est le restriction de sk à U*, on ait:

L fc.i

Si w»-»r" est le groupe à 1-paramètre engendré par le gradient symplectique de
5^, on prend pour hik) l'isotopie r4 • h't(k\ On a alors:

0 Pour tout i et tout k <2n.

Soit Bo une petite boule contenue dans V? telle que Bofl Uk 0 si 17* ^ t/?. Le
support de l'isotopie if/kt (ft^"1^""1 • ft|k) ne rencontre pas Bo. Par conséquent:

U) 0, pour fe<2n.
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Comme ht ij/ot,..., t/^" et que RCb0(K) - 0> H ^n résulte que:

k=O

La condition (iii) est donc aussi vérifiée. Remarquons que la construction qu'on
vient de faire n'affecte pas la validité de la condition (ii). De plus pour tout
voisinage Wk de l'identité dans C°°(I, Diff°°(M)), il existe un voisinage Wf(k) tel

que si h't(k)e W(k\ alors hik)e W(k\ II suffit pour cela de choisir convenablement
la famille de fonctions sk ci-dessus.

L'isotopie h(tk) ainsi construite vérifie toutes les conditions exigées dans le

lemme.
La grandeur des voisinages successifs à considérer est dictée par la condition

(v). Pour que la construction puisse se poursuivre jusqu'au bout, il faut exiger que
hteW= H?=-i W(k): ce qu'on peut toujours supposer en subdivisant suffisamment

l'isotopie ht. Le sous-lemme est démontré.

Démonstration du lemme III.3.2. Soit °U (Uk) un recouvrement associé à

une triangulation Te (cfr & 5).
Nous pouvons supposer que l'isotopie hteKer S (M) est proche de l'identité,

car on peut toujours écrire une isotopie comme un produit d'isotopies proches de

l'identité.
D'après le lemme II.6.2', ht s'écrit:

ht ifa ' <K, • • • ^2n-

Soit i/f^j l'isotopie égale à i/4 sur Uk et à l'identité en dehors de Uk. On a montré

que -RLrf(iAk,j) O» pour tout / et tout fc<2n, et que Z-Ri/?n(*A2n,j) 0.

Pour tout iel2n, soit xx le barycentre de Afn, et alk le barycentre de la face

commune A^~x aux simplexes 4fn et Aln. Soit G le graphe dont les 0-simplexes
sont les points xt et alk et dont les 1-simplexes sont les 1-simplexes de sommets xx

et alk. Soit T l'arbre obtenue en supprimant dans G H (M- V°) certaines arrêtes.

On considère des boules Blk centrées en alk telles que: Blk fi Ufn= 0 pour tout
jel2n; Bll(U[/?"c0r; Blk U Ulnc Os. Soit q'eKer S(M)va support dans Blk tel

que RBik(a\)= -Ru*»W2n,d- Alors i#,ni • ^n,k= ^njI • </4n,k, avec: ^=^2^ ' «!
et ^2n,k («r)~V2n,k' et SUPP (^2n,«)c °r, ^or(^2n,i) 0- On a donc chassé

l'invariant iî de la boule Or (en l'augmentant dans la boule voisine Os). En procédant
de proche en proche, par ordre à partir des branches du sommet jusqu'au pied de
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l'arbre T, on accumule tous les invariants R au pied de l'arbre dernière boule).
Comme la somme des invariants R était nulle (condition (iii) b du lemme III.3.2'),
l'invariant R est donc aussi nulle dans la dernière boule. Le lemme est démontré.

4. L'ensemble simplicial BG

Pour tout groupe topologique G, on dénote par GAn l'ensemble des applications

continues du simplexe standard An dans G. L'application a:GxGAn^GAn
définie par:

a(g,c) g-c où (g- c){x) g-c{x\ pour xeAn, geG, ceGAn

est une action de G sur GA\ Soit BG(n) le quotient GA7G de GAn modulo cette
action. On identifie BG(n) avec l'ensemble (G, e)(An'0) des applications continues
de An dans G, qui appliquent le premier sommet "0" de An sur l'élément neutre e

de G.

La réunion des BG(n) est un ensemble simplicial BG. En effet, on a des

opérateurs-face dt: BG(n)-*BG(n — l) et des opérateurs-dégénérescence
s/.BGin)—»BG(rc + l) définis comme suit: pour tout ceBG(m) et tout xmeAm
de coordornées barycentriques (f0, tl9..., tm), alors:

(doc)(to,..., rn_x) c(0, r0,..., tn_x) • c(0,1,0,0,..., 0)-1

(dtc)(to9..., rn_x) c(r0,..., tt-u 0, ^ fI+1,..., rn_!) pour 1 ^ i ^ n -1
(stc)(t0,..., rn+1) c(r0,..., ft_!, ^ + rI+1, rl+1,..., rn+1) pour 0 ^ i ^ n +1.

Ces opérateurs satisfont aux relations habituelles entre opérateurs-face et
opérateurs-dégénérescence dans les ensembles simpliciaux.

L'ensemble simplicial BG ne possède qu'un seul 0-simplexe: c'est l'unique
application qui associe au point A0 l'élément neutre e.

