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Sur la structure du groupe des diffecomorphismes qui préservent une
forme symplectique

AUuGUSTIN BANYAGA

Introduction

Soit M une variété différentiable de classe C” paracompacte connexe de
dimension n. Si Diff“(M), est le groupe des difféomorphismes h de M de classe
C* tels qu’il existe une C*-isotopie H de h a I'identité, fixe en dehors d’un
compact, les travaux d’Epstein [7], Herman [8], Mather [11] et Thurston [17],
montrent que pour tout k =0, 1,...,% k# n+1, Diff*(M), est un groupe simple.

Par contre, si M est une variété différentiable de classe C” close et connexe de
dimension n et si G}, est la composante connexe de I’identité dans le groupe des
difféomorphismes de M de classe C”, qui préservent une forme-volume sur M,

» D’est pas simple. Thurston [16] a montré que l’abélianisé H,(Gy,)=
Giu/G}y, Gl de Gjy est isomorphe a un quotient de H" (M, R), mais cepen-
dant que [G},, Gi4] est un groupe simple.

Nous démontrons ici un résultat analogue pour le groupe des
difféomorphismes qui préservent une forme symplectique. Plus précisément, soit
(M, 2) une variété différentiable de classe C™ close et connexe, munie d’une
forme symplectique {2 et soit G,(M) la composante connexe de I’identité dans le
groupe des difféomorphismes de classe C* de M qui préservent la forme (2. Nous
démontrons que H,(G,(M)) est isomorphe a un quotient de H'(M,R) et que
[Ga(M), Go(M)] est un groupe simple. La démonstration de ce résultat occupera
le chapitre III de ce travail. L’idée de la démonstration est de raffiner et d’adapter
au cas symplectique les techniques employées par Thurston pour démontrer les
résultats de [16] et [17].

Nous obtenons aussi quelques résultats dans le cas ou la variété symplectique
(M, 2) est non compacte. Le résultat fondemantal dans le cas non compact
(théoreme I1.6.2) dit qu’un certain sous-groupe de [G,(M), G,(M)] est simple.
Par exemple il découle immédiatement de ce théoréme qus si (M, {2) est une
variété symplectique ouverte, connexe dont le HI(M, R)=0, alors
[Ga (M), Go(M)] est simple et H,(G,(M)) est isomorphe a4 un quotient de R.

Nous démontrons aussi que si {2 est exacte et que si la dimension de M est au
moins 4, alors H,(G,(M))=H:(M,R)®R et [G,(M), Go(M)] est simple. Ceci
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est une conséquence du théoreme I1.6.2 et de quelques constructions données au
chapitre II.

Les méthodes de ce papier et le résultat principal (théoréme I1.6.2) ont permis
a G. Rousseau [13] de déterminer la structure du groupe G, (M) dans le cas ou M
n’est pas compacte. En particulier, il retrouve par une méthode différente notre
résultat ci-dessus concernant les variétés a formes symplectiques exactes.

Le chapitre I est consacré aux préliminaires. Nous y rassemblons quelques
notions et résultats classiques qui interviendront dans la suite et nous y
démontrons quelques faits qui seront utilisés dans le courant de ce travail.

Au chapitre II, nous construisons les invariants qui jouent un rdle clé dans
I’étude du groupe des difféomorphismes symplectiques. Ces invariants se trouvent
étre des homomorphismes de G,(M) ou de ses sous-groupes a valeur dans
certains groupes abéliens. Les résultats de ce travail, énoncés dans ce chapitre,
concernent la structure des noyaux de ces homomorphismes.

Le chapitre III est consacré aux démonstrations des résultats.

Tous les objets considérés ici sont de classe C™ et le mot ‘“différentiable”
signifiera “‘de classe C”.” Les espaces d’applications seront toujours munis de la
topologie C~.

Les résultats démontrés ici ont été annoncés dans [2], [3].

Ce papier est a quelques modifications pres, la these que j’ai présentée a la
Faculté des Sciences de I’Université de Geneve. Les modifications sont les
suivantes: le chapitre concernant les difféomorphismes qui préservent une forme
de contact a été omis. Les résultats de ce chapitre seront publiés ailleurs. En
outre, on a inséré quelques compléments sur les difféomorphismes d’une variété
symplectique non compacte.

Je suis trés heureux d’exprimer ma profonde reconnaissance au Professeur
André Haefliger, qui a dirigé ma these, pour le role essentiel qu’il a joué dans ma
formation de mathématicien, et particulierement dans 1’élaboration de ce travail.
Par son aide vraiment efficace, ses encouragements et ses enseignements, il a été
pour moi un Maitre remarquable; il m’a notamment communiqué et longuement
expliqué les détails non publiés des démonstrations des résultats de [17] de
Thurston, (voir [4]).
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CHAPITRE 1

QUELQUES NOTIONS ET RESULTATS PRELIMINAIRES

1. Isotopies et familles de champs de vecteurs

Soit M wune variété différentiable de classe C*. Le support d’un
difféomorphisme h de M est ’adhérence de I’ensemble {x € M | h(x) # x}. Nous
désignerons par Diff” (M) le groupe de tous les difféomorphismes de M de classe
C>* a support compact. Soit Diffg (M) le sous-groupe de Diff” (M) dont les
éléments ont leur support dans un compact fixe K de M, muni de la C”-topologie.
Alors Diftf” (M) =lim_, Diffg (M).

Soit I Pintervalle [0, 1]. Une isotopie est une application c:I— Diff* (M) telle
que c(0)=id,, et telle que I’application (¢, x)—>c(t)(x) de IXxM dans M soit
différentiable. Nous dirons qu’une isotopie est un chemin différentiable dans
Diff* (M) d’origine id,,. Un difféomorphisme h est dit isotope a id,, s’il existe une
isotopie c¢:I— Diff* (M) telle que c(1)=h. Comme le groupe Diff* (M) "est
localement connexe par arcs différentiables, la composante connexe de id,, dans
Diff* (M), notée Diff” (M),, est ’ensemble de tous les difféomorphismes isotopes
a I'identité.
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Une isotopie h:I— Diff” (M) définit un feuilletage sur M X I transverse aux
fibres de la projection M XI— I Soit x€ M; la feuille passant par (x,0) est
I’ensemble {h,(x)},.

On définit une famille (différentiable) de champs de vecteurs Pi, en posant:

0= S ), xeM

La famille de champs de vecteurs h, est la projection sur M du champ de vecteurs
sur M X1 qui se projette sur le champ constant 3/t de I et qui est tangent aux
feuilles du feuilletage défini par I'isotopie h,.

PROPOSITION 1.1.1. Soit h,, une famille différentiable a 2-parametres de
difféomorphismes de M telle que h,,=1ds,. Si X, et Y,, sont les familles de champs
de vecteurs sur M définies par:

(x)— “(h  (x)); s,(x)— “(h (X)), xeM

alors, on a:
X, 9Y,
F=—+[X,, Yl
0s

Démonstration. La famille h,, définit un feuilletage sur M X (I X I) transverse
aux fibres de la projection p: M X (I X I)— (IXI). Soient 3/dt et 9/ds les champs
de vecteurs constants sur I X I. Les champs X' =X, +9d/ot et Y =Y, +3/ds sont
tangents aux feuilles. D’apres le critere d’intégrabilité, [ X', Y'] doit aussi étre
tangent aux feuilles. Or p [X', Y']=[0/ot, d/ds]=0. Donc [ X', Y'] est vertical.
Comme les fibres sont transverses aux feuilles, [ X', Y'] doit étre nul. Il en résulte:

9 Y, 0X.
0= +|=, Y, |+ i
[ St St] [at, Yst] [ St’ ] [ St t] + at as

La proposition est démontrée.

Soit A(M)= @ AP(M) P’algebre des formes différentielles sur M. Pour tout
champ de vecteurs X, on définit les opérations de dérivée de Lie Ly et de produit
intérieur i(X). La dérivée de Lie Ly est 'unique dérivation de I’algebre A(M) de
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degré 0, déterminée par les conditions suivantes:

Lx(f) = df(X), Ly (df) =dLx(f)
pour toute fonction f.

Le produit intérieur i(X) est ’antidérivation de degré —1 qui a la p-forme «
associe la (p—1)-forme i(X)a telle que pour (p—1) champs de vecteurs
Y,, Y, ..., Y, on ait

(I(X)a) (Y, Yy, ..., Yp—l) =a(X, Y, Y, ..., Yp—l)'

Si d est la différentielle extérieure, on a les formules suivantes:

Ly =di(X)+i(X)d
i((X, YD) = Lxi(Y)—i(Y)Ly.

Les propositions suivantes (I.1.2 et 1.1.3) sont des faits bien connus que nous
utiliserons fréquemment dans la suite.

PROPOSITION 1.1.2. Soit a, une famille de formes différentielles sur une
variété compacte M. Il y a équivalence entre les énnoncés suivants:

(i) Il existe une isotopie h, de M telle que h¥*a, = a,

(ii) 1l existe une famille de champs de vecteurs X, telle que Ly a, +da,/ot =0

Démonstration (cf [12]). La proposition résulte immédiatement de la formule
suivante:

é—i; (h*a,)=h¥ (L,-l‘a, +Q£—t).

PROPOSITION 1.1.3. Soit a une forme fermée et soit h, une isotopie, alors
h*a—a=dp, avec B, = ‘[: h*(i(h,)a) ds.

Démonstration.

;1% (h¥a)= h¥(L,,a) = h¥(di(h,)a) = d(h¥(i(h,)a)).
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On a donc:

hi"a—a=J

0

% (h*a) ds = dHOt h*(i(h)a)) ds].

D’ou la proposition

2. Formes symplectiques

Une forme-volume sur une variété différentiable M de dimension n est une
n-forme partout non nulle. Une telle forme existe si et seulement si M est
orientée.

Une forme symplectique sur une variété différentiable de dimension paire 2n
est une 2-forme fermée (2 telle que 2" =D AN A - - - AL s0it une forme-volume.
C’est une 2-forme de rang maximum: ceci veut dire que l’application u qui
associe a un champ de vecteurs X de M la 1-forme i(X){2 est un isomorphisme
de 1’espace des champs de vecteurs tangents a M sur celui des 1-formes. Si M est
munie d’une forme symplectique (2, nous dirons que le couple (M, (2) est une
variété symplectique.

Soit f une fonction de classe C™ sur une variété symplectique (M, £2). Le
champ de vecteurs X; = u~'(df) sera appelé le gradient symplectique de f. Si X est
un champ de vecteurs tel que la 1-forme i(X){2 soit exacte, une fonction f telle
que (X)) = df s’appelle un hamiltonnien de X.

Un champ de vecteur X sur (M, 2) sera dit un champ de vecteurs symplectique
si le groupe a 1-parameétre qu’il engendre préserve la forme (2. Si X est un champ
symplectique, on a: L,{2 =0. Comme {2 est fermée, cette condition exprime que
la 1-forme i(X){2 est fermée.

Soit (M, £2) une variété symplectique de dimension 2n. Pour tout point x de
M, il existe un voisinage U de x et un systéme de coordonnées locales h:R*"* — U
tel que si 2|, est la restriction de 2 a U, alors h*(£2|,,) soit la forme symplecti-
que canonique dx;Adx,+dxzAdx,+ - +dx,,_ Adx,, deR*™.  Cest le
théoreme de Darboux (voir par exemple [10]). La carte (h, U) s’appelle une carte
canonique.

3. Plongements symplectiques des boules

Soient X et Y deux variétés symplectiques. Un plongement de X dans Y sera
dit symplectique s’il transporte la forme symplectique de Y sur celle de X. Deux
plongements symplectiques f, et f; de X dans Y seront dits isotopes s’il existe une
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famille (différentiable) a 1-parameétre de plongements symplectiques P,: X — Y
telle que Py,=f, et P,=f,.
L’analogue différentiable de la proposition suivante est bien connu:

PROPOSITION 1.3.1. Deux plongements symplectiques d’une boule B de R*"
dans R*" sont isotopes.

Démonstration. 11 suffit de montrer que tout plongement symplectique h de B
dans R*" est isotope au plongement naturel i: B < R*". Remarquons d’abord que
h est isotope a un plongement symplectique A tel que h(0)=0. En effet si T est
une translation telle que T(h(0))=0, on prend h=T - h.

Pour tout t€]0, 1], soit R, 'homothétie de rapport t dans R®*". On a:
R,(B)c B et R¥Q =1, ou  est la restriction 2 B de la forme symplectique
standard de R?". 11 est clair que R;' - h - R, est un plongement symplectique de B
dans R*" et que sa dérivés en 0 est le plongement symplectique linéaire suivant:

R(0)00) = lim 2 — fim (R - R )(0).

t—0 t—0

La famille:

t

_{R,‘l-ﬁ-R, pour 0<t=1
h'(0) pour t=0

est une famille continue de plongements symplectiques telle que H,=h. Cette
famille est homotope relativement aux extrémités a une famille différentiable (par
changement convenable de paramétre) de plongements symplectiques.

Nous venons de montrer que h est isotope a un plongement symplectique
linéaire. Comme le groupe symplectique linéaire Sp(n) est connexe par arcs
différentiables, tout plongement symplectique linéaire est isotope au plongement
naturel i: B & R?". La proposition est démontrée.

La proposition suivante donne une précision sur le support de l'isotopie entre
deux plongements symplectiques de boules.

