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Periodic maps on Poincaré duality spaces

Joun P. ALEXANDER AND GAry C. HAMRick*

0. Introduction

Let T be a homeomorphism of odd prime period p on an oriented integral
Poincaré space X>". The main theorem of this paper is an analogue in this context
of the Atiyah-Singer-Segal G-Signature Theorem. It computes the Witt class of
the Z, quadratic form arising from the fixed set F in terms of the orthogonal (or
symplectic, if n is odd) representation of T* in H"(X?")/Tor. We shall also prove
a similar theorem for circle actions. Our proofs owe much to the paper of Bredon
[5]. As Bredon has noted, these theorems yield new information even for
differentiable actions on certain non-closed manifolds.

Before precisely stating our principal results, we need some assumptions and
definitions.

Blanket Assumptions. All spaces are assumed to be Hausdorff and to have
finite covering dimension. In order that Cech and singular cohomology will agree,
all integral Poincaré spaces, integral Poincaré pairs, and the doubles of these pairs
are assumed to be HLC [6]. B

Subject to the above assumptions, the terms integral Poincaré space or pair
will be used in the sense of Browder (pp. 14-15 of [7]). That is, there is a
homology orientation class which induces an isomorphism between appropriate
integral singular cohomology and homology groups via cap product.

If K is a field, then a connected space Y is a (Cech cohomology) K Poincaré
space if there is an integer m, called the formal dimension over K, such that the
cup product pairing

H*(Y; K)X H™*(Y; K)— H™(Y; K)

is non-singular. Here we do not assume HLC. A K-orientation for Y is a
K-vector space isomorphism [Y]:H™(Y; K)— K. If m=0 (mod 4), then the

* The authors were supported by NSF Grant MPS74-06847.
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150 JOHN P. ALEXANDER AND GARY C. HAMRICK
pairing
H™*(Y; K)x H"*(Y; K)—> K

given by (a, b)) (a U b,[Y]) defines a class in the Witt group W,(K) which we
denote wg(Y). For K=1Z,, write w,(Y)=wg (Y).

Returning now to the periodic map T of the first paragraph, we know the
following from [5]

THEOREM (Bredon). Each component F of the fixed set F of T is a z,
Poincaré space of even formal codimension in X.

The cohomology map T* generates a right C,-module structure on
H*(X?";Z), where C, is the cyclic group of order p. There is a non-singular Z,
valued symmetric form on the group cohomology group H"(C,, H"(X*"; Z)/Tor)
which is induced by the cup products on X and the classifying space BC, and the
canonical isomorphism Hz"(Cp;Z)zZp. Denote the Witt class of this form in
Wo(Z,) by q(T, X). When n is even, this is equivalent to the invariant introduced
by Conner and Raymond [10]. We can now state our main theorem.

THEOREM 1. If p is an odd prime, then for each component F of F there exists
a Z, orientation determined by the orientation of X and the action of C, so that

q(T, X) = w,(F)
where the latter denotes the sum ) g wp(ﬁ').

An essentially equivalent result was proved for differentiable actions on closed
4k manifolds by ourselves and James Vick ([3] and [4]). For PL actions on closed
4k manifolds, Lowell Jones ([12] and [13]) proved a slightly weaker result which
can now be extended to Poincaré spaces as follows. There is a unique
homomorphism A : W(Z,) — Zg which takes the rank 1 form Bx? to 3—2(B/p)—p
(mod 8) where (B/p)=+1 is the Legendre symbol. Just as in [4] or [9], one can
conclude

COROLLARY 2. If the formal dimension of X is divisible by 4, then

sgn (X)—psgn(X/T)=A(w,(F)) (mod8)

where sgn denotes signature.

Theorem 1 depends in part on the following proposition and its extension to
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pairs. The proof of this proposition is quite easy and will be deferred until the last
section.