De plus BG est un complexe de Kan, c.à.d. qu'il jouit de la propriété
d'extension suivante: soient c0,..., ck_l5 ck+u cm des m-simplexes tels que
àjC^dj-i^ pour i</, iVfc, m>0, alors il existe un (m + l)-simplexe c tel que
dtc c0 pour 15e fe.

On définit sur BG(1) la relation d'équivalence suivante: soient t0 et tx deux
éléments de BG(1), to~ rt si et seulement si il existe un 2-simplexe c e BG{2) tel
que doc ro, d1c T1 et d2c est le 1-simplexe dégénéré (c.a.d. l'application
constante de 1 dans G qui applique 1 sur l'élément neutre e). Les classes

d'équivalence l?G(l)/~ modulo cette relation forment un groupe. Par définition:
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Pour tout cgBG(1), la classe d'homotopie relativement aux extrémités du
chemin c(t), tel, est élément du revêtement universel G de G. De plus deux
éléments c0 et cx de BG(1) définissent le même élément dans G si et seulement si

cQ~cx. Il en résulte:

G et H1(BG,Z) H1(tt1(BG))

Soit Tt un 1-simplexe. Comme BG n'a qu'un zéro-simplexe, rt est un cycle. Ce

cycle est homologue à zéro si et seulement si il existe des 1-simplexes at(t), bt(t)
tels que rt soit homotope relativement aux extrémités au chemin:

où

[aM 6,(0] ^

En particulier, on doit avoir (si rt est homologue à zéro):

Soient o-, tgBG(1). Désignons par /«^t le conjugé de r par o-(l): c'est le

1-simplexe ri->cr(l)r(r)(o-(l)r1 On a:

PROPOSITION III.4.1. Powr fous 1-simplexes a, t£ J3G(1), fe 1-simplexes r
et 4(i)T sonr homologues.

Démonstration. Les 1-simplexes c1(0 [or(l), t(0] et c2(0 [cr(0, t(O] sont
homotopes par l'homotopie Hst [cr(s + t — s • t)9 r(t)]. Comme c2(t) est

homologue à zéro, il en est de même de c^t): ce qui signifie que r(t) est

homologue à o-(l)r(0(o-(l))~1. cqfd

Supposons maintenant que G soit un groupe de difféomorphismes d'une
variété différentiable M. Pour tout n, un élément ceBG(n) définit un feuilletage
sur AnxM transverse aux fibres de la projection An xM-+An. La feuille passant

par (r, x)eAnxM est l'ensemble \JtGAn ct(x). Le support d'un tel n-simplexe est
défini comme étant le plus petit fermé K^M tel que le feuilletage induit sur
Anx(M-K) par c soit horizontal, c.à.d. que ct(x) x pour tout tel et tout
xeM-K.

Soit (M, O) une variété symplectique. Nous allons définir un sous-complexe
BKerS(Af) de BGn(M) comme suit: un n-simplexe c de BKer S(M) est une
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application diffèrentiable de àn dans Gn(M) telle pour tout chemin y:I-*An, si

c(t) est le chemin c ° y:I-*Ga(M), alors la forme i(ct)(l est exacte pour tout t,

ou, ce qui revient au même, la classe de ct dans Gn(M) est dans Ker S(M).
Dans la suite U désignera une boule fixe qui est l'image dans M d'une boule

de R2n par une carte canonique. Soit Gv le sous-groupe de Gn(M) formé des

éléments de Gn(M) à support dans U. Nous définissons un sous-complexe
BKer Rv de BGU comme suit: un n-simplexe de BKer Rv est une application
différentiable c de 4" dans Gu telle que pour tout chemin différentiable y:/—>
4n, si c(t) est le chemin c°y(t)9 alors iMftfin 0, où /, est l'unique hamiltonnien à

support dans U du champ de vecteurs ct, c.à.d. que la classe de ct dans Gu est
dans Ker Rv.

5. Le groupe H^BKer S(M), Z)

On a une application naturelle de BKer Rv dans BKer S(M). Le but de ce

paragraphe est d'étudier l'homomorphisme induit sur le 1er groupe d'homologie
entière. On a:

THÉORÈME III.5.1. Soii (M,fl) une variété symplectique close et connexe.

L'homomorphisme <P: ff^BKer Ry, Z)-^H1(BKer S(M), Z) induit par la flèche
BKer Ru-* BKer S(M), est un isomorphisme.

La démonstration de ce théorème utilise les lemmes suivants:

LEMME III.5.2. Il existe un recouvrement fini W de M par des boules Wk
telles que si Wt 0 W^ 0, alors Wt C\ W} est une boule. De plus, il existe pour tout i
et pour tout j des isotopies ç\ e Ker S(M) et H\Je Gv telles que:

w,)) <pKW,n w,).

Dans la suite, nous considérerons un recouvrement aU {Ukl) associé à une
triangulation Tw>, tel que si Ul et U2 sont des ouverts de °U avec Ut n U2^ 0,
alors Ux U U2 soit contenu dans une boule de W. Nous envisagerons aussi le

recouvrement W W U { U}.