PROPOSITION 1.3.2. Soit V un ouvert convexe de R*" contenu dans une
boule B,5 de centre 0 et de rayon r/8. Il existe un €¢>0 tel que pour tout
difféomorphisme symplectique h:V — B, g vérifiant:

_IR@O

—e= =1
Lme=mmgp =1te ()
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pour x et y dans V, il existe une isotopie symplectique H, de R*" a support dans B, et
telle que H,|\, = h.

Démonstration. En composant éventuellement avec une translation, on peut
supposer que h(0)=0. La condition plus haut et la formule de la moyenne
impliquent que pour tout t€[0, 1], xe V, on a: ||h(tx)||=t|x|| (1+ ). Donc pour
te[0,1], xeV, h(tx)/teB,,. Si h'(0) est la dérivée en 0, on a aussi que
h'(0)(V)< B,,. La condition (*) signifie que h'(0) € Sp(n) est proche du compact
maximal U(n) de Sp(n). Soit p: T(U(n))— U(n) un C”-voisinage tublaire dans
Sp(n). Alors en identifiant T(U(n)) avec un voisinage de U(n) dans Sp(n), on
peut écrire que h'(0)e T(U(n)). Soit g e Sp(n) l'isotopie de h'(0) a l'identité
obtenue en composant les chemins a, et b, ou a, joint h'(0) a p(h'(0)) dans
T(U(n)) et b, joint p(h'(0)) a I'identité dans U(n). Alors g (V)< B,,. Soit G, le
chemin reliant h a I’identité obtenu en composant le chemin allent de h a h'(0) et
le chemin g, ci-dessus. Alors G,(V)< B,;,. Soit u une fonction C” a support dans
B,, égale a sur B,, et soit f, un hamiltonnien de G}, ou G/ est I'isotopie obtenue
par lissage de G, Si H, est I'isotopie symplectique obtenue en intégrant le
gradient symplectique de u - f,, alors supp (H,)< B, et H,|,, = h. La proposition
est démontrée.

CHAPITRE 11
CONSTRUCTION DES INVARIANTS ET ENNONCE DES RESULTATS

1. L’invariant S

Soit h, une isotopie dans Diff, (M). Nous allons montrer que la forme
Y (h)=S) i(h)Qdt est une 1-forme fermée dont la classe de cohomologie ne
dépend que de la classe d’homotopie de h, relativement aux extrémités. Plus
précisément, on a la proposition suivante, qui est die a Calabi [6]:

PROPOSITION I1.1.1. Soit (M, ) une variété symplectique et soit 6:2\(1(’1) le
revétement universel du groupe Diffy, (M), = Go(M). Il existe un homomorphisme
surjectif et continu:

§:Go(M)— H:(M,R)

oit H}(M, R) est le premier groupe de cohomologie de de Rham a supports compacts.
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Démonstration. D’aprés Weinstein [20], G,(M) est localement contractible;
donc aussi localement connexe par arcs différentiables. Il en résulte que les
éléments h de G, (M) sont des paires (h, {h,}) ou he G,(M) et {h,} est une classe
d’homotopie d’isotopies symplectiques de h a I’id,,. Comme h, est dans G, (M), h,
est un champ de vecteurs symplectiques, c.a.d. que i(h )2 est une 1-forme
fermée. Il en est de méme de la 1-forme:

Y. (h)= L iR dt.

Soit h! une autre isotopie dans Diffg, (M) telle que h% = h, = h et qui est homotope
a h,. Ceci veut dire qu’il existe une famille différentiable a 2-parametres H,,
d’éléments de Diffy, (M) telle que:

H,=idyy, H,,=h pourtout sel
H,,=h, H;,=h! pourtout tel

Considérons les champs de vecteurs X, et Y,, définis par:

s‘(x)—— “(H; (x)) s,(X)— “(HZ (x)).

S

Si on pose: ) (H,,)=[oi(X,,)2dt, on a: ¥ (Hy,)=Y (h) et ¥ (H,,)=Y (h)).
Calculons la variation de la famille } (H,,):

SY )= [ ()2 [[i(2)aars Lz([ o Yo DQdt

La derniere ligne résulte de la proposition 1.1.1. Les champs Y, et Y, , sont nuls.
Il en résulte:

Lli('a‘;_:"")ﬂ dt = L = (Y, ,)0) dt =i(Y, )2 —i(Y,0)2 =0.

D’autre part:

Jli([xs,, Y, D dt = L (Li(Y)) di = L Y., X, di].
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Donc:

Y(h)=Y.(h)=da, o a= j (Y, X,,) dt A ds.
xI

I

Ceci montre que la classe de cohomologie de la forme ) (h,) est indépendante du
choix de h, dans sa classe d’homotopie relativement aux extrémités. La corres-
pondance A+ S(h), ou S(h) désigne la classe de cohomologie de Y (h,) définit
une application continue:

§:Go(M)— H:(M, R).

Cette application estftglxomomorphisme de groupes: en effet soient g = (g, {ci})
deux éléments de G,(M). Leur produit peut étre représenté par l'isotopie c,
obtenue en faisant un changement convenable de parametre dans le chemin
différentiable par morceaux c! suivant (On dira que ¢, est un lissage de c!’):

o
IA
IA

IA
IA
NN

) ={c§, pour

Coi—1 €1 pour

N

Il est évident que Y (c,)=Y (c))+Y (c?). L’application § est donc un homomor-
phisme. Il est évidemment continu.

Soit 6 une 1-forme fermée a support compact représentant un élément [6] de
H.(M, R). Le champ de vecteurs X défine par i(X){2 = 6 est un champ symplecti-
que. Soit h = (h,{h,}) € G,(M), ou h, est le groupe a un parametre engendré par
X, alors S(h)=[6]. D’ou la surjectivité. La proposition est démontrée.

Remarque 11.1.2. Soit y:I — M un 1-simplexe singulier différentiable dans M.
Pour toute isotopie symplectique h,, on considere I’ application G:IXI—> M
définie par:

G(s, t) = h.(v(s)).

On montre facilement la formule suivante [6]:
j G*.(2=J Y (hy). (%)
Tx<I v

. Drautre part, les 1-formes Y (h,) et f& h¥i(h,)Q2dt sont cohomologues. De la
résultent des définitions équivalentes de I’invariant S.
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DEFINITION DE L’HOMOI![QI}PHISME S. Désignons par I' 'image par S
du sous-groupe m,(Go(M)) de G,(M). Par passage au quotient, on obtient un
homomorphisme surjectif et continu:

S:Go(M)— H.(M, R)/T.

Le sous-groupe I'

Soit P, le sous-groupe de R formé des périodes de (2, c.a.d. que P, est le
sous-ensemble de R formé des a tels que a = J, {2, ou ¢ est un 2-cycle entier de M.
Il résulte de la formule (*) ci-dessus que I'< H!(M, P,). En particulier, I" est
dénombrable si M est a base dénombrable. De plus, si la forme {2 est a périodes
entieres, alors I' est discret. Nous allons montrer qu’il en est encore ainsi si la
forme symplectique 2 provient d’une métrique kahlérienne sur M.

Soit w une forme-volume sur une variété différentiable M de dimension n et
soit K un compact de M. On munit de la C”-topologie le groupe Diffg , (M) =
{h e Diff* (M) | supp (h) = K et h*w =w}. Soit DiffZ (M)=1lim_, Diffy , (M) et
DiffZ (M), la composante connexe de identit¢ dans Diff; (M). Soit h, une
isotopie dans Diff, (M) et {h} sa classe dans Diff], (M),. Thurston [16] a montré
que la classe de cohomologic V({h}) de la (n—1)-forme fermée [} i(h,)w dt, ne
dépend pas du choix des représentants de {h} et que la correspondance {h}—
V({h}) est un homomorphisme surjectif et continu V:Diff (M),— H" (M, R).

Soit (M, {2) une variété symplectique de dimension 2n. Alors w = 2" est une
forme-volume. On a Vinclusion Diffy, (M) < Diff, (M). Soit h, une isotopie dans
Diff, (M), alors:

1 1 1
j i(h)wdt= nL (i(hR)QDAQ" t dt= n(J’ i(h)Q2) dt)/\.(l"“.
0 0
On a donc le diagramme commutatif suivant:

T~ .
Diffy;, (M), — H{(M.R)

LN e

Diff (M), 5> 'H?" (M, R).

La derniére fleche verticale étant induite par la multiplication par Q" '.
Supposons que la multiplication par 2" ' induise un isomorphisme
H!(M,R)— H?""'(M,R). Ceci est le cas par exemple si {2 provient d’une
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métrique kiaehlérienne sur M [19]. Il résulte de la commutativité du diagramme
ci-dessus, que I'= S(m,(Diff;; (M),)) est isomorphe a V(i(ar(Diff; (M),)). Or,
d’apres [16], ce dernier groupe est discret. Il en est donc de méme de I

Je n’ai pas d’exemple de variété symplectique (M, (2) ou le sous-groupe I' ne
soit pas discret.

Construction directe de Uinvariant S dans le cas ou {2 est exacte

D’aprés ce qui précede, si (2 est exacte, I' est trivial. On a donc un
homomorphisme S:G,(M)— H!(M,R). Nous nous proposons de construire di-
rectement cet homomorphisme sans utiliser les isotopies.

Soit A une 1-forme telle que dA = (2. Pour tout h € G,(M), la 1-forme %*A — A
est une 1-forme fermée a support compact. Sa classe de cohomologie [h*A —A]e
H!(M, R) est indépendante du choix de A. En effet soit A’ une autre 1-forme telle
que dA'=(), alors A'—A est fermée. Donc la 1-forme suivante est exacte:
(WA= A= (W*A —=A)=h*(A'=A)—(A"—A). Donc [h*X —A] est indépendante du
choix de A.

On voit immédiatement que [h*A —A]= S(h). En effet si h, est une isotopie
symplectique de h a I'identité, on a:

h* A —A = Llh?‘(LEA) dt= Llh:“i(h,)ﬂ dt+d (Ll h*(i(h)A) dt).

Remarque. Dans les constructions de I’invariant S, nous n’avons utilisé que le
seul fait que (2 est fermée. Soit donc G, (M) la composante connexe par arcs
différentiables dans le groupe des C*-difféomorphismes d’une variété
dlﬁerentlable M, a support compact et qui préservent une p-forme fermée w, et
soit G, (M) son revétement universel. On obtient avec les mémes constructions,
un homomorphisme S,:G,,(M)— H? ' (M,R) et si o est exacte, S,,:G,(M)—
H*"'(M,R).

2. L’invariant § comme obstruction a Pextension des isotopies symplectiques

Dans la suite, nous aurons a résoudre le probleme suivant: étant donnés une
variété symplectique (M, £2), un sous-ensemble fermé F dans M et h, une isotopie
de M qui préserve la forme 2 sur un voisinage de F, trouver une isotopie h,
symplectique partout et qui coincide avec h, au voisinage de F. C’est un probléme
d’“‘extension des isotopies symplectiques.” La solution est donnée par le résultat
suivant:
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THEOREME I1.2.1. Soit (M, 2) une variété symplectique compacte, F un
fermé dans M et h, une isotopie symplectique au voisinage de F. Supposons que

j h*Q—0=0

pour toute 2-chaine singuliere différentiable c dont le bord est dans F. (c.a.d. que les
périodes relatives de h¥2— modulo F sont toutes nulles) Il existe alors une
isotopie symplectique h, qui coincide avec h, au voisinage de F. De plus, pour tout
voisinage V de I’identité (pour la C™-topologie) dans C*(I, Diff* (M)), il existe un
voisinage de I’identité W tel que si h, appartient @ W, alors h;' - h, est dans V.

Ce théoreme résulte du lemme suivant, qui est un ‘‘théoreme de de Rham
relatif avec parametre.”

LEMME 11.2.2. Soit M une wvariété différentiable et 6, une famille a 1-
parameétre de p-formes, nulles au voisinage d’un fermé F de M et dont les périodes
relatives modulo F sont toutes nulles. Il existe alors une famille a 1-parametre de
(p—1)-formes a, nulles au voisinage de F et telles que 6, = da,.

Avant de démontrer ce lemme, nous allons rappeler quelques notions sur les
produits tensoriels d’espaces vectoriels topologiques (EVT) (cf. par exemple [14]
ou [18]).

Soient E, et E, deux EVT localement convexes. On note par E1®,,E2
respectivement E,®_E, leur produit tensoriel complété avec la topologie
respectivement avec la toploogie € (voir [14] pour la définition de ces topologies).
Un EVT localement convexe E est dit nucléaire si pour tout EVT localement
convexe F, alors EQ_F et EQ _F coincident. On montre que I'espace C=(U) des
fonctions de classe C* d’un ouvert U de R" dans R est un EVT nucléaire.

Soient y; : E; — F; deux surjections linéaires d’EVT, ou les E; sont métrisables,
alors u1®,,u2:E1®,,E2—-> Fl®,,F2 est une surjection.

Soit U un ouvert de R" et E un EVT complet. Si C*(U, E) est ’espace des
applications de classe C* de U dans E, on a I'isomorphisme:

C*(U, E)=C*(U)® . E=C(U)®_E.
On omet la mention 7 ou € et on écrit: C*(U, E)= C*(U)®E.

Démonstration du lemme 11.2.2. Soit A?(M, V) (respectivement BP(M, V))
I’espace des p-formes nulles sur un voisinage convenable V de F (respectivement
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des p-formes fermées dont la classe de cohomologie relative modulo V sont
nulles), muni de la topologie C~. Par voisinage convenable V de F, nous
entendons une sousvariété a bord approximant F. Le théoréme de de Rham
relatif dit que

d:A*"'(M, V)= B*(M, V)
est une surjection linéaire d’espaces de Fréchet. D’apres ce qui précede,
d®idy: C*(DY AP (M, V) = C(D®B* (M, V)

est encore une surjection.