PROPOSITION 3. If a cycle group C, acts freely on an integral Poincaré space
X, preserving orientation, then X/C, is also an integral Poincaré space of the same
formal dimension and the quotient map X — X/C, has degree k.

Let t be the periodic map on the unit sphere S$* 'cC* given by
t(z1, 225 . ., 2)=(AZy, AZp, ..., AZ,) where A =exp (2wi/p), s»n, and s=n
(mod 2). By Proposition 3, X?"xS$**~!/Txt has a torsion linking form whose
Witt class in Wy(Z,) will be denoted by Lk(X X S/TXt). The first step in the
proof of Theorem 1 is to describe the orientation of the components of F and to
show that w,(F)= Lk(X X S/TX1).

Following an algebraic lemma concerning the graded Witt ring Wg(Z, C,) of
orthogonal and symplectic representations of C, we conclude the proof of

.Theorem 1 by showing that q(T, X)= Lk(X X S/T X t).

We then briefly indicate how to use the techniques of Bredon and Chern-
Hirzebruch-Serre to get a similar theorem for circle actions. Recall from Bredon
[5] that each component of F in the following is a rational Poincaré space.

THEOREM 4. If S' acts on an oriented rational Poincaré space X, then there is
a rational orientation of each component of the fixed set F so that wo(X) = wo(F).

Thus we have the following extension of a theorem of Kawakubo and
Raymond [14].

COROLLARY 5. With the above rational orientations, sgn (X) = sgn (F).

1. The linking form and the orientation of F

For any s, recall that t:$%*7' — §%*7!is given by t(zy, ..., z,) = (Azy, ..., AZ).
Let t also denote the induced map on $*= |J, $>*~'. We now select s much larger
than the covering dimension of X/T and such that s+ n is even. There is a unique
integral orientation on X?"xS$*7!/Txt so that the quotient map X xS — X X
S/Tx t has degree p. Reduction mod p gives a Z, orientation which we regard as
an isomorphism

[X X S/Txt]: HX"*9 (XX S/TXt) —>Z,

From the transfer homomorphism H*(X X S,Z) —»> H¥XX S/TXt,Z), it is
seen that H""*(X x §/T x t,Z) is a group of exponent p; hence the torsion linking
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form Lk[XXS/TXtle W(Q/Z) actually is an element of Wy(Z,)<
Dprime ¢ WolZ,) = W(Q/Z) [3]. Furthermore, Lk[X X S§/T X t] may be computed as

the following form on the image of the Bockstein B: H**Y(XXS/Txt; z,)—
H""*(XXS/TXt;Z,).

(x,y)=(xUy",[XXS/Txt]) where y=p(y').

For X, =XXx8%/Txt and Fg=FX (§"/t)=FxBC,, the subspace
homomorphisms

H*(Fg,; Z,) <— H*(Xq,; Z,) —> H*(X X S*7YTx t; Z,P)

are isomorphisms in certain ranges which include dimensions n+s and n+s—1.

The isomorphic range for j* also includes dimension 2(n+s)—1. Abusing nota-
tion, we shall denote the composition

Hz(n+s) I(FCP’ y A ) - (j*) Hz(n+s)—1(Xx S2s—1/Tx £ zp)—i_) zp

by [Fc,]. Lk[X X S/T X t] is then isometric to the form on the image of
B :I"In-f-s—l(Fcp; zp)___) I"In+s—1(FCp; zp)
given by

(x,y)=(xUy',[Fc]) where yeB(y).

We can now compute this latter form, denoted simply as Lk, more explicitly in
terms of F as follows.