LEMME IIL5.3. Toute l-chaine dans BKer Rv qui borde une 2-chaine c de

BKer S(M) borde alors une 2-chaine c=^k^k dont les 2-simplexes ck ont leurs

supports dans les ouverts du recouvrement W.

LEMME III.5.4. L'homomorphisme HxCBKer JR^, Z)^H1(BGLr,Z) est

injectif.
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Démonstration du théorème III.5.1

(a) <P est injectif

Soit a un élément de H^BKer RU9 Z) tel que <P(a) 0. Si T 2>fc est une
1-chaine représentant a, alors r borde une 2-chaine c Y,A dans BKerS(M).
D'après le lemme III.5.3, r borde aussi une 2-chaine c=£kck dans BKer S(M)
telle que le support de chaque ck soit dans un ouvert de W. Chaque 1-simplexe
djCk a donc son support dans une boule de W que nous dénotons par W]k. Soit <plk

l'isotopie dans Ker S(M) telle que <pf(Wk)<= U. On convient que si Wk U,
alors <p]tk idM. On a:

j=0

Si i\fk est une isotopie dans Ker S (M) telle que \\f\ (supp (ck))c: [/, alors:
est homologue à fk. En effet:

2 2

ck))= ^] ("~i)J ^^(ck)= ^ (—îy/^k^Cfc).

D'après le lemme III.5.2, il existe une isotopie St dans Gv telle que:

s^^supp (ck) n w/k)) <pf(supp (ck) n wjk).

Il en résulte que:

D'après la proposition III.4.1, les 1-simplexes I^{àfk) et I^(djCk) sont
homologues. Ceci entraine que t est homologue à à(ZkI^(ck)). Donc t est

homologue à zéro dans Hx(BGuyZ). D'après le lemme III.5.4, t est aussi

homologue à zéro dans Hj(BKer RUy Z). D'où l'injectivité.

(b) <P est surjectif

Soit [h] dans JF/^BKer S(Af), Z). D'après le lemme de fragmentation, [h] peut
être représenté par une isotopie ht qui est un produit ht=Hlkh\k où hlke
Ker S(M), supp (ft'*)c Uk et It,k «^(h;*) 0.

D'après le lemme II.8.2, il existe pour tout i et k des isotopies <p\k dans

Ker S(Af) telles que (plk(Uk)^ U. Le conjugé /^(ft1,*) du 1-simplexe hlk par <pf a
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son support dans U et il est homologue à h? d'après la proposition III.4.1. Il est

clair alors que la classe d'homologie [h] du 1-simplexe YlltkIV[k(Kk) appartient à

HiCBKer Rjj, Z) et que <2>([/t]) [h]. D'où la sur jectivité.
Démonstration du lemme III.5.2. Commençons par réduire le groupe structural

du fibre des repères sur M au groupe U(n) c: Sp(n): c.à.d. que nous
considérons une métrique hermitienne compatible avec la structure symplectique.

Soit y le centre de la boule U. D'après la remarque II.3.4, il existe pour tout
point x e M, une isotopie symplectique <p*e Ker S(M) telle que <pï(jc) y. On peut
supposer que la dérivée en x de <pï,4c(<PÏ)> envoie la métrique hermitienne de

TXM sur celle de TyM.
Pour tout x g M, on considère une boule ouverte géodésique Wx de centre x et

de rayon r(Wx) 8X suffisamment petit pour que <p\(Wx) <= U. On sait (voir par ex.

[9] p. 166-167) que toute intersection non vide Wx C\ Wx, est difïéomorphe à une
boule.

Soit a : l/-*R2n un système de coordonnées canoniques tel que dya : TyM-^
R2n soit un repère hermitien. Alors pour tout jc€Àf, dx(a°(pf): TxM-»R2n est un
repère hermitien. Si x' est un point proche de x, alors dx(a • <pî): Tx>M->R2n est

proche d'une application hermitienne. Ainsi si les boules Wx sont suffisamment

petites, tout point z e Wx H Wx> est à la fois proche de x et de x'. Il en résulte
donc que pour tout z e Wx H Wx l'application:

/x,x'U) dia vî(z))(a • <pf • ((Pï)-1 • a'1)

sera proche d'une application hermitienne. Plus précisément, pour tout x e M, il
existe un nombre positif ôx < 8X tel que si r( Wx) < ôx, alors pour tout u e Wx H Wx

¦ .j Ml

où e est le nombre dont l'existance a été démontré dans la proposition 1.4.2. Le
recouvrement cherché est un recouvrement fini Wu W2,..., Wk extrait du
recouvrement {WJxgM par les boules géodesiques Wx de rayon inférieur à ôx.

Soient <pj les isotopies correspondantes aux Wt telles que <p\(Wt)^U et soient

ftJ(z) les changements de cartes:

ft](z) d(a v!(z))(a • <p\(<p\)~x ' a"1).

D'après la proposition 1.4.2, il existe une isotopie symplectique H]1 à support dans

a(U) telle que Hl{ soit égal à ««pVC^'i)"1»"1 sur a • <p\(Wt O W,) Posons: H)J

a'1-H?-a, alors W'eGu et H1! est égal à ^-((pl)'1 sur <pi(WtnW,). Nous
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avons donc démontré que:

D'où le lemme III.5.2

Démonstration du lemme III.5.3. La démonstration de ce lemme est délicate.
Elle se fera en plusieurs étapes.