Une famille &8 1-parametre de p-formes n’est rien d’autre qu’une application
de classe C* de 1 dans I’espace des p-formes, c.a.d. un élément de C=(I, A?(M)).
Comme C*(I, A*"Y(M, V))=C>(D)® A?~"}(M, V) et méme chose en remplacant
AP"Y(M, V) par B?(M, V), on obtient la surjection

C*(I, A""'(M, V)) —» C=(I, B*(M, V))
Le lemme est démontré.

Démonstration du théoreme 11.2.1. La famille a 1-parametre
. 9 . *
0,=a—£.()t ou (), =h{,

vérifie les hypothéses du lemme I1.2.2. Il existe donc une famille a 1-parametre de
1-formes a, nulles au voisinage de F telles que da, = {2,. Suivant Moser [14], on
définit une famille a 1-paramétre de champs de vecteurs symplectiques X, par
I’équation: i(X,){2, = —a,. On aura alors que Ly (2, + 0, =0. Si ¢, est la famille de
difféomorphismes symplectiques obtenue en intégrant le champ X, (avec la
condition initiale ,(x)= x), alors d’aprés la proposition 1.1.2, ¢F¥Q, = 0Q,= Q. De
plus, ¥, =identité au voisinage de F; ainsi h, = h, - ¢, est une isotopie symplecti-
que et coincide avec h, au voisinage de F.

L’isotopie ¢, dépend continuement de «,: donc pour tout voisinage V de
I'identité dans C=(I, Diff*(M)), il existe un voisinage T de O dans
C=(I, A'(M, V)) tel que si e, est dans T, alors ¢, soit dans V. D’apres le théoreme
de l’application ouverte, I'image de T par la différentielle extérieure est un
voisinage S de 0 dans C=(I, B*(M, V)).

D’autre part, il est clair que pour tout voisinage U de 0 dans C*(I, B*(M, V)),
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il existe un voisinage W de l'identité dans C*(I, Diff* (M)) tel que si h, est dans
W, alors (2, est dans U.

On choisit U=S. Soit W=W(S) le voisinage de I’identit¢ dans
C=(I, Diff* (M)) correspondant. Si h, est dans W, alors 0.eU=8=d(T). cad.
que ,=da, avec a,€T. Il en résulte que ¢, =h," - h,e V. Le théoréme est
démontré.

Formulation du théoréeme 11.2.1. a U’aide de I’invariant S

Soit h, une isotopie de M, symplectique sur un fermé F< M et soit X, la
famille de champs de vecteurs définie par:

X (0= b, (),

D’apres la proposition 1.1.3, on a pour tout ¢

h*Q-0=d) (h,) ou Y (h)= L hE (i(X,)2) ds.

La restriction)” (h,) de Y’ (h,) a F est une famille de 1-formes fermées dont les
classes de cohomologie ne dépendent que de la classe d’homotopie d’isotopies
symplectiques sur F, reliant pour tout ¢, h, a I'identité.

Dans le cas ou h, est une isotopie symplectique sur M, la classe de
cohomologie de } (k)= i(X, )2 ds (qu1 est la méme que celle de ) (h,,)) est la
valeur de linvariant $ sur A, ol h, est I’élément de GQ(M) représenté par
I’isotopie s+ h,_,. Par analogie, on peut dire que la classe de cohomologle de
Y (h,) est la valeur Sg(h,) d’un * ‘invariant S relatif” sur I’élément A,.

Soit 9 Popérateur cobord 9: Hl(F)——>Hz(M F) dans la suite exacte de

cohomologie réelle de la paire (M, F). Le théoréme I1.2.1 prend alors la forme
suivante:

THEOREME 11.2.3. Soit h, une isotopie de M, symplectique sur un fermé
Fc M. La condition nécessaire et suffisante pour qu’il existe une isotopie h,,
symplectique partout et qui coincide avec h, sur F, est que I’élément 3(Sg(h,)) de
H?*(M, F) soit nul.

3. Quelques propriétés du groupe Ker S(M)

Dans ce paragraphe, nous démontrons quelques propriétés topologiques du
groupe Ker S(M). Rappelons qu’un élément he G,(M) est dans Ker S(M) s’il
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existe une isotopie symplectique h, de h a id,, telle que la forme } (h,) soit
exacte.

PROPOSITION 1I1.3.1. Le groupe Ker S(M) est connexe par arcs
différentiables.

Démonstration. Soit h € Ker S(M) et soit h, une isotopie symplectique de h a
id,, telle que ) (h,) = dg, ou g est une fonction a support compact. Si on fixe t€ I,
alors h, ., sel, est une isotopie de h, a id,, Soit X, la famille de champs de
vecteurs définie par:

dh,
ds

Xo(x) =— (h\(x)).

Posons:
1
a, = [ (X)) ds.
)

Soit Y, la famille de champs de vecteurs définie par: i(Y,)2 =B, ou B, = a, — ta;.
On a:

jlzxxst— Y)Qds=d(t-g).

Si H,, est la famille a 2-parametres de difféomorphismes symplectiques définie par
intégration (en s) de la famille de champs de vecteurs Z, = X, — Y, autrement dit
H, est la famille de diff€omorphismes telle que H,, =id,, et

22 (H (0 = Z, ().
S

Il est clair que H,; = h, pour tout s € I et que H, , € Ker S(M) pour tout . Comme
H,,=h et que H,,=id,, H,, est un chemin différentiable dans Ker S(M) qui
relie h a I'identité. D’ou la proposition.

Remarque 11.3.2. D’apres la proposition 11.3.1, Ker S(M) est connexe. Mais
en général, Ker S(M) pourrait ne pas étre localement connexe. En fait, on a
€quivalence entre les énnoncés suivants:

(i) Ker S(M) est localement connexe
(ii) Le groupe I' = S(m,(G,(M)) est un sous-groupe discret de H!(M, R).
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C’est par exemple le cas si {2 est une forme symplectique a périodes entieres ou si
elle provient d’'une métrique kadhlérienne sur M.

PROPOSITION I1.3.3. Soit c, une isotopie dans Ker S(M). Alors pour tout t, la
1-forme i(¢,)(2 est exacte.

Démonstration. Le groupe m,(Go(M)) agit sur éa\(l\//l) Désignons par
7.(Ga(M)). Ker S(M) ’ensemble des orbites des points de Ker S(M). 1l est clair
que si p:Go(M)— G,(M) est la projection de revétement, alors:

p~'(Ker S(M)) = m,(Go(M)) - Ker S(M).

Tout chemin continu dans Ker S(M) se reléeve en un chemin continu dans
m(Gp(M)). Ker S(M). Soit & un relévement continu de I’isotopie ¢, tel que
é(0)=id,,. Pour tout t, S(é)eI. L’application t+~> S(¢,) est donc une courbe
continue dans I Comme I' est dénombrable, cette courbe est constante. Donc
S(é) = $(é,) =0, pour tout t, c.a.d. que & € Ker S(M).

D’aprés la démonstration de la proposition I1.3.1, il existe pour tout f, une
isotopie s — H,, représentant ¢, (i.e. Hy, =idy, H,;,=¢,) telle que I'image dans
f}—?;(M) de l'isotopie s — H;, soit dans Ker S(M), et que ’application (s, t) — H,,
soit continue.

Pour tout t e 1, ’application:

IXI3(v, s) > H,—1)+1)1-v)s+oy € Ker S(M)

est une homotopie entre les chemms s—>H,, et s—>c.. Si Hl . et ¢, sont les
1mages de ces chemins dans Gn(l\/[) on a donc que: S(&)=$ (H1 .). Mais la classe
S(Hl,,) (et donc aussi la classe S(¢,)) est nulle. Si X, est la famille de champs de
vecteurs symplectiques définie par:

Xs.(x)— ( (x)).

Alors la 1-forme:

‘[: i(X,)2ds= J: i(¢)Nds

est exacte. Il en résulte que i(¢,){2 = df, avec f,=dg/dt, ou g est une famille de
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fonctions telle que:

I i(¢)Nds = dg,.
(¢}

La proposition est démontrée.

Le noyau de la surjection Ker S(M) — Ker S(M) est m,(G,(M)) NKer S(M).
D’autre part, Ker S(M), ayant le type d’homotopie de G,(M), est simplement
connexe. Il en résulte que si I'on munit Ker S(M) de la topologie quotient de
Ker S(M) par l'action de m,(Go(M))NKer S(M), alors Ker S(M) est le
revétement universel de Ker S(M); on a donc que m; (Ker S(M))=
m1(Go(M))NKer S(M). En résumé, on a le diagramme suivant, avec les lignes et
les colonnes exactes.

0 0 0
0 - m(KerS(M)) — m(Go(M)) — r - 0

\ 2
0 - KerS(M) — Go(M) =  H{M,R) — 0

l l

0 - KerS(M) — Go(M) 5 HXM,R)I — 0

l w l

0 0 0

Remarque 11.3.4. Pour terminer ce paragraphe, signalons une propriété de
transitivit¢ du groupe Ker S(M). Soit (M, 2) une variété symplectique close et
connexe. Boothby [5] a montré que G, (M) est transitif. Pour x, y € M, il construit
un difféeomorphisme he G,(M) tel que h(x)=y comme le composé de
difféomorphismes symplectiques a supports dans de petites boules. Il est clair que
de tels difféomorphismes sont dans Ker S(M). Il en résulte que h € Ker S(M).

4. Linvariant R

La proposition suivante est diie & Calabi [6], mais nous allons en donner une
démonstration directe.
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/\?/ROPOSITION I1.4.1. Soit (M, ) une variété symplectique ouverte et soit
Ker S(M) le revétement universel de Ker S(M). Il existe un homomorphisme
surjectif et continu:

R:KerS(M)—R

La démonstration utilise le lemme suivant:

LEMME 11.4.2. Soit (M, 2) une variété symplectique non compacte, sans bord.
Soit (M) U’algébre de Lie des champs de vecteurs symplectiques X sur M a
support compact et tel que la forme i(X){2 soit exacte. Pour tout X dans £,(M) soit
fx Uunique hamiltonnien de X a support compact. Alors I’application r: £,(M)— R
définie par:

X *"’j fx 2"
‘M
est un homomorphisme surjectif d’algebre de Lie

Démonstration. 11 est clair que ’application r est additive et surjective. Il ne
reste qu’a vérifier qu’elle s’annulle sur les crochets. Soient X, et X, dans Z,(M),
on a:

i[(X;, X,D)02 =Ly i(X,)02 = d(i(X)i(X,)Q).
Donc:

fix,.x,1= i(X))i(X5) 0.
Or:

0=i(X)I(X)2 A 2") = (i(X)i( X)) Q" —i(X,)i(X,)2")
= fix, x, 42" —n - (X)) A i(X )2 AQ™!
c.a.d.
fixx 82" = n - dfx, Adfx, A" =d(nfx, dfx, A2"71).

La conclusion résulte de la formule de Stokes. Le lemme est démontré.
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Démonstration de la proposition 11.4.1. Soit h=(h {h}) un élément de
Ker S(M). D’apres la proposition 11.3.3, k, € Z,(M), pour tout .

En reprennant les notations de la proposition II.1.1. soit k, une autre isotopie
dans Ker S(M) telle que h;=h;=h. On suppose que h; est homotope a h, par
une homotopie différentiable H,, dans Ker S(M). Soient X, et Y, les champs de
vecteurs définis comme dans la démonstration de la proposition I1.1.1, on a:

1 1
O " xy) di= L r("’Xs") dt
as

S
1 1 1
= L r (a Y“) dt+L r(( X, Y] dt= L r (—a~ Ys,) dt.
at ot

La derniere ligne résulte de la proposition I.1.1 et du lemme 11.4.2

Or:

1
L r(aéi Yst) dt = r(Ys,l)_r(Ys,O)ZO

car Y,;=Y,o=0
Il en résulte que I’application:

1
h— L r(h,) dt

TN
est bien définie. On montre que c’est un homomorphisme de Ker S(M) dans R
comme dans la proposition II.1.1. La surjectivité ainsi que la continuité sont
évidentes. La proposition est démontrée.

Définition de !’invariant R

. . ~ N
Désignons par A I'image par R du sous-groupe Ker P de Ker S(M), noyau de

la projection naturelle P: Ker S(M)—Ker S(M). Par passage au quotient, on
obtient un homomorphisme surjectif et continu

R:Ker S(IM)—R/A

Construction directe de I’invariant R dans le cas ou la forme (2 est exacte

Notation: si w est une forme a support compact de degré maximum sur une
variété différentiable M, nous dénoterons par [w] son intégrale sur M.
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Soit A une 1-forme telle que dA = (. Si he Ker S(M), il existe une fonction
unique 2 support compact f(h, A) dépendant de h et de A telle que h*A—A =
df(h, A). On a:

PROPOSITION 11.4.3. Soit (M, 2) une variété symplectique de dimension 2n
dont la forme symplectique est exacte. Alors pour tout heKer S(M), le nombre
[f(h, A) - 2"] est indépendant du choix de A tel que d\ = . De plus la correspon-
dance h—[f(h, L) - Q"] est un homorphisme surjectif et continu p qui coincide a
une constante pres avec I’homomorphisme R. Plus précisément, on a:

p(h)=(n+1)- R(h), Vh e Ker S(M).

COROLLAIRE. Soit (M, ) une variété symplectique dont la forme symplecti-
que est exacte. Alors le groupe A est trivial.

