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An inequality involving the absolute value of an entire function and
the counting function of its zeros*

W. H. J. Fuchls

Dedicated to Professor A. Pfluger on his seventieth birthday

The purpose of this paper is to give a proof of

THEOREM 1. Let f(z) be an entire function of finite, non-integral order A. If vy
satisfies

max (3, A\)<y<[A]+1;  B=a/2y,
then

i8 —~ip _
im inf log |f(ze™®)| +1og |f(ze™*®)| - 2mA cos (mA B/\)-
|zf>o0 N(|z|, 1/f) sin A

The canonical product g,(z) with negative zeros and N(r, 1/g,) ~ r*/A has the
asymptotic behavior [4, p. 232]

i T Ccos A@
1 )| =(1+0(1)) —— r*
og |g, (re”)| = (1+0(1)) T

as r— o, uniformly in |@| < — e <. Therefore

{log |g, (re"™~#)| +log |, (re " ~P)[}/N(r, 1/8,)

27A cos (wA — BA)
--) .
sin A

as r— o, This shows that Theorem 1 is best-possible.
It may well be that the assertion of Theorem 1 holds for a wider range of v,
but the method of proof does not give this result.

* Research carried out with support by N.S.F. grant MCS76-06524.
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136 W. H. J. FUCHS

We may assume without loss of generality that
f(0)=1.

We shall always use the standard notations

z=re", N(r)= N(r, 1/f).

Proof of Theorem 1. Theorem 1 is a consequence of

log |f(te’®*®)| +1log |f(te'® )]

< (2m\ cos (A — BA)
sin A

+n)N(t) 0=6<2mn>0) (1)

where t is a Polya peak of N(r) satisfying t > to(n; N(r)). It will suffice to prove (1)
for =0, the general case then follows by considering f(ze**), ¢ constant. The
Pélya peaks are a sequence of positive numbers ¢, tending to « such that for given
€ >0 the inequalities

N@u)=(u/t,)) *N(t) (1<us=t,) 2)
N(u)=(u/t,)***N(t,)  (t,<u) (3)

hold for all n > ngy(e). It is well known that Pélya peaks exist [2, p. 103]. Since for
a function of non-integral order A lim sup N(r)r **< = (e>0), (2) implies that

lim N(t,)t;* =0, 4)
Consequently (2) can be replaced by
N@)=(/t,)* *N(t,) (O0=u=t,) (2"

for all large t,, since N(u)=0 near u=0.
Apply Green’s Formula

Ij(uAv-—vAu) dA = I (uﬁg—vgg) ds
2B on on

B
to

zZV+tY
AR &

2t"r" cos y0
Y (+>0)

u=log|f(z)l, v=log
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in the domain B obtained from the sector
D:p<r<R, lo|<pB

by removing disks of radius 8 centered at ¢ and at the zeros a, of f(z). Here p and
R are chosen so that |z|=p and |z|= R do not contain zeros of f(z) and

p<t<R.

On letting 6— 0 we obtain

8

j I log |f(z)| Av(z) dA + I

i0 i i0
, {v(Re )arloglf(Re )|

D

o d .
~log f(Re*)| = (Re'“)}R a8 (5)
. i0 av i0 i0 d i0
+ log | f(pe*)| - (pe™) ~ v(pe™®) -~ log |f(pe®)| {p db
_g r ar
=27 log |f(t)|+ 27 Z v(a,).
a,eD
The definition of v(z) shows that for R—, uniformly in |6|<p

b(Re®) = O((/R)™): gi: (Re®) = O(F*R—>v-1), 6)

It is known that there are arbitrarily large values of R such that [1]

2w 2w
j de < J
0

0
Alsoin 0s0<B, p<r<R, z#t,

I (Re®)

i do

3 .
>, 108 |f(Re™)|

<A\TQR, f)/R<A,(A\)R* <. (7)

Y4Y ot 2y 2v)2
re‘°)=~—§§(re*“’)=2yrt sm-y(){ (r*+t )}SO,

r2Y 4 127 - ‘zzy _ tzylz

v
5'6(

and v(re®)=v(re™®)=0 (8 = 7/2vy).
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Therefore v(z)>0 (z € D). Using these observations and the explicit value

16922 cos v

AU (r2-y e t2-y)3 ’

we let R—® and p—0 in (5) to obtain

8yt
<
log |f(#)| -

3y f» 3-y—1d B )
J J I cos v0 log |f(re®)| de. (8)

2 2v\3
" +1°7)° g

Let h(6) = h(6+27) be defined by

_ Jcos v (16]=pB)
"(’”‘{o (B<l6|<m).