Etape 0. Soit c un p-simplexe de BDifF° (M). Par des subdivisions barycentriques
successives, on décompose c en une somme de p-simplexes "petits." Par "petit"
simplexe, nous entendons que le feuilletage correspondant sur ApxM soit
suffisamment proche du feuilletage horizontal dans la CMopologie. Dans la suite,

nous supposerons que les simplexes considérés sont "très petits " La "petitesse"
sera explicitée s'il le faut et dépendra des constructions que nous serons emmenés
à faire.

Etape 1. Soit c un petit 2-simplexe de BKer S(M) et soit de =If=0(-l)J d,c

son bord. Chaque chemin df : 1 —» Ker S{M) est une isotopie que nous

désignerons par {df){i). En appliquant le lemme de fragmentation à chaque
isotopie (djC)(t), on trouve des isotopies symplectiques hJk(t), k —1, 0,..., 2n
(dim (M) 2n), telles que:

fiUi(0 hors de Uk

K(t)=<
(d,c)(t) sur U V1

pour fc^O et on convient que hLi(t) idM.

Si on pose:

On a:

(d,c)(t) s'o(r),..., s'2n(0 et supp (sUO) c Uk.

Explicitons quelques notations:
Nous commençons par ordonner les boules {Uk}ieIk, k 0,..., 2n. Les boules

U^ porteront le numéro / et seront désignées Ur Pour fc^ 1, une boule Uk sera
désignée Um si wi (Lgk-iNs) + i, où Ns est le cardinal de Is.
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L'isotopie sJk(f) a son support dans la réunion disjointe Uk U ieJk U*. Soit
crJm(0 l'isotopie égale à sJk(t) sur [/* Um et à l'identité en dehors.

Soit N N0 + - • - + N2n. On pose StJ1(0 orI1(M) pour O^f^l/N et pour

,...,*0(0 crl -fc)

pour fc/JVSf£(fc + l)/JV; fc l,2,...,m-l.
Pour tout /, le 1-simplexe f»-»&k(O est une somme des 1-simplexes t*-*cr*n(t)9 à

support dans les boules Un; il est évident que 5t/2V(l) (âJc)(l) et que les chemins

(djC)(t) et ^uit) sont homotopes. Par changement de paramètres, on peut
supposer que le 2-simplexe standard A2 est {(x, y) e R2 | 0 =^ y ^ x ^ 1}. Soit H l'application

de dA2 dans Ker S (M) définie par:

H(r, 0) £*(*); H(r, 0 H(l, 0 t e I.

Désignons par A2 {(jc, y)eR2|O^y^x^N}. La composition de l'homothétie
de rapport 1/N et de l'application H est une application de dA2 dans Ker S(M),
notée encore S telle que:

pour et
On interprète H comme une 1-chaîne (donc un 1-cycle) de BKer S(M).

y,

A

X
Z- ^

A/
(NN)

(Ni)

(kO)

Figure 4

(NO)

2: Construction d'une 2-chaine dont le bord est S et dont les 2-simplexes
ont des supports dans des ouverts de W. Pour ce faire, nous aurons besoin de
construire pour tout couple d'entiers (fe, ï) tels que 0^l,k^N, des

difféomorphismes $k t e Ker S(Af) tels que que pour tout k, l, chaque
difféomorphisme tfe.i^M-i» ^ki * ^Z-u && son support dans une boule de W et tels
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que:

avec 1 ^ fc,

(i) Construction des ifjk^ pour 0 ^ /, k ^ No

On pose:

(VNo,o-H, sur U U?

[identité ailleurs

où:

f^Lo'^NcNb SUr U ^?
Hi=< *^1

[identité ailleurs

pour k, l^ 1 et Ho= idM, et ^No>o, ^NotNo définis par (*)

II est évident que:

supp (iffkj • i^kli,/) ^ f^; supp (0^^ • t/ffcj-i) ^ L^

(ii) Construction des il/Kl pour N0 + l^k^N0 + Nl9 1 ^ /^No.
Nous allons utiliser le lemme III.5.5 ci-dessous. Sa démonstration sera donnée plus
loin.

LEMME III.5.5. Soit <pk le diféomorphisme égal à <p feo,jvo* ^w>* *I*n]o'*I*no,o

sur la couronne Ck 0%— V^ ef à Videntité en dehors de Ck. (Ceci a un sens

puisque <p a son support dans la réunion disjointe des couronnes Ck.) Alors:
O, pour tout k.

Le lemme III.5.5 et la proposition III.1.1 impliquent qu'il existe pour tout i, /
des diflEéomorphismes al} e Ker S(M), à support dans t/f1 et égal à <p sur Vf1 fl C}

(voir condition (v) du lemme de fragmentation et la figure 5)
Considérons les difféomorphismes:
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Pour

où Tk est égal à </^,0' ^No+Nlto sur Uj^k ^j1 e* à l'identité ailleurs. Pour

a son support dans 17?. En effet, supp
les boules Itf sont disjointes.