Démonstration. Soit A’ une autre 1-forme telle que dA'= (2. On a:
(h*A'=A)—(h*A = A)=d(f(h, A)—f(h, L))

1
=h* (A —=A)—-(A' =)= d(J; h*i(h)(A'—A) dt)
ou h, est une isotopie dans Ker S(M) de h a l'identité. On a donc:
1
fib A=t 1)+ [ HEGIA=N) d.

Soit f, une famille de fonctions & support compact telle que i(h,)f2 = df, on a:
(h*i(h)A' =A) - Q" =d(—n-h*{,- A" =A)- 2"Y). Il en résulte donc que
[f(h, ANQ™]=[f(h, A)2"]. Donc p est bien définie.

D’autre part, on a: h¥A —A = [¢ h*(L;, )A ds = du, ou

u = L (h*i(h,)A) ds + L (f.oh,) ds.

On a: [(h*i(h)A)- 2"]1=[i(h)N)2"] et [(f.°h)Q2"]=[f, - O"]. De plus:
i(RA - Q" =n-f, - Q"—d(n-f,- AAQ""). 1l en résulte que [i(h)A-Q"]=
n-[f02"]. Or par définition, p(h)=[u;N2"]. On a donc: [u2"]=
R (iR )AR 1+ [ D ds=(n+1) - R(k). Q.E.D.
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5. L’invarient u

Si M est une variété symplectique de dimension 2n=4, dont la forme
symplectique est exacte, alors ’homomorphisme R:Ker S(M)— R s’étend en un
homomorphisme w:G,(M)—R. L’objet de ce paragraphe est de construire cet
homomorphisme. On a:

PROPOSITION 11.5.1. Soit M une variété différentiable de dimension 2n=4,
munie d’une forme symplectique exacte. Soit A une 1-forme telle que dA = (2. Pour
tout h e Go(M), on pose:

n(h)=(1/(n+1))- J- R*AAAAQ™ L

M

Alors u(h) est indépendant du choix de A. De plus, h+— u(h) est un homomor-
phisme, et la restriction de . a Ker S(M) est I’homomorphisme R. (En particulier, u
est surjectif).

Remarque. Si a est une 1-forme fermée sur une variété différentiable de
dimension 2n =4, munie d’une forme symplectique exacte et si h, est une isotopie
symplectique, alors la forme f0", ou f=(ih*i(h)a)dt, est exacte. En effet:
i(h)a-Q"=dW, ot W,=n"- ai(h)Q2AAAN"2, si d\ = Q.

Preuve. Désignons par w(h, A) la 2n-forme: h*AAAAQ""'. Cest une 2n-
forme a support compact, car hors du support de h, w(h, A) devient AAAAQ"!
qui est nulle.

Montrons que le nombre réel [w(h, A)] est indépendant du choix de A. Soit A’

une autre 1-forme telle que 2 =d\’. Alors A’ =\ +a ou « est une forme fermée.
On a:

wo(h AV=w(h, AD)+h*AranQ" '+ h*aAdA A Q™!

+h*anand" 1,
D’apres la proposition 1.1.3,
h*a =a+df

ol f=[} h*i(h,)a dt et ou h, est une isotopie symplectique de h a I'identité.
Donc:

R*AA A T+ R*a AAAQ = (WA = A Aa A Q" +df A A
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On a:
(W*A=MDranQ" t=dd,, ou D, =(h*A—A)rarrn"?

h*arnanQ" ' =dd,, ou D,=h*ararirQ" 2
Donc:

ol A)=w(h, A)+d(D,+D,)+df AL A Q"
=w(h, \)+d(®,+ Dy +f  AAQ)—f- Q.

Mais d’apres la remarque ci-dessus, f- 2" est exacte. Il en résulte donc que

[w(h, A)]=[w(h, V)].
La correspondance h+>[w(h, A)] est un homomorphisme:
En effet, si h, et h, sont deux éléments de G,(M), alors:

w(hy hy, D)=(hEWIA =)+ (BEA =) AA A Q™!
=((h¥A=AN)+dg+(hEA—=ADAAAQ™!

o g=Ji(hi)*i(hL)(h¥A —A) dt et ou h. est une isotopie symplectique de h, a
I’identité. Donc:

w(h, hy, A\ )=w(h, M)+ w(hy, A)+dgrri Q™!
=w(h, A)+wlh,, A\)+d(g-AnQ" H)—g- 0"

D’apres la remarque ci-dessus, g - 2" est une forme exacte. Il en résulte donc que

p est un homomorphisme de groupes.
Si heKer S(M), alors h*A = A +df(h, A). Dés lors:

w(h, A)=df(h, A)AAAQ™ T
=—f(h,A)- 2" +d(f(h,A) - AAQ"Y)

c.a.d

[w(h, V]=—[f(h, 1) - 2"]=—(n+1)- R(h)

La proposition est démontrée.

6. Ennoncé des résultats

Rappelons qu’un groupe G est dit parfait s’il est égal a son sous-grouppe des
commutateurs [G, G], c.a.d. si I’abélianisé G/[G, G] de G, noté H,(G) est trivial.
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Un groupe G est dit simple s’il ne possede pas d’autres sous-groupes normaux
que le groupe G lui-méme et le groupe trivial (réduit a I’élément neutre).
Les résultats principaux de ce travail sont les suivants:

THEOREME 11.6.1. Soit (M, Q) une variété symplectique close et connexe.
Alors:

(i) Le noyau Ker S(M) de §:m — H'(M, R) est un groupe parfait égal a

[Ga(M), Go(M)].
(i1) Le noyau Ker S(M) de S: Go(M)— H'(M, R)/I" est un groupe simple égal

a [Go(M), Go(M)].

COROLLAIRE. Soit (M, (2) une variété symplectique close et connexe. Alors:

(i) H,(G,(M))=H'(M,R)
(i) H,(Go(M))=H'(M,R)/I"

Remarques. (a) Ce théoreme est I’analogue d’un théoréme de Thurston pour
les difféomorphismes qui préservent une forme-volume [16]. Sa démonstration
occupera le prochain chapitre.

(b) comme le montre la proposition I1.4.1, le théoreme I1.6.1 est faux si M est
non compacte.

On a le résultat suivant:

THEOREME 11.6.2. Soit (M, 2) une variété symplectique connexe, non com-
pacte. Alors le noyau Ker R, de I’homomorphisme R, est un groupe simple.

COROLLAIRE. Soit (M, 2) une variété symplectique non compacte, connexe
et telle que H:(M,R) =0, alors:

(i) H(Go(M))=R/A
(i) [Go(M), Go(M)] est un groupe simple

Remarque. Si en plus des hypotheéses du corollaire, la forme (2 est exacte,
alors H,(Go(M))=R.

Comme conséquence du théoréme I1.6.2, on obtient:

THEOREME 11.6.3. Soit M une variété différentiable de dimension 2n=4
munie d’une forme symplectique exacte (2. Alors:

() Hi(Go(M))=H (M, R)®R

(il) [Go(M), Go(M)] est un groupe simple
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Remarque. Rousseau [13] a déduit du théoréme I11.6.2 la structure du groupe
Ga(M) si M est non compacte. En particulier, il retrouve par des méthodes
différentes le théoreme I1.6.3.

CHAPITRE Il
DEMONSTRATION DES RESULTATS

1. L’invariant R et Pobstruction a I’extension des isotopies symplectiques

Soit M une variété différentiable de dimension n et U un ouvert de M
difféomorphe a une boule de R". On dira que U est une boule de M. Si U et V
sont deux boules telles que VS U, on dira que U—V est une couronne de
dimension n. La couronne de dimension n est homéomorphe a S"~ ' x L.

Soit (M, £2) une variété symplectique compacte et soit U une boule de M.
Désignons par G, (respectivement Gg) le sous-groupe de Ker S(M) formé des
éléments a support dans U (respectivement hors de U). Soit he G, (resp.
he Gop) et £, le hamiltonnien a support dans U (respectivement dans M — U) du
champ h, ot h, est un chemin différentiable dans Ker S(M) a support dans U
(resp. hors de U) représentant h. Alors la correspondance:

E»—»I f,-dtAQ"
M <1

est un homomorphisme surjectif R, (resp. RCU) de GU (resp de Gp) dans R.

Soient A, Ay, Acp, les images par R, R,, R des sous- groupes
a,(Ker S(M)) (ou M est une variété symplectique ouverte), 7,(Gy,), m,(Gcg) (ou
U est une boule dans une variété symplectique compacte) de Ker S(M), Gy, Geo,
on obtient par passage au quotient des homomorphismes surjectifs

R(M):Ker S(M)— R/A

Ry, :Gy— R/Ay
Rcp: Geg — R/ Acp

Soit C= U - V une couronne dans une variété symplectique compacte. Alors
les invariants Ry, et Ry sont bien définis. La proposition suivante montre que la
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différence des invariants R-y et R, peut s’interpréter comme une obstruction a
I’existence d’extensions d’isotopies symplectiques définies sur une partie de la
couronne. On met également en évidence le lien qu’il y a entre R-y— Ry et
I'invariant S.

PROPOSITION III.1.1. Soient C; = U, -V, i=1, 2, deux couronnes dans une
variété symplectique compacte (M, (1) se coupant comme dans la figure 1. Soit h,
une isotopie symplectique de M proche de I’identité a support dans C,. L’obstruction
O a Pexistence I’une isotopie symplectique a support dans C; N\ U, et égal a h, sur
C,N 'V, est le nombre réel:

0= (RC\_/]({h}) - éul({h}))/VOI (M)

ou Vol (M) =[,, 0" et {h} est 'image de h, dans le revétement universel.

Démonstration. 1l existe une isotopie h, non symplectique 4 support dans
C,N U, et qui est égale a h, sur C, N V,. Soit f, le hamiltonnien a support dans
U, de h, et soit 0 un point de V,, on a:

R,({n})) = J fordtn Q"

M <1

Reolh)= | (= (0D den "= Ry() - (L F.0) ) - Vol (M),

M X<I

Soit D le 2-cycle relatif hachuré sur la figure 1. Sur dD, h, =identité sauf sur
le segment y=ab d’extrémités a et b sur lequel A, = h. D’aprés la proposition

Figure 1



200 AUGUSTIN BANYAGA

1.1.3 est le théoreme I1.2.1, on a:

7= J J REG)) de= I J R(df,) dt = L (£(h (b))~ f.(h(@))) dt

v

- L (F(b)—fi(a)) dt = —L £0) dt

Donc: Ry({h})— Ry ({h}) = 0. Vol (M). cqfd.

2. Recouvrement associé a une triangulation

Suivant Thurston [16] nous associons & toute C -triangulation T =(A%), .,
k=0,1,2,...,n, d’une variété différentiable M de dimension n, un recouvre-
ment ouvert ¥ =(V%),.,, k=0,1,2,...,n par des boules V¥ indexées comme
les simplexes de la triangulation. Ce recouvrement sera construit par récurence
sur les squelettes. Les ouverts V9 sont des boules contenant A? telles que
VIN V9= si i#]. Supposons construites les boules {V}..,, 1=0,1,..., k-1,
qui recouvrent le (k—1)-squelette de maniere que:

Ai=45- U Vi

del,j=k—1)

soit un rétrécissement du simplexe A¥. Soit A* un léger épaississement de A*. On
prend pour V* un C*-voisinage tubulaire de A*. Le voisinage tubulaire V* sera
choisi suffisamment petit pour que V5N VY= pour tout k et i#].

Soit U = (U%),.y,, k=0, ..., n un recouvrement construit de la méme maniere
que ¥, mais ou chaque U% est un épaississement de V% de telle sotte que
V%< U% pour tout k et tout i et que UXN UX = pour tout k et i#].

Nous dirons que les recouvrements % et ¥" sont des recouvrements associés a
la triangulation T.

Dans la suite, nous envisagerons de tels recouvrements et nous nous
intéresserons aux sous-ensembles de M suivants:

§

Fi=U-U V' ou Vi= Vi

i=k lel;

atf=sn)-(U vi)=Fin 0}

i=k

D’apres la maniére dont sont construits les ouverts U*¥ et V¥ on voit que F¥ est
homéomorphe a A¥ X C" ¥, ot C"* est la couronne de dimension n— k, qui est
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homéomorphe a §" %' X I. On voit aussi (cfr figure 2) que G est homéomorphe
a A" xC"*xD*', ou D*! est le disque de dimension k—1.

Soit W =(W,),.; un recouvrement ouvert de M. On choisit une C~-
triangulation Ty, = (A%);c;, k=0, ..., n telle que l’étoile de chaque sommet de
A% soit contenue dans I'un des W,. On construit comme plus haut les recouvre-
ments U et ¥ associés 2 la triangulation T, dont les ouverts V¥ et U% sont
suffisamment petits pour que chaque U} soit contenu dans un W,

Ainsi donc pour tout recouvrement W de M, il existe des recouvrements U et
V" associés a la triangulation T, qui sont plus fins que le recouvrement donné %

3. Le lemme de fragmentation

Soit M une variété différentiable et h un difféomorphisme de M isotope a
I’identité. Il est bien connu que pour tout recouvrement ouvert % de M, h peut
s’écrire: h=hy, h,,..., h,, ou chaque h; est un difffomorphisme isotope a
I’identité a support dans un ouvert de 9. Nous allons montrer que le groupe
Ker S(M) jouit de cette propriété (Lemme de fragmentation). Nous aurons besoin

de la proposition suivante:
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PROPOSITION II1.3.1. Soit (M, 2) une variété symplectique compacte et soit
h, une is_otopie dans Ker S(M). Si U et U’ sont deux boules de M telles que
U er h(U)< U’ il existe des isotopies h; et h? dans Ker S(M) telles que:

supp (h)c U's  supp (h)cM~-U;  h=h}-h}
Ry(hy)=Rcg(h?y) =0, pour tout t.