DEFINITION. Let F* be a component of F having formal dimension 2f over
Z,I1fteH 1(B ; Zp) denotes the characteristic class of the universal C, bundle
S”— S%/t= BC,,, then the Z, orienfation [E*] is defined to be the composition

v U f(B(f))"+"U+‘) v - v
H*(F;Z,) > H* "9\ (F, ; Z,)

= v [Fc ]
— H9"Y(F,;Z,) —— Z,
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This is exactly the same orientation as described in [5], where it is shown that
[F*] is an isomorphism.
The form Lk splits into orthogonal summands

im {8: H""*"!(Fe,; Z,) > H" " (F¢,; Z,)}

for each component F. If we can show that the form on this summand is Witt
equivalent to w,(F), we shall have

PROPOSITION 6. Lk[X X S/T X t]= w,(F) in Wy(Z,).

Proof. Under the Kunneth isomorphism H*(F¥,; Z,)~
H*(F*;Z,)® H*(BC,, Z,), the Bockstein acts by Bu®v)=
B(u)@v+tu® B(v). Recalling that B>=0 and

B:Pvfz"‘l(BCp;Zp)—> ﬁzi(BCp;Zp) is an isomorphism, we see that B maps
®, H¥(F*';Z,)® H"**"%"Y(BC,; Z,) isomorphically onto

im {B :IVI"“"(FCP, Zz,)— I-'I““(IV"CP; Z,)}.
If xe H*(F¥;Z,) and ye H*(F*;Z), then

(B(x @ (tU BN~ ") U (y @ (tU B(1) /297171, [F, ]
=((xUy)® (tuB()"**~7), [F. )
R it i+j>f
—{<xU v, [E*]), if i+j=f.

Thus the linear subspace V=@,., H¥(F,Z,)® H"*"%7(BC,,Z,) is con-
tained in the annihilator U* of U=@®,.;, H*(F,Z,) ® H***"%"(BC,; Z,). But,
because V and U* have the same rank, they must be equal. Our form is then Witt
equivalent to U*/U = V/U, which is H'(F*;Z,)® H"* Y*Y(BC,;Z,) if f is
even. The above computation for i+ j=f shows that the form restricted to this
subgroup is just wp(l-!’).

The orientation [F] that has been defined is the one that will be used for
Theorem 1 and Corollary 2. We should remark that [F] is not, in general, the
reduction of an integral orientation, even for differentiable actions on closed
manifolds. In fact, Corollary 2 would be false for p=1 (mod 4) for any scheme of
orienting the fixed set by reductions of integral orientations (example below).
Consequently, one must view with care the statement in [12] that the local
invariant wp(lf’l’c ) is given by the signature mod 2 and the determinant mod p of
the form on Hf(F¥, Z)/Tor.
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EXAMPLE. Consider the following example of Conner (page 51 of [15]).
R ={[zq, 21, z,]€ CP(2) | 2§+ 25+ 2§ =0}

is a Riemann surface of genus (p—1)(p—2)/2, and 7:R— R defined by
1120, 21, 2,]1=[20, 21, A2,] is @ map of period p with p fixed points. The local
representation in the tangent space at each fixed point is given by multiplication
by A. Our example is the map T=1>X7 on X=RXR when p=5. Certainly
sgn (X)=0 and from the G-signature theorem it can be verified that sgn (X/T) =
0. However, for any choice of integral orientations for the fixed points one obtains
A(w,(F))=4 (mod8). Hence for integral orientations we do not have the
equation of Corollary 2.

2. An algebraic remark

THEOREM 7. If p is a prime and U, V are finitely generated free abelian
C,-modules, then the cup product induces an isomorphism of Z,-graded groups

H*(G,; U)® H*(G,; V)= H*(C,; U®, V).