D'autre part:

j^?*> supp (hki • f/? et

P «

a son support dans l/?. En effet, Tk • feo+k,o est égal à i^nLo Qui est égal à i/r^sl
hors de U?. Donc pour tout xjë U?, Tfc • ^+k,o(^) ^i,iW- Le Point feLi(^) ne
rencontre pas le support de hkl. Il en résulte que p(x) x, c.à.d. que supp (p) ci

II est clair que:

a son support dans t/J
Pour fc^2, on voit facilement que:
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a son support dans l/'k\ En effet, visiblement supp (0)<= UM U?\J U]. Si xe U°l9

où lf?n l/k 0, alors Jikii,r *lf~N0,i(x) f£ U\ et comme hors de £/k, Jiki hk_u, il en
résulte que 0(x) x.

Soit Ù° la réunion des boules Iff qui rencontrent l/k. Pour xe l/,1, jVfc et

UjD Û° =0, il est facile de voir que 0(jc) jc. Si xeÛ° et x^ [/fc1, alors

if,iïJx)éUl Donc (hk,r^-^r^k-ij)(^ivli)U) ^U). Autrement dit,
6(x) x.

La propriété suivante des difféomorphismes ilfNo+Nlti sera utile dans la suite

(pour montrer la cohérence des conditions (*) dans la construction (iii) ci-dessus).

<fero+N,,i «feu sur U Vj

En effet sur cet ensemble, i(fNo+Nul * ^nI+nuo est égal au difféomorphisme H
suivant:

{^n0,i^nI,n0'^n,n0^n]o sur U U?
H < i*'

[identité ailleurs.

Comme ^0i Ïnono sur

vo sur y U)
«=< ¦•--¦•

^identité ailleurs.

Il en résulte que sur \J,*no+Ni Vj9

(iii) Construction des $kl pour l^l^N0, k>N0 + Nx et k, 1>NO

Cette construction se fera par récurence dans l'ordre des / et k croissants en
posant:

ipk-u hors de Uk

ilt^i-x hors de U (*)

«An,* sur U Vr



218 AUGUSTIN BANYAGA

Nous laissons au soin du lecteur de vérifier que ces conditions sont cohérentes.
Elles définissent donc des difféomorphismes symplectiques i//ktl e Ker S (M) en
dehors de Uk H Ut - \J}^kVr II se pose alors le problème de les étendre symplec-
tiquement à toute la variété.

En reprennant les anciennes notations, Uk et Ul sont de la forme Uk Urv
U{ U]'f. Comme / < fc, on a que r' ^ r. Si r' r, alors Uk D Ut 0 et i//kl est déjà
défini parout. Supposons donc que r' <r et que Uk H U^ 0.

u\- u v)
\ ]*&r I

ukn ut- u v, (^-y vjnu;:.
Chaque composante connexe de l'ensemble ci-dessus est l'ensemble Gr£ décrit au
paragraphe 5. Nous avons vu que cet ensemble est homéomorphe à Dr~r'xAr'x
C2n~r. Un petit calcul montre que:

f
1

R sir letr' O

0 dans les autres cas.

Dans le cas qui nous intéresse (c.à.d. l^/^iV0, fc>N0 + N1 et fc,/>N0), les

groupes d'homologies relatifs ci-dessus sont tous nuls. D'après le théorème II.2.1,
les diflEéomorphismes i^M s'étendent symplectiquement à toute la variété.

Considérons les triangles Tk de sommets (fc, fc), (fc, fc -1) et (fc -1, fc -1) et les

carrés de Ckl de sommets (fc, /), (fc-1, /), (k-1,1-1) et (fc, l-l) dans A2 (voir
figure 4).

Le sous-groupe des difféomorphismes de Ker S (M) à support dans une boule
est exactement le groupe de tous les difféomorphismes symplectiques à support
dans cette boule. Ce groupe est localement contractible.

Comme tous les difféomorphismes \\fktl sont proches de l'identité, il existe donc
des isotopies symplectiques ht, gt, ut, vt telles que:

supp (ht) c Uk supp (&) e Uk supp (14) <= l/, supp (vt) c JJX

De plus on peut s'arranger pour que si l/'fcn[/, 0, alors ht gt et ut vt. D suffit

pour cela de les construire ces isotopies dans l'ordre suivant: pour / donné, on
construit d'abord les isotopies relatives au carré CNtb ensuite celles relatives à

Çv-i,i> CN_2,i, etc., / 2, 3,.... Ces isotopies fournissent donc des applications
différentiables par morceaux

Afc : dTfc -» Ker S(M) et iiKl : dCKl -> Ker S(M).
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De nouveau par contractibilité locale du groupe des difféomorphismes symplecti-
ques à support dans une boule, ces applications s'étendent, après lissage, en des

applications différentiables:

Ak:Tk->KerS(M) et MKl : CM->Ker S(M)

telles que supp (Ak(Tk))c Uk et supp (MM(Cw))c: U'kU U{.

