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An inequality involving the absolute value of an entire function and
the counting function of its zéros*

W. H. J. Fuchs

Dedicated to Professor A. Pfluger on his seventieth birthday

The purpose of this paper is to give a proof of

THEOREM 1. Letf(z) be an entire function offinite, non-integral order A. If y
satisfies

max(iA)<7<[A]+l; j3 tt/2%

then

y i ~ sinirÀ

The canonical product gK(z) with négative zéros and N(r, l/gA)~rA/A has the
asymptotic behavior [4, p. 232]

as r-»oo, uniformly in |6|<ir-€<7r. Therefore

{log |gA(rel(-0))| + log |&(rc-(-«)|}/N(r, l/gA)

sin ttA

as r-»oo. This shows that Theorem 1 is best-possible.
It may well be that the assertion of Theorem 1 holds for a wider range of y,

but the method of proof does not give this resuit.

* Research carried out with support by N.S.F. grant MCS76-06524.
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136 W. H. J. FUCHS

We may assume without loss of generality that

We shall always use the standard notations

reie,

Proof of Theorem 1. Theorem 1 is a conséquence of

+
X

}
ISm 7TA

where t is a Pôlya peak of N(r) satisfying t> fo(Tj; N(r)). It will suffice to prove (1)
for 0 0, the gênerai case then follows by considering f(zel<p), <p constant. The

Pôlya peaks are a séquence of positive numbers tn tending to <» such that for given
€>0 the inequalities

N(u) < (u/tf-Nit») (Ku^tn) (2)

(tn<u) (3)

hold for ail n > no(e). It is well known that Pôlya peaks exist [2, p. 103]. Since for
a function of non-integral order A limsup N(r)r~A+€ =oo (e>0), (2) implies that

+€ oo. (4)

Consequently (2) can be replaced by

N(u) < (u/tn)k-*N(tn) (0 < u < tn) (20

for ail large tm since N(u) 0 near u 0.

Apply Green's Formula

n(uâv-vAu) dA [u v — )ds

B

to

u log |/(2)|, v log
f~ty

2tyry cos y0
(t>0)
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in the domain B obtained from the sector

D:p<r<R, |0|</3

by removing disks of radius 8 centered at t and at the zéros av of /(z). Hère p and

R are chosen so that \z\ p and |z| R do not contain zéros of f(z) and

p<r<R.

On letting ô->0we obtain

| J log |/(2)| Av(z) dA + J* {t>(Reie) ^ log |/(Reie)|

(5)

,dvt

2tt log |/(0| + 2tt Y

The définition of v(z) shows that for #—»<», uniformly in |0|^j3

dv
v(R&e) O((t/R)3y); — (Re'e) O{t3yR~3y-1).

dr

It is known that there are arbitrarily large values of JR such that [1]

d$

(6)

< A(k)T(2R, f)/R < A2(k)Rx (7)

3, p<r<R,

*>
(rc,9) - aP

_ 2VP sin yg f (r2^ +1

and u(re"») «(re"'p) 0 (/3 ir/2y).
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Therefore v(z)>0 (zeD). Using thèse observations and the explicit value

16y2t3yr3y~2 cos yB*V=
(r2y + t2y)3 '

we let R-*o° and p—>0 in (5) to obtain

Sy2t3y f°° r3y~x dr f*^— T^TTT^i cos 70 log |/(ie*)| de. (8)

Let h(0) fi(0 + 2ir) be defined by

Now h(6) has the (convergent) Fourier séries

£ ake'M I (yM cos fc/3(y2- k2)"^1", (9)

and if

then, by Parseval's formula,

dd £a_A(r)^£|a-ici|bk(r)|. (10)

By an important observation of J. Miles and D. F. Shea [3]

i&~k(r)HMr)NAk^

(rlu)k(N(u)lu) du-N(r) (k> A). (11)

Now we choose € > 0 so small that the interval [A - c, A H- c] does not contain
an integer and we choose for t ^ a Pôlya peak satisfying (3) and (2') with this c.
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Using the inequalities (3) and (2') for N(u) in (11) leads to the following
estimâtes.

If

0<fc<A, 0<r<f,

\bk(r)\< Akrk + (A_6k)2_fc2 N(0(r/0x"€ + N(r). (12)

If
0<k<À, t<r,

\bk(r)\ < Akrk + ik+*2_k2 N(t)(r/tf+* + (A_**2_g2 N(t)(r/t)k + N(r). (13)

If
A<fc, 0<r<f,

-^N(O(r/r)k-N(r). (14)

If

À<k, t<r,

(15)

Now replace /(z) by /1(z) /(ze'p)/(ze-'p). Then

and by (9) and (10)

Using (12) and (14) this leads to

l + r[A]) + eÇjN(0 + (27/ir)£ cos2 kp(y2 - k2)-1^^. (0 < r < r) (16)
—oo

(Note the disappearance of the absolute value signs.)
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Similarly, by (13) and (15)

k2)-1N(r). (t<r) (17)
—oo

By(9)

0 h(p) + h(-fi) 2(r/7r)£ cos2 fc/3(y2- h2)'1,

so that the terms with N(r) in (16) and (17) disappear.
Using (16) and (17) in (8) (with ft in place of f) and dividing by N(t) we hâve

Oog|/(te*)| + log\f(te-*)\}/N(t)^I6y2t^f' ^'

7 1 (r^ + r2-)3
S2+€QI JL (r^ + r2-)3

{r2y\fyf dr, (18)

where

Si (2y/ir)î k2 cos2 k^(y2- fc2)"1((A - e)2 - fc2)"1

)£ fc2 cos2 k/3(72- k2rJ((A + e)2- k2)"1.
—oo

The last two intégrais in (18) are less than

in view of (4).

By an easy application of dominated convergence the first two terms on the

right hand side of (18) tend to

- 16yV*[" ^C(+y • (2yMÏ k2 cos2 (19)
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The sum and the intégral can be evaluated explicitly (see below) giving

L 27rAcos(7rA-j3A)
sin ttà

(19), (20) and (18) together prove (1) and the Theorem is proved.
The évaluation of the sum in (19) can be accomplished by intégrating

z2(l + e2fizl)/{(y2-z2)(\2-z2)(e2mz-l)} around a large square and taking real

parts. The intégral is obtained by differentiating the formula

f dx =-
x + s sin TTfx

twice with respect to s and noting that the resulting intégral formula remains valid
in 0 < jll < 2 by analytic continuation.
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