Proof. Let Z(A) denote the subring of the complex numbers obtained by
adjoining A =exp (2wi/p) to the integers. Z(A) is made into a C,-module by
letting a specified generator of C, act by multiplication by A. A straightforward
computation shows a C,-module isomorphism Z(A)®,Z(A)=Z[C,F>DZ
where vy =Y o<i<j<p-1 A' @ A can be chosen as the generator for the Z summand.
The product ‘

H'(C,;Z(A)) ® H'(C,; Z(A)) = H*(C,; Z(A) ® Z()))
sends [1]®[1] to [y]. Now a simple argument using exact sequences proves

H'(C,; )@ H'(C,; Q)— H*(C,; P® Q)

is an isomorphism for any ideals P, Q =Z(A), since P is isomorphic as a Z(A)-
module to another P'<Z(A) such that the quotient Z(A)/P’ has order prime to p.
The Reiner decomposition theorem says U=~ U, @® U, @ U, where U, is a trivial
C,-module, U, is a projective Z(A)-module, and U, is a projective C,-module
[11]. We have H*(C,; W® U,) =0 for any free abelian C,-module W. Similarly
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V=V,® V,® V,, hence

H*(C,; U® V)=~ H(C,; Uy® Vo) ® HXC,; U, ® V)
~H?*(C,; Uy)) ® H*(C,; Vo) ® H'(C,; U)) ® H'(C,; Vy)
~ HX(C,; U)® H*(C,, V) ® H'(C,, U)® H'(C,, V).

The same works for H'(C,; U® V).

COROLLARY 8. For p an odd prime the map from Wy(Z, C,) to Wy(Z,)
defined by sending [V] (a (—1) symmetric form, j=1,2) to [H'(C,; V)] is a ring
homomorphism.

Proof. The form on H(C,; V) is given by H'(C,; V)xH/(C,; V)—
H*(C,; V® V)— H*(C,; Z)=1Z, where the first map is cup product and the
second is the coefficient pairing defined by the inner product on V. Consider the
situation where [U],[V]e Wy(Z,C,). Then j=2 in both cases and
H*(C,; U® V)=H?*(C,; U)® HXC,; V)® H'(C,; UY® H'(C,, V). It is easy to
see that cup product and the pairings U® U—Z, and V® V — Z define skew
forms on H'(C,; U) and H'(C,; V). Therefore, because p is odd, H'(C,; U)®
H'(C,; V) is a  hyperbolic form. Clearly [H*C,;U® V)]=
[H*(C,; U) [H*(C,; V)]. All other cases work similarly.

3. Proofs of Theorems 1 and 4

We will now show that the global invariant q(T, X) is also equal to Lk[X>" X
S$*-1Txt].

Recall the example (7, R) defined at the end of section 1. The action of
TX---X7t=(7)° on RX- -XR=(R)> has p° isolated fixed points. Let
{D;|1=i=p°®} be a collection of equivariant tubular neighborhoods of these
points. Set V=(R)’'-J;D,, 8V=U, (-S¥7"). Then

Lk[X?*" xaVIT X (1)*]=—p*Lk[X*" x §**"!/Tx t].

Also,
H*"*(XX(R)*;Z)—> H**(XX V;Z) «—— H"**(Xx(V,8V); Z).

By [1], q(7, R) = p(1), € W((Z,) where (1), is the rank one form x? over Z,.
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Corollary 8 implies
p*q(T, X) = q(Tx(7)’, XX (R)*).

If I denotes the fixed vectors in H""*(X X(R)*; Q), then using the equivalent
Conner-Raymond definition of q [10], we get

p’q(T, X) = q(T x (1)}, XX (R)’)
=(p)@I—-sgn(I)- (1) in Kker{sgn: W(Q)— Z}~ W(Q/Z)
= Wo(X X VITX(1)*)—sgn (XX V/TX (7)) - (1)
=—Lk[XXdV/Tx(7)’] by Coro. 14 in this paper and [3; Thm. 2.3]
— pst[in X §2~1Tx t].

Since Wy(Z,) is a 2-group and p is odd, this proves

PROPOSITION 9. q(T, X*")= Lk[X?" X $>7}/Txt] in Wy(Z,).

This together with Proposition 6 completes the proof of Theorem 1. To
illustrate how the theorem may be used, we give an elementary

COROLLARY 10. Let X** be an integral Poincaré space and p be an odd
prime. Suppose the rank of H**(X, Z)/Tor is less than p. If

(1) sgn (X) is odd, or
(2) p=-1(mod4) and 4/)sgn(X),

then for any map of period p on X there must be a component of the fixed set whose
formal dimension over Z, is divisible by 4.