Considérons la 2-chaine c somme de toutes les 2-chaines Ak et Mkl. On a

alors que de H, où S est le 1-cycle de BKer S(M) décrit à la fin de l'étape 1.

Soient Uk et Ut tels que UkC\Ul 0. Comme Ht gt et ut vt, il en résulte que
le feuilletage sur les faces opposés de dCkA x M sont les mêmes. Ceci veut dire que
si UkD Ut 0, alors le bord du 2-simplexe MM est nul.

Si c est la 2-chaine obtenue à partir de la 2-chaine c, en laissant tomber les

2-simplexes Mkl tels que leur support est dans U'kU Ui avec UkC\ U1 0, alors on
a encore' dc dc S.

D'après la construction du recouvrement W, tout 2-simplexe de c a son

support dans un ouvert de W. La 2e étape est terminée.
Soient T £kTk une 1-chaine dans BKerjR^ et o- X»cl une 2-chaine dans

BKer S(M) telle que da r.
Pour chaque 2-simplexe ct de a, on fait les constructions des étapes 0, 1, 2. Le

fait Tk est dans BKer Ru nous assure que la construction de l'étape 2 est possible.
En effet chaque rk fait partie du bord d'un 2-simplexe cr et nous avons dû utiliser
le fait que les invariants R des 1-simplexes du bord sont nuls.

Soit ct la 2-chaine obtenue à partir du 2-simplexe cx par le constructions 0, 1,

2, alors la 1-chaine r d(£lcl) est homologue à r dans H^BKer RU9 Z) et c'est
bien le bord d'une 2-chaine dont les 2-simplexes ont des supports dans les ouverts
de W.

Le lemme II.8.3 est démontré.

Démonstration du lemme III.5.4

Soit T X7*k une 1-chaine de BKer JR^ qui borde une 2-chaine c=Xcfc de

ru. Par subdivisons barycentriques, on peut supposer que tous les 2-simplexes
ck sont petits et en particulier que pour tour x e A2, alors ck(x) e Gu est proche de
l'identité. Par contractibilité locale de GU9 il existe une isotopie canonique
t •-> ck(x) dans Gv de ck(x) à idv. On a:

Ru(ck(x))

où ft est le hamiltonnien à support dans U du champ de vecteurs ck(x).
L'application *•-> Rv(ck(x)) de A2 dans R est continue.
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Considérons une fonction g ce classe C°° à support dans U telle que JM gûn
1. Si <pkfX est le groupe à 1-paramètre engendré par le gradient symplectique de

—Ru(ck(x)) • g, on a: Ru(<pl,x ' ck(x)) 0 et l'application ck :A2 —> G^ définie par

est continue. Pour tout k, ck est donc un 2-simplexe de BKer Rjj.
Supposons que xedâ2 et que ck(x) soit un t^x). Il existe une petite isotopie

t\(x) telle que MxIJ ftdtAOn 0, où ft est le hamiltonnien à support dans U de

i\(x). Cette isotopie est homotope relativement aux extrémités, à l'isotopie
canonique de t^jc) à idjj. Donc Ruir^x)) 0 et rx{x) rx{x). On voit donc que

r dc où c X4 le lemme est démontré.

Démonstration du lemme III.5.5

D'autre part:

En effet les deux membres de l'équation précédente sont bien définis car
*An,no* ^n?o et <Ano,o ont leur support dans U°. Par construction de ces

difféomorphismes (voir lemme de fragmentation), chacun des termes du membre
de droite dans l'équation précédente est nul. Ainsi donc Ruo((pl) 0, ce qui
démontre une des affirmations du sous-lemme et prouve que Rcvo((pt) Rcvo(cp).

Or:

Rappelons que:

s}(l) • • • sUD

(voir fin de l'étape 1)

Soit A une boule contenue dans V? et telle que A H l/j0 0 si
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Comme chacun des s] ci-dessus a son support hors de A, on a:

/ \ / \ / \
#cv?(<p) #ca(<p) #ca^11 4(1) )-#ca^11 Wl) 1-i^cA^ll Sfc(l)j.

Or d'après le lemme de fragmentation:

I RCA(s'k(D)= I Ruk(s>k(l)) 0.

Le lemme est démontré.

6. Les difféomorphismes symplectiques du tore

Le tore T71 est le quotient de Rm par Zm. Soit p: Rm^Tm la projection
canonique. Nous désignerons par x un relèvement dans Rm d'un x e T171. Pour
tout aeT™, l'application p^T™-*!™ définie par:

est un difféomorphisme de T™ de classe C°° isotope à l'identité, qu'on appelle la

rotation d'angle a. Ainsi T™ s'identifie à un sous-groupe de Diftoo(Tm)0. Le
théorème de conjugaison suivant est dû à Herman et Sergeraert [8], [15].