Démonstration. Soit A une fonction C* a support dans U’ et égale a 1 sur
U.cx B (D) et soit f, une famille de fonctions telle que i(h,)2 =df. Si¢, est la
famille de difféomorphismes symplectiques obtenue on intégrant le gradient
symplectique de A - f,, alors supp (¢,) < U’ et ¢, = h, sur U. Posons:

r()=Ryl@) et r()=Rcyle), ou ¢,=¢;'h,.
Soit u, une famille de fonctions C* a support dans U’ telles que:

(i) u,=—(r,(t)+ry(t))/Vol (M) sur U, ou Vol (M) =], 2"
(1) fpr u 2™ =—ry(t).

Le groupe a 1-parametre I 3 s+— v} engendré par le gradient symplectique de u, a
son support dans U’'—U et 'on a:

Ry(v))=—r(1)

Rep(v)) = j (e + (ry () ra( D)) Vol (M)Q™ = (1)

Si hi=¢,-v;: et hi=(y) - ¢}, on a: h,=h; - h3, supp (h;)< U supp (h?)<
M—U et Ry(h})=Rc5(h?) =0 pour tout t. D’ol1 la proposition.

LEMME DE FRAGMENTATION (II1.3.2). Soit (M, () une variété symplec-
tique compacte et soit 0 = (O;) un recouvrement ouvert fini de M par des boules O,.
Toute isotopie h,cKer S(M) peut s’écrire comme un produit d’isotopies h:¢c
Ker S(M) a support dans des boules O; et telles que R, (h}) = 0.

Nous aurons besoin du résultat intermédiaire suivant:

LEMMA II1.3.2". Soit (M, {2) une variété symplectique compacte de dimension
2n et soit U = (U%);cp,, k=0, ...,2n, un recouvrement associé a une triangulation.
Toute isotopie assez petite ¥, dans Ker S(M) est homotope relativement aux
extrémités a une isotopie @, qui est un produit @, = ¢, . . ., ¢;, d’isotopies ¢, dans



Sur la structure du groupe des diff€omorphismes 203

Ker S(M) a support dans la réunion disjointe U* = | J ., U%. De plus si ¢} ; est la
restriction de ¢} a la boule U%, on a:

(i) Ry«(@i.) =0, pour tout i et tout k <2n, et tout tel
(i) Yyer,, Rusn(@5,) =0, pour tout te I

Démonstration. D’apres la proposition II1.3.1, il existe des isotopies symplecti-
ques h, et g telles que supp (h,) < M — V7, supp (g) <= UY, ¥, =g, - h, et Ryy(g)=
RCV‘,’( h,)=0.

Le lemme II1.3.2' résultera du sous-lemme suivant:

SOUS-LEMME 1I1.3.3. Il existe des isotopies symplectiques h®, k=
0,...,2n, dans Ker S(M) telles que:

.

h, sur V° (01‘1 V=1 V’f)

iEIk

(i) h® ={identité sur U

identité hors de U° (oh U= U',‘)

L il

r

h=Y hors de U*
h, sur |J V' pour k=1

\ i=sk

(i) A =J

On convient que AV =id,,
(ili) si ¢} ; est la restriction de ¢ =(h*V)"1- h® 3 Uk, alors:
(@) Ry«(¢i.) =0 pour tout i, k k<2n et pour tout tel
(b) Yjer,, Ry (¢5,,) =0, pour tout te L

Le lemme II1.3.2' en résultera immédiatement. En effet: h®” = h, h{"P =id,,.
Si on pose @5 =g, - ¥ et @ =y pour k>0, 0n a: ¥,=¢,..., ¢5, €t chacun
des ¢, vérifie les conditions du lemme.

Démonstration du sous-lemme. Les isotopies h{’ seront construites par
récurence. Pour pouvoir mener a bien cette construction, nous imposerons encore
la condition suivante:

(iv), Etant donné un voisinage W' de id,, dans C*(I, Diff*(M)), il existe un
voisinage W*~V de id,, tel que si A%~ et h, sont dans WP, alors h® e W®,

Les voisinages W™ seront choisis suffisamment petits pour que si V¥ =
User R(V%) et si Ut (£) = M~ (U, Ah* V) (M- UY)), on ait:

(v) V¥ U*(z). On posera: U¥*= UF“(+) et U= UF(-)
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Construction de h'®

Soit r, une isotopie. On considere les 1-formes suivantes:

a(r)= ‘[: r¥(i(r)ds et B(r)= Lt i(r,)Q ds.

Puisque h, est une isotopie dans Ker S(M), la forme B(h,) est exacte d’apres la
proposition I1.3.3. Il en est de méme de la forme a(h,) qui lui est cohomologue.
Soit f, 'unique fonction qui s’annulle sur un voisinage B de A{< V° et telle que
a(h,)=df, et soit g, la famille de fonctions a support hors de B telle que
i(h,)0 = dg. On a alors:

fi(0) = L o.(h,(x)) ds

pour tout xe M. Soit U? la boule contenant A; =A{ et K, une courbe dans
U9— U" joignant A, 2 un point P, de aU? (voir figure 3).

Nous nous proposons de construire un h{® qui vérifie, en plus des conditions
énumérées plus haut, la condition suivante, dont I'intérét n’apparaitra que
ultérieurement pour pouvoir construire h{":

(vi) fg, a(h{®)=—f,(A;) pour tout i

Il existe un voisinage WV de id,, dans C(I, Diff*(M)) dépendant des boules
U? et VO tel que si b, € WP, alors V*°< U?. On supposera donc que h, € WP,
Soit A une fonction C*, a support dans U°, nulle sur U° et égale a 1 sur
Uz VI° et soit g} la restriction 2 U? de A - g. Pour tout je I, on choisit une
fonction C” r} a support dans U9— V3° telle que r{ =0 et si j# 1, on ait:

J' r,‘-ﬂ"=—J’ g
M M

Posons: gj=rj+ gj. Si X, est le gradient symplectique de g =} g}, alors la famille
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de difféomorphismes symplectiques h{® obtenue en intégrant X, vérifie les condi-
tions (i), (iii) et (iv),. Comme:

a(hO) = d(L (& ° h) ds).

On aura:

L a(h®) = - J 2. (hO(A,) ds.

Le point A; étant dans V7, on a: h{’(A;)= h,(A;) et comme h, est proche de
’identité, hy(A;) est dans V7 pour tout s. Mais sur V?, g =gi=g. Il en résulte
que:

| atior= —L e.(h(A) ds = — F(A).

La condition (vi) est donc aussi vérifiée.

Construction de h® pour k=1

On suppose construites les isotopies h’ pour j=k—1 avec toutes les condi-
tions requises.

Soit (A, A,) une partition de 'unité subordonnée au recouvrement {(M—
V*K), U**} de M. Le champ de vecteurs X =A, - h* P+ A, - h, sur M x I définit
une isotopie Hf de M qui coincide avec h, sur |J;<, V' et avec h* " hors de U*.
Cette isotopie est donc symplectique partout sauf sur U*— <, V' = Uy, FF.

D’apres le théoreme I1.2.1, I'obstruction @, a étendre symplectiquement H*
est:

o;:j Q0 on 0% =(HY*Q,

C

¢ parcourt 'espace Hy(M, M — F¥%), pour tout i et k.

Par construction du recouvrement associé a une triangulation, F¥ = AX x C"7*
(voir le paragraphe 4). Un petit calcul montre que: H,(M, M —F¥) = H,(F¥, 3F%)
est isomorphe a R si k=1 et est trivial si k#1. Il en résulte donc que
lobstruction 0, est nulle si k# 1.

Occupons-nous du cas k = 1. D’apres la proposition 1.1.3, 2;— 2 = da(H}) et
I'on a: 0, =[,ca(H}), ou ¢ est un générateur de H,(F, dF;).
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Soit » un 1-simplexe orienté de la triangulation partant d’'un O-simplexe A; et
aboutissant a un autre O-simplexe A, Sur la figure 3, nous avons hachuré un
générateur ¢ de H,(F, doF,). Soit ¢’ une 2-chaine contenant ¢ dont le bord est
constitué par v, K;, K; ainsi que par une courbe L située hors de U joignant les
extrémités P, et P; de K; et K; (voir figure 2). Comme sur ¢’ —c, la forme 2} -2
est nulle, on a que

J m—n=j Q-0

C (4

En tenant compte que sur vy, H; coincide avec h,, qu’au voisinage de K; et K, H|
n’est rien d’autre que h{? et que la forme a(H}) est identiquement nulle sur L, en
utilisant enfin la condition (vi), on a:

0= atiy=ica)-sar+ | at)-[ at=o.
oc’ K, K,

On voit donc que il n’y a aucune obstruction a étendre symplectiquement H..
Pour k=1, il existe donc des isotopies symplectiques h,* qui coincident avec H
hors de |J F*%. Ces isotopies satisfont a la condition (ii). Nous allons les modifier
pour qu’elles satisfassent aussi la condition (iii), ceci sans tuer la condition (ii).

Pour tout voisinage ¥, k =1, de l’identité dans C(I, Diff* (M)), il existe un
voisinage W&~ tel que si h*"" et h, sont dans W* P, alors h/® e W'k. Ceci
résulte de la continuité des opérations avec lesquelles on a fabriqué h/ a partir de
h D et de h,, et du théoréme 11.2.1.

Le nombre Ry«((h*7V)™" - hi®| )= a}, est proche de zéro. Soit s* une
famille de fonctions proches de la fonction nulle, a support dans (U* - |J <, V*)
pour k=2n-1, telle que si s est le restriction de s* a4 U¥, on ait:

L st "= —al,

Si u—r} est le groupe a 1-parameétre engendré par le gradient symplectique de
sk, on prend pour h{® Ilisotopie r, - h/>. On a alors:

Ry (R V) - h®|x)=0 pour tout i et tout k <2n.

Soit B, une petite boule contenue dans V? telle que B,N Uk = & si Uk# UY. Le
support de Iisotopie ¢ =(h*~)™' - h® ne rencontre pas B,. Par conséquent:

RU‘,‘('\(’,:IU',‘) = Rcao(‘llﬂu':) =0, pour k <2n.
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Comme h,=¢7},..., ;" et que Rcg (h,)=0, il en résulte que:

0=Rep,(h)= Z Res, (04U =Y, Rep (42" |uen)

iel,,

Il

Z RU%"(*/’%"IU?“)

iel,,

La condition (iii) est donc aussi vérifiée. Remarquons que la construction qu’on
vient de faire n’affecte pas la validité de la condition (ii). De plus pour tout
voisinage W* de l'identité dans C*(I, Diff*(M)), il existe un voisinage W"'* tel
que si h®e W'® alors h{® e W®. 11 suffit pour cela de choisir convenablement
la famille de fonctions s* ci-dessus.

L’isotopie h{® ainsi construite vérifie toutes les conditions exigées dans le
lemme.

La grandeur des voisinages successifs a considérer est dictée par la condition
(v). Pour que la construction puisse se poursuivre jusqu’au bout, il faut exiger que
h.eW=N2"_, W*®: ce quon peut toujours supposer en subdivisant suffisam-
ment l'isotopie h,. Le sous-lemme est démontré.

Démonstration du lemme 111.3.2. Soit U =(U*) un recouvrement associé a
une triangulation T, (cfr & 5).

Nous pouvons supposer que I'isotopie h, € Ker S(M) est proche de I’identité,
car on peut toujours écrire une isotopie comme un produit d’isotopies proches de
I’identité.

D’apres le lemme 11.6.2', h, s’écrit:

he=dg " i, .., ¥

Soit ¢} ; 'isotopie égale a ¢} sur U¥ et a I'identité en dehors de U%. On a montré
que Ry:(¢i ;) =0, pour tout j et tout k <2n, et que Y Ry (¢5,,,)=0.

Pour tout i€ I,,, soit x; le barycentre de A?", et a; le barycentre de la face
commune A7 ! aux simplexes A" et Az". Soit G le graphe dont les 0-simplexes
sont les points x; et a; et dont les 1-simplexes sont les 1-simplexes de sommets Xx;
et a,. Soit T P’arbre obtenue en supprimant dans G N (M — V°) certaines arrétes.
On consideére des boules By centrées en a; telles que: B, N U™ = J pour tout
jel,; B,UU?"<0,; B, UU;"< O,. Soit ¢ €Ker S(M)a support dans By tel
que RBk(a )= — Ry (¢3,,). Alors ;- 3= ‘lfzm 'l’z.; ks avec: ‘l’zn;_ Woni " @
et ¥h, = (a!) Phas et supp (§h,)< O, Ro, (¥5,)=0. On a donc chassé I'in-
variant R de la boule O, (en I’augmentant dans la boule voisine O;). En procédant
de proche en proche, par ordre a partir des branches du sommet jusqu’au pied de
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I’arbre T, on accumule tous les invariants R au pied de I’arbre (= derniere boule).
Comme la somme des invariants R était nulle (condition (iii) b du lemme I11.3.2'),
I’invariant R est donc aussi nulle dans la derniére boule. Le lemme est démontré.