Now h(6) has the (convergent) Fourier series

h(0)=Y age™ =Y (y/m) cos kB(y?— k?) e, ©

and if

log |f(re”)| = X, bi(ne™,

then, by Parseval’s formula,

B oecd ; ac
2—17; j cos 0 log |f(re®®)| d0 =Y, a_,b ()=, |a_]| |bi(r)]. (10)
—3 —Q0 —0

By an important observation of J. Miles and D. F. Shea [3]

|b_i ()] = b ()| = Apr* +3k L {(ru)* — (w/r)*}N(u)/u) du + N(r) || 0=k <])

IA

%kLr(u/r)k(N(u)/u) du +%k[m(r/u)"(N(u)/u) du—N(r) (k> ). (11)

Now we choose € >0 so small that the interval [A —¢, A + €] does not contain
an integer and we choose for t =1, a P6lya peak satisfying (3) and (2') with this e.



An inequality involving the absolute value of an entire function 139

Using the inequalities (3) and (2) for N(u) in (11) leads to the following
estimates.
If

0sk<A, O0=r=<t,

k k2 A—e
Ibk(r)lsAkr +m N(t)(f/t) + N(r). (12)
If
O<sk=A, t<r,
K k? Ate ek K
|bi ()| =< Agr +m N(t)(r/t) +———-—-——(A R N(@)(r/t)* + N(r). (13)
If
A<k, O=r=t,
<_L2___ A—e _G_k__ k _
b= =g N~ + G N =N (. (14)
If
A<k, t<r,
§ A+e € k __
|bk(r)|$m N(e)(r/1) HTTY s N()(#/r)* = N(r). (15)

Now replace f(z) by f1(2)=f(ze‘3)f(ze—iﬁ). Then
log |f,(re®)| = 2i cos kBb, (r)e™®

and by (9) and (10)

B )
I= 51:"_ J cos v0 log |f,(re”)| d6 < (2v/m)), cos® kB|y>— k2! |b, ().
_B .

Using (12) and (14) this leads to

= NI~ 2y/m)Y, cos? kBy2 - k2)~H(A — € — k31K

+Ci(1+ )+ eC,N() + (2'y/1r)i cos> kB(y*—k?)7IN(r). (0<r<t) (16)

(Note the disappearance of the absolute value signs.)



40 w. n 1. Fucas
Similarly, by (13) and (15)
TS N@O @y, cos? KBy = k) (A + €~ k) 'K
+C,(1+ M)+ eCsN(t) + (27/17)2 cos? kB(y*>—k?) IN(r). (t<r) (@17)
By (9)

0= h(B)+h(-B) = 2(y/m)}. cos® kB(y>— k3",

so that the terms with N(r) in (16) and (17) disappear.
Using (16) and (17) in (8) (with f, in place of f) and dividing by N(t) we have

L3y dr
(r2'y + t2'y)3 1

{log |f(te®)|+1og |f(te )}/ N(t) < 1672t3’j

o rSy—l(r/t)A+e % r3'y—l dr
+ 1672t37{ m S,+eC,t>" m
= Y142
+(Cs/N(1)) th.[) Eanweaeal (18)
where

S, = 2y/mY. k2 cos? kB(y?— k2 (A — €2~ k?)!
S,= (27/11')2 k2 cos? kB(yz— kz)—l((A + 6)2'— kz)_l.

The last two integrals in (18) are less than
Cge + Gt IN(1) < Cge,

in view of (4).
By an easy application of dominated convergence the first two terms on the
right hand side of (18) tend to

>3 (rft) dr

L= 1672t3y (r2-y +127)3

. (27/#)2 k? cos? kB(y*— k*)'(A2 -k, (19)
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The sum and the integral can be evaluated explicitly (see below) giving

_2@A cos (mA — BA)

L
sin A

(20)

(19), (20) and (18) together prove (1) and the Theorem is proved.

The evaluation of the sum in (19) can be accomplished by integrating
z22(1+ e**){(y*— z*)(A*— z%)(e*™™ — 1)} around a large square and taking real
parts. The integral is obtained by differentiating the formula

dx = O<u<l)

r’ x#t mst !
b X+s sin T

twice with respect to s and noting that the resulting integral formula remains valid
in 0 <pu <2 by analytic continuation.
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