THÉORÈME. Soient a (al9 a2,..., am) un point de Rm, c > 0, et d > 0 tels

que pour tout k (k0, ku fcm)eZx(Zm-0), on ait: |fc-a|>c/|fc|d avec \k-a\
ko+k1a1 + k2a2 + - • - + fcmam et |fc| fc1 + fc2 + - • - + fcm. Soit a p(a)eTm. H existe

un voisinage V de pa dans DifP (r^ et une application s : V^DifT (r)0 x T™

telle que pour tout çeVsi s(<p) (^, |8), alors <p Pp' iA~a * Pa*A- &e P^us 5I <Pr ^r une

famille dans V qui dépend différentiablement d'un paramètre t et si s(q>t) (if/0 fr),
alors il/t et fit dépendent différentiablement de t

Considérons maintenant le tore de dimension 2n. La forme symplectique
dx1Adx2 + dx3Adx4 + - • - + dx2n_1 a dx2n de R2n est invariante par translation.
Elle induit donc une forme symplectique fl sur Tln. Pour a 6 T2n, la rotation pa
laisse invariante il. il en résulte que T2" s'identifie à un sous-groupe de

Diff^(7^n)0. Comme la forme symplectique de Q, de T2"1 est à périodes entières,
il résulte de la remarque II. 1.2 (b) que S envoit tt^G^CT2")) dans H1(T2n,Z).

Nous allons montrer que l'image de Tr^G^CT2")) par S est H1(T2n,Z). Pour
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tout xeR2n, la famille d'applications ptp(x):T2n-*T2n définie par

yeT2", tel,

est un chemin différentiable dans Gn(T2n). On obtient ainsi une application / de
R2n dans GJJ<2n). On voit immédiatement^que / envoit Z2n dans TT1{Gn(Tln)).
D'autre part, S envoie surjectivement Gj'f2'1) sur H1(T2n,R) R2n. Calculons
S(j(x))9 pour x€R2n.

Soit (cl9 c2,..., c2n) une base de H1{Tln,X). On prend pour ct les cycles
"rotations autour du ieme facteur" c.à.d. les images par p des courbes c, :

définies par:

ct(t) (0, 0,..., 0, t, 0,...,0) (t à la ieme place).

Pour tout i soit Hl:IxI^T2n l'application:

En passant au revêtement universel, elle s'écrit:

Ht(s, t) (txl9 tx2,..., txt_u txt + s, txt+t,..., tx2n).

On a donc:

-£-- _
f—jc1+1 dt/\ds si i est impair
1+jc,_! dtAds si i est pair.

Il en résulte que:

si i est impair
si i est pair.

On a donc montré que: pour tout x {xu x2,..., x2n

(~x2, x1? -jc4, jc3, -x2n, ^
Il en résulte que S envoie surjectivement 0^(7^") sur H1(T2n,X). De plus nous
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venons de montrer:

LEMME III.6.1. La restriction de Vhomomorphisme S au sous-groupe T2" de

GniT2") est Visomorphisme J:T2n-^Hl(T2n, R)/H1(T2n, Z) R2n/Z2n t2n
défini par

Le résultat principal de ce paragraphe est le suivant:

THÉORÈME III.6.2. Le groupe H^BKer SCT^Z) est

Démonstration. Montrons d'abord que KerS(T2n) [G^(T2n), G^CT2")]. Soit

^un chemin différentiable dans Ker S(7^n) représentant un élément <p de

Ker S{Tln). Soit pa une petite rotation satisfaisant à la condition arithmétique du
théorème de Herman-Sergeraert et soit V un voisinage de pa dans Diff°°(7^n)0
qui lui correspond dans ce même théorème. Pour m assez grand, l'isotopie
fc^^wnDf-^ttk-D/itDr)"1 est dans p-\V) H Ker SiT2"). Il existe donc un 7*e
DifT(jT2n)0, fôeT2" dépendant différentiablement de t tels que:

On a alors:

* ïnZïY c.à.d.

La condition arithmétique sur a e T2" implique que les composantes de

â eR2n sont linéairement indépendantes sur Q. Il en résulte que a engendre un

sous-groupe dense dans T2n. La forme {(yï)~~l)*Q, étant invariante par pa9 est
invariante par T2". Elle s'écrit donc:

coj" ((yf)-1)*/} X a\j dxt a dXj ; a|, constantes.

D'autre part, comme les formes w^ et (l sont cohomologues, elles ont les mêmes

périodes. Il en résulte que tous les coefficients sont égaux à 1. Donc (o^ 13, c.à.d.

que yfe G^CT2"). D'autre part, puisque hkt est dans Ker SiT2") pour tout f, on a:

O S(fcf S(p(^_a)) - S(^k) + S(p

Il résulte du lemme III. 6.1, que 0^ 0. Donc h1? p^1 • (vï)'1 - pa • vï est un
commutateur dans Ga{T2n). Par conséquent <pt htm,..., h\ est dans

^]. Ceci montre que K^(T2n)c:[Gf2(r2n), S^(rn)]. L'autre
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inclusion étant évidente, on a:

K^CT

Si on pose:

On a:

II est immédiat de voir que y* g Ker S(T^n). D'après le lemme de fragmentation, il
existe des isotopies symplectiques y**1 à support dans des boules U} telles que
-k= yk,l yk,2^ ^ yk,N Q

Comme p, et pbk sont des difféomorphismes proches de l'identité, il existe des

boules Bj et B\ telles que:

