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Comment. Math. Helvetici 53 (1978) 143-147 Birkhàuser Verlag, Basel

Holomorphic Lipschitz fonctions in balls

Walter Rudin

Fix n > 1, let B be the open unit bail of CnJ suppose that / is holomorphic in B
and that / satisfies a Lipschitz condition of order a > 0. Stein [3] has observed

(actually, for domains much more gênerai than B) that / is then, roughly
speaking, twice as smooth in the direction of the complex tangents. The présent
note adds to this that the same conclusion can even be derived from much weaker
hypothèses: it is enough to assume that the slice functions /w of / (see below) form
a bounded subset of Lip a. In particular, it is not even necessary to assume that /
is continuous on B.

For the sake of simplicity, we confine ourselves to the range 0<a<l.

DEFINITIONS. On £n there is the inner product <z, w) Z^w, and the
associated norm \z\ (z, z)m. Thus B {z:\z\< 1}.

For 0<a<l, we let Ka be the set of ail /:B->£ such that
(i) / is holomorphic in B,

(ii) for each weS dB, the slice function /w defined by /w(À) /(Àw) is

continuous on the closed unit dise in 0, and satisfies the Lipschitz condition

l/w(e'V/w(el*)N0-<p|a (0,çeR). (l)

We say that a C^-curve y:R-+S is complex-tangential if (y'(0> 7(0) 0 for
every f eR. We say that y is normalized if |y'(0|= 1> i-e., if y is parametrized by
arc length.

Hère are our main results:

THEOREM 1. If 0<a<i there is a constant A(a)<oo such that the

inequality

\f(y(t+h))-f(y(t))\^A(a)\h\2a
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144 WALTER RUDIN

holds for ail feKa, for ail complex-tangential normalized curves y, and for ail t,

heR.

THEOREM 2. If i<a<l, there is a constant A(a)<oo Such that the

inequality

holds for ail feKa, for ail complex-tangential normalized curves of class C2, and

for ail ty fceR.
Hère

Remarks, (i) In the terminology of [2] and [3], the main point of thèse two
theorems can be briefly stated as follows:

If {/w : w e S} is a bounded set in Aa9 then / ° y e A2a. It follows that fe Fa.

(We recall that Aa Lipa when 0<a<l; see Ch. V, §4 of [2]; for Fa, see

[3].)
(ii) Each weS lies on a circle Tw {ei0w:0eR}. Our smoothness assumption

is imposed on the restrictions of / to thèse circles. The complex-tangential curves

y (on which / turns out to be "twice as smooth") are precisely those that are

perpendicular (in the sensé of the usual real scalar product in R2n £n) to every
Tw that they intersect.

(iii) Although the research announcement [3] contains no proofs, it does

mention a key fact: the complex-tangential partial derivatives of a holomorphic
function in B satisfy more restrictive growth conditions than does the radial
derivative. This is also the point of Lemma 2 in the présent paper.

THE RADIAL DERIVATIVE Rf. Every / that is holomorphic in B has an

expansion / ]£Fk in which each Fk is a homogeneous polynomial of degree k.

Define

(zeB). (2)
fc»O

Rf is related to the derivative of the slice functions fw by

(Jl/)(Àw) À/'W(À) (w e S, |A| < 1). (3)
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For our purposes, Rf is préférable to f'w since (2) shows that Rf is a holomorphic

function in B.
In the following lemmas, {e1,..., en} will be an prthonormal basis for £n, so

that z Y*z]ep and we shall write D; for d/dzr

LEMMA 1. Suppose ml9..., mn are nonnegative integers, p Yém

D?> - - • D™% and f is holomorphic in B, Then, for w g S, 0< r < 1,

f [P(D)Rf](tw)tp~1 dt=rp[P(D)f](rw).

Proof. By (2), this is an immédiate conséquence of the fact that P(D)Fk is

homogeneous of degree k-p when fc >p, and that P(D)Fk 0 when fc <p.

LEMMA 2. Suppose G is holomorphic in B, j3>0, and

|G(z)|<(l-|z|)^ (zeB). (4)

Then, for 0<r<l,

r)-*3-1'2 (5)

and

|(DtG)(re1)|<c(j3)(l-r)'3-\ (6)

where c(^)<<».

Proo/. Put g(A)= G(re! + Ac2), if |A|2<l-r2. Put p {|(1 -r2)}1/2. When |A|

p then

so that |g(A)|<2pp-2p. (Note that (4) implies that |G(z)|<2p(l-|z|Tp.) It
follows from the Schwarz lemma that

p"^"2- (7)

Since p2>è(l-r), (5) and (6) follow from (7).

LEMMA 3. If 0 < a < 1, there are constants c,(a) <°°, 1 ^ i s4, such thaf cuery
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feKa satisfies the following inequalities:

lsdtaXl-lzl)-1 (zeB). (8)

/(rw)|sc2(o)(l-r)- (weS,O<r<l). (9)

|(D2/)(rc1)|<c3(a)(l-rr-1/2 (0<a<è). (10)

wi^c^aKl-r)-1 (11)

Ptoo/. (8) follows from (3) and a classical theorem of Hardy and Littlewood;
see, for instance, p. 74 of [1]. It is clear that (8) implies (9). With p 1 - a, (8)
and Lemma 2 give estimâtes of D2Rf and D\Rf\ when thèse are integrated,
Lemma 1 yields (10) and (11).

PROOF OF THEOREMS 1 AND 2. Suppose / and 7 are as in the hypothèses.

Fix fi€(0,1), put r= 1-h2, and define

(teR). (12)

By (9), it is enough to show that

\g(t+h)-g(t)\^A(a)h2* (0<a<|) (13)

and

<l). (14)

For any roeR, our assumptions on y show that there is a unitary change of
variables which makes y(to) eu y'(to) e2. Then (12) and (10) give

|g'00)| HD2f)(ret)\ ^ c3(a)/i2«~1 (15)

if a <|. This proves (13) and hence Theorem 1.

The left side of (14) is at most h2||g"||oo. Hence (14) will follow from

-2. (16)

For any fo^R, our preceding change of variables shows that (12) leads to

g"(f0) r2(D22f)(ret) + rt (DJf)(rel)yn(to)^ (17)
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By (8) and (10), each derivative of / that occurs in (17) is dominated by
c(a)(l-r)a~1 c(a)h2a~2. [Note that the right side of (10) can be replaced by

Clog(l/l-r) if a>\.~\ Since difïerentiation of (y, y)=l gives Re<y\ y} 0,
hence

Re<Y",7> -<7W> -l, (18)

we see that |y"(fo)| — 1. Hence (17) gives (16). This complètes the proof of
Theorem 2.

EXAMPLE. Take n 2, define

^^—. (19)gTzi i — Zi

The singularity at z1 0 is removable, and

z1). (20)

Since |z2|2<l-|zi|2, |(jR/)(z)|<21/2(1-|z|)~1/2- This implies that CfeKm for
some C>0.

Since f-»/(cost, sint) is not in Lip 1, we see that Theorem 1 fails when a =5.
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