Proof. Let V=H>"(X*>" Z)/Tor. We are assuming rk(V)<p. If C, acts
non-trivially on V, then H'(C,; V)=Z, bears a non-singular skew-symmetric
form, contradicting p odd. Hence C, acts trivially on V and w,(F)=q(T, X)=
sgn(X)-(1)#0. W ‘

Now we turn to S* actions and Theorem 4. Suppose X*" is a rational Poincaré
space with an orientation [ X*"]. Consider (X*" x $§?**')/S' where S* acts canoni-
cally on §**! so that $***'/S'= CP(s) and s+n is even.

LEMMA 11. (X?>" x §***1)/S! is a rational Poincaré space of formal dimension
2(n+5s).
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Proof. Consider the Leray spectral sequence for the constant rational sheaf
applied to the fibration

X — (X x8**)/S'— CP(s).

The pairing E5° X E3* “?""*— E3**"~ Q is non-singular. Since the differentials
are derivations, we get that

Eu,vx E2s—u,2n-v___> E25,2nz Q
is non-singular. This shows that (X x $>**!)/S' is a rational Poincaré space.

The isomorphism H2" (X x $2**1)/S!, Q)= E2%?"~ E2%*" =
H?*(CP(s), H**(X, Q)) induces a rational orientation [(X x $>*1)/S'] from the
orientations [ X] and [CP(s)]. A simple variation of the Chern—-Hirzebruch-Serre
argument [8] shows

LEMMA 12. With the above orientation
wo (X X S21)/SY) = wo (X).

Proof of Theorem 4. The arguments in section 1 can be modified to define an
orientation on F and show that

wo((X x S2+1)/81) = ; wo(F) = wo(F).

4. Free actions on integral Poincaré spaces

We shall prove Proposition 3. It is sufficient to consider a free action of a
cyclic group C, of prime order p on the integral Poincaré space X".

LEMMA 13. X"/C, is a Z, Poincaré space of formal dimension n.

Proof. Choose an integer 2s— 1> n. Crossing X with a free action of C, on
§2s-1 apply the spectral sequence for Z, cohomology to the fibration

(1) X— (Xx8)/C,— S/C,
(2) $—(Xx8)/C,— X/C,.

The E, term for (1) satisfies Poincaré duality by [5; Lemma 2.1]. As in Lemma
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10, it follows that (X x S)/C, is a Z, Poincaré space. Noting that in the spectral
sequence for (2) the filtration of H'((X x S)/ C,;Z,) yields at most one non-trivial
grading, we conclude that E. satisfies Poincaré duality. So does E,, since the
sequence collapses. Hence H'(X/C,;Z,)=~E3° is dually paired with
H"(X/C,;Z,)=E5> ** ! in H*(X/C,;Z,)~E>*".

Proof of Proposition 3. The Serre spectral sequence for (1) and (2) in Lemma
13 show that X"/C, has finitely generated integral homology. If K is a field of
characteristic other than p, H*(X/Cp, K) is isomorphic to the fixed vectors in
H*(X, K) and thus X/ C, is a K Poincaré space of formal dimension n. Then
H,(X/C,,Z)=1Z, and [7, Prop. 1.2.1] implies that X/C, is an integral Poincaré
space. N

Applying [7, Thm. 1.3.2] to the double proves

COROLLARY 14. Suppose a free action of C, preserves orientation on an
integral Poincaré pair (X, 3X). If the two copies of X are excisive in the double
X U;x X and similarly for the two copies of X/C, in X/C, U,x,c, X/Cy, then
(XIC,dX/C,) is an integral Poincaré pair and the quotient map (X, 0X)—
(X/Cy, 0X/C,) has degree k.
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