4. L’ensemble simplicial BG

Pour tout groupe topologique G, on dénote par G*" I’ensemble des applica-
tions continues du simplexe standard A™ dans G. L’application a: G X G*"— G*"
définie par:

a(g,c)=g-c ou (g-o)x)=g-c(x), pour xeA" ge G, ce G*

est une action de G sur G2". Soit BG(n) le quotient G2"/G de G*" modulo cette
action. On identifie BG(n) avec ’ensemble (G, ¢)“™? des applications continues
de A" dans G, qui appliquent le premier sommet “0’’ de A" sur I’élément neutre e
de G.

La réunion des BG(n) est un ensemble simplicial BG. En effet, on a des
opérateurs-face  9;: BG(n)—>BG(n—1) et des opérateurs-dégénérescence
s;: BG(n)— BG(n +1) définis comme suit: pour tout ¢ € BG(m) et tout x,, €A™
de coordornées barycentriques (ty, t,, ..., t,), alors:

@)ty ... » t,_)=¢(0,0,..., ;) ¢(0,1,0,0,...,007"
(aic)(to’ cec tn—-l) = c(tO’ s o0 ti—-l’ 0’ ti’ ti+19 seey tn—l) pour 1§ I =n- 1

(5c)tgs oo s tys)=c(toy ..o i, t+tigy bingyevvstbury) pour 0=i=n+1.

Ces opérateurs satisfont aux relations - habituelles entre opérateurs-face et
opérateurs-dégénérescence dans les ensembles simpliciaux.

L’ensemble simplicial BG ne posséde qu’un seul O-simplexe: c’est 'unique
application qui associe au point A° I’élément neutre e.

De plus BG est un complexe de Kan, c.a.d. qu'il jouit de la propriété
d’extension suivante: soient Cg, ..., Cx_1, Crs1s - - - » Gy, d€s m-simplexes tels que
9;c; =9;_,¢; pour i<j, i#Zk, m>0, alors il existe un (m+1)-simplexe c tel que
d;,c =c;, pour i#k.

On définit sur BG(1) la relation d’équivalence suivante: soient 7, et 7, deux
éléments de BG(1), 7,~ 7, si et seulement si il existe un 2-simplexe ¢ € BG(2) tel
que d,c=17y 9;c=T; et d,c est le 1-simplexe dégénéré (c.a.d. l'application
constante de 1 dans G qui applique 1 sur I’élément neutre e). Les classes
d’équivalence RG(1)/ ~ modulo cette relation forment un groupe. Par définition:
7,(BG)=BG(1)/~.
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Pour tout ce BG(1), la classe d’homotopie relativement aux extrémités du
chemin c(), te 1, est élément du revétement universel G de G. De plus deux
éléments ¢, et ¢, de BG(1) définissent le méme élément dans G si et seulement si
Cco~ ¢;. Il en résulte:

m(BG)=G et H,(BG, Z)= H,(w(BG))= H,(G).

Soit 7, un 1-simplexe. Comme BG n’a qu’un zéro-simplexe, 7, est un cycle. Ce
cycle est homologue a zéro si et seulement si il existe des 1-simplexes a;(t), b;(t)
tels que 7, soit homotope relativement aux extrémités au chemin:

t—>[a,(1), by(1)] - - - [a,(0), b,(1)]

A

ou

[a:(1), b,(D]= a,()b;()(a, ()" - (b:(D)~".

En particulier, on doit avoir (si 7, est homologue a zéro):

7 =[a,(1), by(D)]- - - [a,(1), b,(D)].

Soient o, 7€ BG(1). Désignons par I,4y7 le conjugé de 7 par o(1): c’est le
1-simplexe t— o(1)7(t)(o(1))"" On a:

PROPOSITION II1.4.1. Pour tous 1-simplexes o, € BG(1), les 1-simplexes 7
et 1,,,7 sont homologues.

Démonstration. Les 1-simplexes c¢,(t)=[o(1), 7(¢)] et c,(t)=[o(t), 7(¢)] sont
homotopes par I’homotopie H,,=[o(s+t—s-1),7(f)] Comme c,(t) est
homologue a zéro, il en est de méme de c,(f): ce qui signifie que 7(f) est
homologue a o(1)7(t)(a(1))~". cqfd

Supposons maintenant que G soit un groupe de difféomorphismes d’une
variété différentiable M. Pour tout n, un élément c € BG(n) définit un feuilletage
sur A" X M transverse aux fibres de la projection A" X M— A™. La feuille passant
par (t,x)e A" X M est ’ensemble | J, 4~ ¢,(x). Le support d’un tel n-simplexe est
défini comme étant le plus petit fermé K< M tel que le feuilletage induit sur
A" X(M~—K) par c soit horizontal, c.a.d. que c(x)=x pour tout tel et tout
xeM-K

Soit (M, £2) une variété symplectique. Nous allons définir un sous-complexe
BKer S(M) de BG,(M) comme suit: un n-simplexe ¢ de BKer S(M) est une
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application différentiable de A" dans G,(M) telle pour tout chemin y: I— A", si
¢(t) est le chemin ¢ ¢ y: I— G, (M), alors la forme i(¢,){2 est exacte pour tout ¢,
ou, ce qui revient au méme, la classe de ¢, dans m) est dans m.

Dans la suite U désignera une boule fixe qui est I'image dans M d’une boule
de R*" par une carte canonique. Soit Gy, le sous-groupe de G,(M) formé des
éléments de G,(M) a support dans U. Nous définissons un sous-complexe
BKer R, de BG,, comme suit: un n-simplexe de BKer R, est une application
différentiable ¢ de A" dans Gy, telle que pour tout chemin différentiable y:I—
A", si &(t) est le chemin coy(t), alors {,, f2" =0, ot f, est "'unique hamiltonnien
support dans U du champ de vecteurs ¢, c.a.d. que la classe de ¢, dans Gy, est
dans Ker Ry,

5. Le groupe H,(BKer S(M), Z)

On a une application naturelle de BKer R;, dans BKer S(M). Le but de ce
paragraphe est d’étudier ’homomorphisme induit sur le ler groupe d’homologie
entiere. On a:

THEOREME II1.5.1. Soit (M, ) une variété symplectique close et connexe.
L’homomorphisme &:H,(BKer R, Z)— H,(BKer S(M), Z) induit par la fleche
BKer R,— BKer S(M), est un isomorphisme.

La démonstration de ce théoréme utilise les lemmes suivants:

LEMME 1I1.5.2. Il existe un recouvrement fini W' de M par des boules W,
telles que si W, N\ W;# O, alors W; N\ W, est une boule. De plus, il existe pour tout i
et pour tout j des isotopies ¢, € Ker S(M) et H € Gy, telles que:

e1 (W) < U, H{(¢1(W;N W)= o[ (W, N W)).

Dans la suite, nous considérérons un recouvrement U = (U*) associé 4 une
triangulation Ty, tel que si U, et U, sont des ouverts de U avec U,N U, # J,
alors U,|J U, soit contenu dans une boule de %". Nous envisagerons aussi le
recouvrement W = W' U{U}.

LEMME I11.5.3. Toute 1-chaine dans BKer R, qui borde une 2-chaine ¢ de
BKer S(M) borde alors une 2-chaine ¢ =Y, ¢, dont les 2-simplexes ¢, ont leurs
supports dans les ouverts du recouvrement W.

LEMME II1.5.4. L’homomorphisme H,(BKer Ry, Z)—H,(BGy, Z) est
injectif.
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Démonstration du théoreme I11.5.1
(a) D est injectif

Soit a un élément de H,(BKer R, Z) tel que @(a)=0. Si =), est une
1-chaine représentant a, alors 7 borde une 2-chaine ¢ =),c; dans BKer S(M).
D’apres le lemme II1.5.3, 7 borde aussi une 2-chaine ¢ =),¢, dans BKer S(M)
telle que le support de chaque ¢, soit dans un ouvert de %. Chaque 1-simplexe
9,6 a donc son support dans une boule de W que nous dénotons par W, Soit ¢i*
’isotopie dans Ker S(M) telle que ¢¥(W™*)c U. On convient que si W*=U,
alors ¢*=id,,. On a:

2
=) %, ol A=) (1YL (3,E).
i=0

Si ¢Ff est une isotopie dans Ker S(M) telle que % (supp (c,))< U, alors:
a(I,:(&,)) est homologue a 7. En effet:

(L (G)) = Z (—=1)y G (€)= Z (“1)j1¢{t(6i5k).

D’apres le lemme II1.5.2, il existe une isotopie S, dans G, telle que:
S1(¢1(supp (&) N W) = @i(supp (&) N W),

Il en résulte que:
Is (I (8;,) = I (3G ).

D’aprés la proposition II1.4.1, les 1-simplexes I,(9,c,) et I,(3;¢,) sont
homologues. Ceci entraine que 7 est homologue a 3%, I,:(¢)). Donc 7 est
homologue a zéro dans H,(BGy, Z). D’apres le lemme III.5.4, 7 est aussi
homologue a zéro dans H,(BKer R, Z). D’ou l'injectivité.

(b) @ est surjectif

Soit [h] dans H,(BKer S(M), Z). D’apres le lemme de fragmentation, [h] peut
étre représenté par une isotopie h, qui est un produit h, =[];, hi* ou hi‘e
Ker S(M), supp (h{)< Uy et ¥, Ryx(h{)=0.

D’aprés le lemme I1.8.2, il existe pour tout i et k des isotopies ¢i* dans
Ker S(M) telles que ¢i(U¥)< U. Le conjugé I i(h¥) du 1-simplexe hi* par ¢ a
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son support dans U et il est homologue & hi* d’aprés la proposition I11.4.1. 1l est
clair alors que la classe d’homologie [#] du 1-simplexe ITi L, (hi) appartient a
H,(BKer Ry, Z) et que ®(h])=[h]. D’ou la sur jectivité.

Démonstration du lemme 111.5.2. Commengons par réduire le groupe struc-
tural du fibré des reperes sur M au groupe U(n)< Sp(n):c.a.d. que nous
considérons une métrique hermitienne compatible avec la structure symplectique.

Soit y le centre de la boule U. D’apres la remarque 11.3.4, il existe pour tout
point x € M, une isotopie symplectique ¢} € Ker S(M) telle que ¢3(x) =y. On peut
supposer que la dérivée en x de o7, d,.(¢}), envoie 1a métrique hermitienne de
T.M sur celle de TM.

Pour tout x € M, on considére une boule ouverte géodésique W, de centre x et
de rayon r(W,) = §, suffisamment petit pour que ¢3(W,)< U. On sait (voir par ex.
[9] p. 166-167) que toute intersection non vide W, N W,. est difffomorphe a une
boule.

Soit a: U—R?" un systtme de coordonnées canoniques tel que d,a : T,M—
R>" soit un repére hermitien. Alors pour tout x e M, d,(a° ¢}): T M— R*" est un
repére hermitien. Si x’ est un point proche de x, alors d,.(a - ¢}): T, M—R*" est
proche d’une application hermitienne. Ainsi si les boules W, sont suffisamment
petites, tout point ze€ W,_N W,. est a la fois proche de x et de x'. Il en résulte
donc que pour tout ze W, N W, I’application:

fx,x’(z) = d(a(p’l‘(z))(a . (P’lc' . ((p’lc)—l . a"l)

sera proche d’une application hermitienne. Plus précisément, pour tout xe M, il
existe un nombre positif 81 < 8, tel que si r(W,) <8, alors pour tout ue W, N W,.

_ M)Wl

1-¢e= =l+e¢
[l

ou ¢ est le nombre dont I'existance a été démontré dans la proposition 1.4.2. Le
recouvrement cherché est un recouvrement fini W, W,, ..., W, extrait du re-
couvrement {W,} .\, par les boules géodesiques W, de rayon inférieur a ..
Soient ¢! les isotopies correspondantes aux W, telles que ¢} (W;)< U et soient
fii(z) les changements de cartes:

fi(2) = dg iyl - @il - a™h).
D’apres la proposition 1.4.2, il existe une isotopie symplectique H¥ a support dans

a(U) telle que HY soit égal 2 ag}-(¢}) 'a™ sur a- ¢i(W;N W,) Posons: HY=
a ' Hi-a, alors Hie Gy, et HY est égal a ¢} -(¢i)" sur oi (W,N W)). Nous
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avons donc démontré que:

Hi(ei (W, NW))) =] (W,NW,).
D’ou le lemme II1.5.2

Démonstration du lemme II1.5.3. La démonstration de ce lemme est délicate.
Elle se fera en plusieurs étapes.

Etape 0. Soit ¢ un p-simplexe de BDiff” (M). Par des subdivisions barycentriques
succéssives, on décompose ¢ en une somme de p-simplexes ‘“‘petits.” Par “petit”
simplexe, nous entendons que le feuilletage correspondant sur AP XM soit
suffisamment proche du feuilletage horizontal dans la C'-topologie. Dans la suite,
nous supposerons que les simplexes considérés sont “tres petits.” La “petitesse”
sera explicitée s’il le faut et dépendra des constructions que nous serons emmenés
a faire.

Etape 1. Soit ¢ un petit 2-simplexe de BKer S(M) et soit dc =Y, (~1) d;c
son bord. Chaque chemin d;c:1—>Ker S(M) est une isotopie que nous
désignerons par (9,c)(t). En appliquant le lemme de fragmentation a chaque
isotopie (9,c)(t), on trouve des isotopies symplectiques hi(t),k=-1,0,...,2n
(dim (M) =2n), telles que:

hi_,(t) hors de U*

hid1) = ‘
(@,c)(t) sur UV’

i=k
pour k=0 et on convient que h' ,(t) =id,,.
Si on pose:
si(t) = (hi_1 ()" - hi(2).
On a:
(3;c)(t) =si(t), ..., sh(t) et supp (si(t)< U

Explicitons quelques notations:

Nous commengons par ordonner les boules {U{};cp, k=0,. .., 2n. Les boules
U} porteront le numéro j et seront désignées U,. Pour k=1, une boule Uf sera
désignée U, si m=Q,<,_; N,)+i, ou N, est le cardinal de L.
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L’isotopie si(t) a son support dans la réunion disjointe U* = U,_, U}. Soit
ol (1) I'isotopie égale a si(t) sur Ur= U, et a I'identité en dehors.