U]UPZ1(UJ)czBJ et ^Up^tycB;.
Considérons des boules D; et DJ telles que fî^D, et B'}<^D'r II existe des

isotopies symplectiques /Jk et gjk telles que /|k (respectivement gjk) ait son

support dans D, (respectivement dans DJ) et soit égal à pM sur B} (resp. égal à pbk

sur B'j). Pour trouver ces isotopies, on reprend par exemple le raisonnement du
début de la démonstration de la proposition III.3.1). Donc supp (pZ1y^lpu) e*

supp (fhk)~x • y^l'fhk) sont contenus dans p~*(£>0 (/J,fc)~1(t/,) et sur cet ensemble,
PZ1'PÏ'l'Pu (/U)~1"y<c'I#/U- II en résulte que l'isotopie hkt s'écrit:

V (f[(fk,,r •¦ y? •fj • fi (gU-.

Toutes les isotopies qui interviennent dans cette formule sont dans KerSCT2").
Les fkt et gkl sont dans KerSiT2") parce qu'elles ont leur support dans des

boules.
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Si dans la formule ci-dessus, on change l'ordre des termes, l'isotopie ainsi
obtenue est l'identité. Ceci signifie que l'image de h* dans H^Ker SCT2")) par
l'application canonique de Ker^CT2") dans K^(r2n)/[KciTS(T2n), Ker^T2")]
est nulle. Il en résulte que H1(Keïr^(T2n)) 0. Comme H^BKer S(T2n),Z)

^2") le théorème est démontré.

7. Fin des démonstrations

Soit (M, û) une variété symplectique close et connexe de dimension 2n.

D'après le théorème III.5.1, on a:

H^BKer S(M), Z) H^BKer JR,,, Z) Hx(BKer SCT2"), Z).

Mais s'après le théorème III.6.2,

Donc H1(BKerS(Af),Z) O, ce qui signifie que Ker S(M) Ker S(M) est un
groupe parfait. On a:

Ker S(M) [Ker S(M\ Ker S(M)]c= [G^(M), 8^

c.à.d.

L'affirmation (i) du théorème II.6.1 est démontrée.

On voit de même que Ker S(Af) [Gr2(M), Gn(M)].

Pour montrer que Ker S(M) est un groupe simple, il suffit de montrer que si <p

est un élément de Ker S(M) différent de l'identité et si N(ç) est le sous-groupe
normal engendré (dans Ker S (M) ou Gn(M)) par <p, alors N(cp) Ker S(M). Il
suffira de démontrer l'inclusion Ker S(Af)d]V(<p).

Soit /zeKer S(M). S'après le lemme de fragmentation, h \\lhl où les hx sont
des éléments de Ker S(M) dont les supports sont dans des boules Uo ht e Ker R^ ;

de plus ces boules sont telles qu'il existe des difféomorphismes symplectiques
Ht e Ker S(M) tel que H^U^cz u, où U est une boule telle que UD<pU=0.
Donc ht Ht • ht • H~l e Ker jR^; or la nullité de Hx(BKer R^ Z) implique que
Ker Rv est parfait. Donc ht =\\k [alfc, blk] avec alk, blk e Ker Rv.
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Montrons que si u, v e Ker Rv, alors [u, v] e N(<p). En effet, soit g e Ker S(M)
tel que g identité sur U, et U H g<pU= 0. Si <px g • <p • g"1, on a: [w, v] [[m, <p],

[v, <pj]. Comme [w, cp] et [v, <pj sont dans N(<p), [m, i;]e JV(<p).

Il en résulte donc que fyeNiç). Alors hx (H,)~1'fcI -H, eN((p). On a donc
montré que h =n» ^ eN(<p). Donc Ker S(M) est simple. Le théorème II.6.1 est
démontré.

Remarque. L'argument ci-dessus est dû à Thurston (voir [4]). Il l'employait
notamment pour montrer que si M est une variété différentiable de dimension n,
alors la perfection du groupe des difféomorphismes à support compact de Rn

implique la simplicité de DiflT (M)o. Cet argument rend les mêmes services que le
théorème d'Epstein [7].

Démonstration du théorème II.6.2. Supposons que M est non compacte et soit
h e Ker JR. D'après le lemme de fragmentation (qui est toujours valable aussi dans
le cas où M est non compacte), alors h h1-h2,..., hr, où supp (ht) c boule Ul9 et
hteKerRVi. On répète l'argument de Thurston ci-dessus. D'où le théorème.

Démonstration du théorème II.6.3. Soit M une variété différentiable de dimension

2n 5*4 munie d'une forme symplectique exacte fl. On a les homomorphismes
surjectifs:

S : Gn(M)-*Hl(M, R) (le groupe r est trivial)

R :Ker S(M)->R (le groupe A est trivial)

et fi coincide avec R sur Ker S (M).
On a donc l'homomorphisme X S©^:Gr2(M)-»ff^(M,R)0R dont le

noyau Ker X est exactement Ker!?. Comme Keri? est simple et que Ker£
contient [Ga(M), Gn(M)\ comme sous-groupe normal, on a: Ker£
[Ga{M), Gn{M)\ D'où le théorème.
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