Soit N=Ny+:-:+N,,. On pose Zi(t)=0i(Nt) pour 0=t=1/N et pour
m=2,...,N:

O =(ar*, ..., xon)O)=01(1) a4(1) - - - ol(1) - 7). (Nt —k)

pour k/IN=t=(k+1)/N, k=1,2,...,m—1.

Pour tout j, le 1-simplexe t— Z(t) est une somme des 1-simplexes t—> oi(t), a
support dans les boules U,,; il est évident que T4(1) = (3;c)(1) et que les chemins
(9,c)(t) et TX(1) sont homotopes. Par changement de parameétres, on peut sup-
poser que le 2-simplexe standard A? est {(x, y)e R?|0<y=<x=<1}. Soit & lappli-
cation de dA* dans Ker S(M) définie par:

E(,0)=3%(1); (@t 6)=3T0); 21, )=3%0), tel

Désignons par A?>={(x, y)eR?|0<y=<x=<N}. La composition de I’homothétie
de rapport 1/N et de l’application = est une application de dA* dans Ker S(M),

L d
Jauf

notée encore = telle que:
Bk, 0)=2z(1); EWNH=T2Q1); E(k k)=Z(1)

pour 0sk<Net O<I<N.
On interpréte = comme une 1-chaine (donc un 1-cycle) de BKer S(M).

y

(N.N)
/]

(N.)

X
(k,0) (N,0)

Figure 4

Etape 2: Construction d’une 2-chaine dont le bord est = et dont les 2-simplexes
ont des supports dans des ouverts de W. Pour ce faire, nous aurons besoin de
construire pour tout couple d’entiers (k,I) tels que O0<L k<N, des
difffomorphismes ¢4 ;€ Ker S(M) tels que que pour tout k, [ chaque
difféomorphisme Y5 i i-1; ¥ * Yi 11, ait son support dans une boule de W et tels
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que:

Yoo= idpys; o= i(1)§ G = ’1((1); Ung = Ss?v(l)(*)
avec 1<k, k<N.

(1) Construction des ., pour 0<l, k<N,

On pose:
Ungo Hy sur J UY

Yy = =k

identité ailleurs

‘l’gr:,,o' UnN,  SUT U U?
I—Il = i=l

identité ailleurs
pour k, =1 et Hy=idp, €t Y, 0, Un,.n, définis par (*)

Il est évident que:

supp (i ;* ¥il1) < Up; supp (1" Yri-1) < U?

(ii) Construction des Y, pour Ny+1<k<N,+N,, 1<I<N,,.

Nous allons utiliser le lemme III.5.5 ci-dessous. Sa démonstration sera donnée plus
loin.

LEMME IIL.5.5. Soit ¢, le diféomorphisme égal a ¢ = ¢! N, Unn,” YN * U, 0
sur la couronne C,=US— VY et a lidentité en dehors de C,. (Ceci a un sens
puisque ¢ a son support dans la réunion disjointe des couronnes C..) Alors:
Rcvoler) = Ryo(@r) =0, pour tout k.

Le lemme IIL.5.5 et la proposition III.1.1 impliquent qu’il existe pour tout i, j
des difféomorphismes a;; € Ker S(M), a support dans U!" et égal a ¢ sur VF'NC;
(voir condition (v) du lemme de fragmentation et la figure 5)

Considérons les difféomorphismes:

ho= Il @, k=1,...,N, I=1,...,N,.

1=i<k
1=sj=<]
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Figure 5

Pour 1<k=<N et 1<I<N,; on pose:

l/’N0+k,1 = 4’N0,z * hk,l - T,

ou T, est égal & Yx o Yn,in.0 SUr U<k U; et a l'identité ailleurs. Pour [=2,

s of=1 - chohel Lt
‘//No+k,l l['N0+k,l~1"<PNo,t hk,l hk,l——l leo,l——l

a son support dans UY. En effet, supp (¢n.,_1) < U,;U7; supp (b, - hii_1) < UY et
les boules U sont disjointes.
D’autre part:

p= ‘//N0+k,1 : ‘l’;r(l)+k,o = ‘l’NOJ : hk,l T ll’ﬁ(lﬁk,o

a son support dans UY. En effet, T - ¢yxl,0 est égal & Y, qui est égal & ¢!,
hors de UY. Donc pour tout xg U3, T, - ¥x:rr0(X) = ¢¥ui1(x). Le point ¢3! 1(x) ne
rencontre pas le support de h; ;. Il en résulte que p(x)=x, c.a.d. que supp (p)<
Us.

Il est clair que:

Yot Ungs1a = hi Ty

a son support dans Uj
Pour k=2, on voit facilement que:

_ -1 — 1 -1 -1
0= lf‘No+k,z ' ll’1~1(,+k—1,1 = ‘l’No,l : hk,l ' Tle:—lhk—l,l : l/’No,z
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a son support dans U%'. En effet, visiblement supp ()< U,; UU U;. Si xe U,
ou UYN U, =0, alors hi'y - ¢y (x) € Uy et comme hors de Uy, h ;= hy_y,, il en
résulte que 0(x) = x.

Soit U° la réunion des boules U? qui rencontrent U}. Pour xe U}, j#k et
Uuin U°=0, il est facile de voir que 6(x)=x. Si xe U° et x£ U}, alors
Yrnoi(x) € Up. Donc (b T - Tily - hicly Do )(x) = ¥, i(x).  Autrement dit,
0(x)=x.

La propriété suivante des difféomorphismes ¢, ,n,; sera utile dans la suite
(pour montrer la cohérence des conditions (*) dans la construction (iii) ci-dessus).

Unyen,g = Wnyg  SUr U V;

j=<No+N;

En effet sur cet ensemble, Yn . n." ¥noin,0 €St égal au difféomorphisme H
suivant:

- ll’No,ld’ E:,,NO : lﬁN,NO‘P;J,lo sur U U?

j=<l

identité ailleurs.

Comme ¢, = ¥, n, SUT UjslU?

Unn¥no sur U U}
H: il

identité ailleurs.

Il en résulte que sur U ;<n,+n, Vi

¢N0+N1,l =H- ‘l’NO+N1,o =H- ‘!’N,o = ‘//N,l

(iii) Construction des Y, pour 1<I<N,, k> N,+N, et k, [> N,
Cette construction se fera par récurence dans I’ordre des [ et k croissants en

posant:

Y1, hors de U,
Y= -1 hors de U (*)

Unit sur |J V,

i=k
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Nous laissons au soin du lecteur de vérifier que ces conditions sont cohérentes.
Elles définissent donc des difféomorphismes symplectiques ¢ ; € Ker S(M) en
dehors de U, N U, — ;< V; 1l se pose alors le probleme de les étendre symplec-
tiquement a toute la variété.

En reprennant les anciennes notations, U, et U, sont de la forme U, = Uj,
U, = U}. Comme [<k,onaque r'<r.Sir' =r alors U NU =T et §, est de]a
défini parout. Supposons donc que r'<r et que U, N U, # .

U.n0-U V,:(U’-U V’) U:.
i=k j=r
Chaque composante connexe de ’ensemble ci-dessus est ’ensemble G} décrit au
paragraphe 5. Nous avons vu que cet ensemble est homéomorphe 2 D" X A" X
C?"~". Un petit calcul montre que:

R sir=letr=0

H,(Gy", aGy)= {
0 dans les autres cas.

Dans le cas qui nous intérésse (c.a.d. 1<I<N, k> N,+N, et k,I>N,), les
groupes d’homologies relatifs ci-dessus sont tous nuls. D’apres le théoreme 11.2.1,
les difféomorphismes ¢, ; s’étendent symplectiquement a toute la variété.

Considérons les triangles T, de sommets (k, k), (k, k—1) et (k—1, k—1) et les
carrés de C; de sommets (k, ), (k—1,1), (k—1,1-1) et (k, I—1) dans A* (voir
figure 4).

Le sous-groupe des difféomorphismes de Ker S(M) a support dans une boule
est exactement le groupe de tous les difféomorphismes symplectiques a support
dans cette boule. Ce groupe est localement contractible.

Comme tous les difféomorphismes ¢ ; sont proches de I'identité, il existe donc
des isotopies symplectiques h,, g, u, v, telles que:

supp (h,) € U supp (g) < Ui supp (w) < U, supp (v,) < U,
(YL 1,1 d’kl)=h1; (Yl 1,1-1 ll‘k,:)=gl
(it 1,1-1 ¢k~1,l)=u1; (ll’k,l—l"pk,z)":vl-

De plus on peut s’arranger pour que si U, N U, =, alors h, = g, et u, = v,. Il suffit
pour cela de les construire ces isotopies dans I’ordre suivant: pour ! donné, on
construit d’abord les isotopies relatives au carré Cy,, ensuite celles relatives a
Cn-15 Cnapete, 1= ,2,3,.... Ces isotopies fournissent donc des applications
différentiables par morceaux

l\k :aTk—->Kel’ S(M) et i1 :aCk,l-“)Ker S(M).
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De nouveau par contractibilité locale du groupe des difféomorphismes symplecti-
ques a support dans une boule, ces applications s’étendent, apres lissage, en des
applications différentiables:

Ay :T,—Ker S(M) et M, :C. ,—Ker S(M)

telles que supp (A, (Ty)) = Uj et supp (M;,(G.)) <= U U U,

Considérons la 2-chaine ¢ somme de toutes les 2-chaines A, et M, ;. On a
alors que 8¢ =5, ou = est le 1-cycle de BKer S(M) décrit a la fin de I’étape 1.

Soient U} et U, tels que U, N U, = &. Comme H, = g, et u, = v,, il en résulte que
le féuilletage sur les faces opposés de dC, ; X M sont les mémes. Ceci veut dire que
si UNU, =, alors le bord du 2-simplexe M, ; est nul.

Si ¢ est la 2-chaine obtenue a partir de la 2-chaine ¢, en laissant tomber les
2-simplexes M, , tels que leur support est dans U}, U U, avec U, N U, = J, alors on
a encore’d¢ =9¢é = 5.

D’apres la construction du recouvrement %, tout 2-simplexe de ¢ a son
support dans un ouvert de %W’ La 2°¢ étape est terminée.

Soient 7=), 7, une l-chaine dans BKer R, et o =), ¢; une 2-chaine dans
BKer S(M) telle que do =T

Pour chaque 2-simplexe c¢; de o, on fait les constructions des étapes 0, 1, 2. Le
fait 7, est dans BKer R, nous assure que la construction de I’étape 2 est possible.
En effet chaque 7, fait partie du bord d’un 2-simplexe ¢, et nous avons dii utiliser
le fait que les invariants R des 1-simplexes du bord sont nuls.

Soit ¢; la 2-chaine obtenue a partir du 2-simplexe c; par le constructions 0, 1,
2, alors la 1-chaine 7=0(},; ¢;) est homologue a 7 dans H,(BKer R, Z) et c’est
bien le bord d’une 2-chaine dont les 2-simplexes ont des supports dans les ouverts
de W.

Le lemme I1.8.3 est démontré.

Démonstration du lemme 111.5.4

Soit 7=} 7, une 1-chaine de BKer R, qui borde une 2-chaine ¢ =) ¢, de
BGy,. Par subdivisons barycentriques, on peut supposer que tous les 2-simplexes
C, sont petits et en particulier que pour tour x € A2, alors ¢, (x) € G, est proche de
I’identité. Par contractibilité locale de G, il existe une isotopie canonique
t— ci(x) dans Gy, de ¢ (x) a idy. On a:

Ry (e (x)) = Jf, dtA n,

MxI

ol f, est le hamiltonnien a support dans U du champ de vecteurs ¢;(x).
L’application x — Ry,(c.(x)) de A% dans R est continue.
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Considérons une fonction g ce classe C™ a support dans U telle que f,, g2" =
1. Si @), est le groupe a 1-parametre engendré par le gradient symplectique de
—Ry(c(x)) - g on a: Ry(ei, - c(x)) =0 et I'application ¢, : A*> — Gy, définie par

G (%)= @y * i (x)

est continue. Pour tout k, ¢, est donc un 2-simplexe de BKer Ry,.

Supposons que x €A et que ¢, (x) soit un 7,(x). Il existe une petite isotopie
71(x) telle que pp ) f,dtA Q" =0, ol f, est le hamiltonnien a support dans U de
71(x). Cette isotopie est homotope relativement aux extrémités, a l’isotopie
canonique de 7,(x) a idy. Donc Ry (7,(x)) =0 et #,(x)=7,(x). On voit donc que
T=0¢ ou ¢ =) G le lemme est démontré.

Démonstration du lemme 111.5.5
Reve(9) = 2 Reve(@) + Royel ) = ; Rug(@i)+ Reve(@).
k=i i

D’autre part:
Ryo(@:) = Ryo(ni ol ue) + Rue(¥nn, * Wnviolwe) + Rue(¥n ol vo)-

En effet les deux membres de ’équation précédente sont bien définis car ¢ n,;
Ynn,s Yno €t Yn,o ont leur support dans U®. Par construction de ces
difféomorphismes (voir lemme de fragmentation), chacun des termes du membre
de droite dans I’équation précédente est nul. Ainsi donc Ryo(¢;)=0, ce qui
démontre une des affirmations du sous-lemme et prouve que Reyo(¢;) = Reyo(@).
Or:

Rcv?((P) = Rcv?( ’«l’;l(l,,No ' l!’N,NO) + Rcv?((ﬁ;r,lo ' l//NO,())
= Rcv?( '\l’ﬁ(l,,No ' ll’N,N) + Rcv?( Y 1:1,11\1 ) lI’I\I,NO) + Rcv?( Y ;,10 ‘ ¢N0,0-)

Rappelons que:

‘l/;hl,,No' Un.N =(S%(1) T S%n(l))_1
1_;I,IN' ‘l’N,Noz (3(1)(1) trt sczln(l))_l

¢’1:r,10' Unoo = S%(l) T Sén(l)

(voir fin de I’étape 1)
Soit A une boule contenue dans V9 et telle que ANUf= si UF# U\.
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Comme chacun des s} ci-dessus a son support hors de A, on a:

Reve(#)= Rea(#) = Rea 1 50~ Rea( IT 820}~ Rea( T s200)).

k=1 k=1 k=1

Or d’apres le lemme de fragmentation:

Y. Rea(si(1)= Y. Ryk(si(1)=0.

k=1 k=1

Le lemme est démontré.

6. Les diffécomorphismes symplectiques du tore

Le tore T™ est le quotient de R™ par Z™. Soit p: R"—T™ la projection
canonique. Nous désignerons par X un relevement dans R™ d’un xe T™. Pour
tout @« € T™, 'application p,:T™ — T™ définie par:

Pa(X)=p(X + &)

est un difféomorphisme de T™ de classe C” isotope a 'identité, qu’on appelle la
rotation d’angle «. Ainsi T™ s’identifie & un sous-groupe de Diff *(T™),. Le
théoréme de conjugaison suivant est di 3 Herman et Sergeraert [8], [15].

THEOREME. Soient a = (a, a,,...,a,) un point de R™, c>0, et d>0 tels
que pour tout k = (ko, ky, . .., k) €ZX(Z™—0), on ait: |k - a|> c/|k|* avec |k - a|=
ko+kia,+kya,+- - -+k,a, et |k|=k,+k,+---+k,. Soita=p(a)e T™. Il existe
un voisinage V de p, dans Dift* (T™), et une application s: V—Diff” (T™),x T™
telle que pour tout ¢ € V si s(¢) = (¢, B), alors ¢ = pg - ¢~ - p, . De plus si ¢, est une
famille dans V qui dépend différentiablement d’un parametre t et si s(¢,) = (¢, B,),
alors ¢, et B, dépendent différentiablement de t.

Considérons maintenant le tore de dimension 2n. La forme symplectique
dx,Andx,+dxsndx,+- - - +dx,,_Adx,, de R®" est invariante par translation.
Elle induit donc une forme symplectique 2 sur T2". Pour a € T?", la rotation p,
laisse invariante (2. il en résulte que T°" s’identifie 2 un sous-groupe de
Diffy, (T?"),. Comme la forme symplectique de £2 de T>" est a périodes entieres,
il résulte de la remarque II.1.2 (b) que S envoit m,(G,(T?")) dans H(T?", Z).

Nous allons montrer que I'image de 7,(Gqo(T?")) par S est H'(T?",Z). Pour
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tout x €R?", la famille d’applications p},,: T>"— T?" définie par

P (V) =p(F+tx), yeT™  tel
est un chemin différentiable dans Go(T?"). On obtient ainsi une application j de
R?" dans G,(T?"). On voit immédiatement que j envoit Z°" dans 7,(G,(T?")).
D’autre part, S envoie surjectivement G, (T*") sur H(T*", R) = R?". Calculons
S(j(x)), pour x € R*".

Soit (c¢y, ¢y, ..., Cs,) une base de H,(T?",Z). On prend pour c; les cycles
“rotations autour du i*™ facteur” c.a.d. les images par p des courbes ¢ :I— R?>"
définies par:

é(1=(,0,...,0,40,...,0) (t ala i®™ place).

Pour tout i soit H, :Ix I— T?" 'application:

H;(s, t) = pp (i (5)).

En passant au revétement universel, elle s’écrit:

Hi(s, £)=(tx1, tXp, . . oy 1X;_1, 1+ S, BXiiqs - o . 5 1K)

On a donc:

G _{-—xm dtAds  sii est impair
¥() =

+x;,_, dtnds si i est pair.

Il en résulte que:

<. ~o ~ |—Xi41 sliestimpair
$Gi()e) = J H(O= { ’
IxI

X;_y sli est pair.

On a donc montré que: pour tout x =(xy, X5, ..., X,,) €R*"
S(](x)) = (—x2a X1 =X4s X350 0oy Xy x2n-—1) € R2n = Hl(TQ"’ R)

Il en résulte que S envoie surjectivement G,(T?") sur H(T?",Z). De plus nous
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venons de montrer:

LEMME 111.6.1. La restriction de I’homomorphisme S au sous-groupe T*" de
Go(T?) est [Disomorphisme J:T*"— H'(T*",R)/H(T*",Z)=R>"/Z°" =T*"
défini par

J(xl’ x2a e sy x2n) = (——x2, xl’ —X4, X3, LN _x2n’ x2n—1)'

Le résultat principal de ce paragraphe est le suivant:

THEOREME I11.6.2. Le groupe H,(BKer S(T?"),Z) est trivial.

Démonstration. Montrons d’abord que I@?(TZ") =[G, (T"), fG\(;(TZ")]. Soit
¢, un chemin différentiable dans Ker S(T?") représentant un élément @ de
Ker S(T°"). Soit p, une petite rotation satisfaisant a la condition arithmetique du
théoréme de Herman-Sergeraert et soit V un voisinage de p, dans Diff* (T°"),
qui lui correspond dans ce méme théoréme. Pour m assez grand, l'isotopie
h% = @ugmy * (@k—1ymye) - €st dans p (V)N Ker S(T?"). 11 existe donc un yke
Diff* (T°"),, B¥e T>" dépendant différentiablement de ¢ tels que:

hi=pa" pge (YO payi
On a alors:
Q=h¥0=(y)*eX(yH) HY*Q)) cad. (v )*Q=p*(v) H*.

La condition arithmétique sur a € T?" implique que les composantes de
@ € R*" sont linéairement indépéndantes sur Q. Il en résulte que a engendre un
sous-groupe dense dans T?". La forme ((y¥)"')*(2, étant invariante par p,, est
invariante par T?". Elle s’écrit donc:

wk=((Y) )*2 =) a}jdx;ndx;; a};=constantes.
i<j
D’autre part, comme les formes w¥ et {2 sont cohomologues, elles ont les mémes
périodes. Il en résulte que tous les coefficients sont égaux a 1. Donc w¥= {2, c.a.d.
que v¥e G, (T?"). D’autre part, puisque h* est dans Ker S(T°") pour tout ¢, on a:

O = S(h) = S(p(gi—a)) — S(W) + S(p,) + S(v) = S(pgx) = J(BY).
Il résulte du lemme III. 6.1, que BX=0. Donc hk=p.'-(¥}) ' p, - v est un

commutateur dans G,(T*"). Par /c_@iéquent o =h",...,h! est dans
[Ga(T?"), G4(T?™)]. Ceci montre que Ker S(T?")<=[Gqo(T?"), Go(T?")]. L’autre
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inclusion étant évidente, on a:
Ker S(T%") =[Go(T?"), Go(T*")].
Si on pose:

bk=JS(vy*); u=a+bk
vE=ppyE et yE=(pp) ()7

On a:

hi=p ¥ ou - ¥
I1 est immédiat de voir que y¥€ Ker S(T°"). D’apres le lemme de fragmentation, il

existe des isotopies symplectiques v}’ a support dans des boules U, telles que
7:‘: yel Yf’z, <oy ‘y:"N. Or aura:

N N
hi= (H pal et pu>' (H Pk (YN~ pm).
i=1 i=1

Comme p; et p,« sont des diff€omorphismes proches de I'identité, il existe des
boules B; et Bj telles que:

UUp,'(U)cB;, et UUp,i(U)<B..

Considérons des boules D, et D’ telles que B;< D, et B/c D’. 1l existe des
isotopies symplectiques f;, et gj, telles que f;, (respectivement g;,) ait son
support dans D; (respectivement dans D)) et soit égal a p, sur B; (resp. égal a p,:
sur B/). Pour trouver ces isotopies, on reprend par exemple le raisonnement du
début de la démonstration de la proposition II1.3.1). Donc supp (p;'y*p,) et
supp (f},) " vi'- fi,) sont contenus dans p,'(U;) = (f},)"'(U;) et sur cet ensemble,
p.l oo, =(fi ) v fir. 11 en résulte que lisotopie hf s’écrit:

N N
hi= (H (fi) vt f;a) : (H (8in—iv) (¥ g;c,N—i+1>-
i=1 i=1

Toutes les isotopies qui interviennent dans cette formule sont dans Ker S(7°").
Les fi; et gi; sont dans Ker S(T?") parce qu’elles ont leur support dans des
boules.



Sur la structure du groupe des difféomorphismes 225

Si dans la formule ci-dessus, on change 1’ordre des termes, I’isotopie ainsi
obtenue est lidentité. Ceci signifie que I'image de h* dans H,(Ker S(T2")) par
I’application canonique de K&?gﬂ\")/ dans Ker S(T2")/[Ker S(T?"), Ker S(T?")]
est nulle. Il en résulte que H,(Ker S(T%"))=0. Comme H,(BKer S(T°"),Z)=
H ,(1@“5(1%) le théoréeme est démontré.

7. Fin des démonstrations

Soit (M, 2) une variété symplectique close et connexe de dimension 2n.
D’apres le théoreme I11.5.1, on a:

H,(BKer S(M), Z)= H,(BKer R, Z)= H,(BKer S(T*"), Z).
Mais s’apres le théoreme I11.6.2,
H,(BKer S(T*"),Z)=0.

Donc H,(BKer S(M),Z)=0, ce qui signifie que Ize\rf(l\/I)=Ker S(M) est un
groupe parfait. On a:

[Ga(M), Go(M)]< Ker $(M) = [Ker $(M), Ker S(M)]< [Gg (M), G5 (M)]
c.a.d.

Ker S(M) =[G, (M), Go(M)].

L’affirmation (i) du théoréme I11.6.1 est démontrée.
On voit de méme que Ker S(M) =[G, (M), G,(M)].

Pour montrer que Ker S(M) est un groupe simple, il suffit de montrer que si ¢
est un €élément de Ker S(M) différent de I'identité et si N(¢) est le sous-groupe
normal engendré (dans Ker S(M) ou G,(M)) par ¢, alors N(¢)=Ker S(M). 1l
suffira de démontrer ’inclusion Ker S(M) < N(¢).

Soit h € Ker S(M). S’apres le lemme de fragmentation, h =[]; h; ou les h; sont
des éléments de Ker S(M) dont les supports sont dans des boules U, h; € Ker Ry ;
de plus ces boules sont telles qu’il existe des difffomorphismes symplectiques
H; e Ker S(M) tel que H,(U;)< U, ou U est une boule telle que UN U = .
Donc A, =H,-h,- H 'eKer Ry; or la nullit¢ de H,(BKer R, Z) implique que
Ker R, est parfait. Donc k; =[1, [au, bs ] avec ay, b, € Ker Ry,
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Montrons que si u, v € Ker Ry, alors [u, v]e N(¢). En effet, soit g e Ker S(M)
tel que g =identité sur U,et UNgoU=J.Sip, =g @ g ',ona: [u, vl=[[u, ¢],
[v, @]]. Comme [u, ¢] et [v, ¢,] sont dans N(¢), [u, v]e N(¢).

Il en résulte donc que h; € N(¢). Alors h,=(H,) - h,- H,€ N(¢). On a donc
montré que h =[], h, e N(¢). Donc Ker S(M) est simple. Le théoréeme I1.6.1 est
démontré.

Remarque. L’argument ci-dessus est dit 2 Thurston (voir [4]). Il Pemployait
notamment pour montrer que si M est une variété différentiable de dimension n,
alors la perfection du groupe des difféomorphismes a support compact de R"
implique la simplicité de Diff” (M),. Cet argument rend les mémes services que le
théoréme d’Epstein [7].

Démonstration du théoreme 11.6.2. Supposons que M est non compacte et soit
h € Ker R. D’apres le lemme de fragmentation (qui est toujours valable aussi dans
le cas ou M est non compacte), alors h = h, - h,, ..., h,, ou supp (h;) < boule U, et
h; € Ker Ry;,. On répéte I’argument de Thurston ci-dessus. D’ou le théoréme.

Démonstration du théoreme 11.6.3. Soit M une variété différentiable de dimen-
sion 2n =4 munie d’une forme symplectique exacte (2. On a les homomorphismes
surjectifs:

S:Go(M)—> HX(M,R) (le groupe I est trivial)
R :Ker S(M)—>R (le groupe A est trivial)
u:Go(M)—R

et u coincide avec R sur Ker S(M).

On a donc I’homomorphisme Y =S®u:G,(M)— H:(M,R)Y®OR dont le
noyau Ker ) est exactement Ker R. Comme Ker R est simple et que Ker}
contient [G,(M), Go(M)] comme sous-groupe normal, on a: Ker) =
[G,(M), Go(M)]. D’oi1 le théoréme.
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