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Comment. Math. Helvetici §3 (1978) 113-134 Birkhduser Verlag, Basel

Manifolds with a given homology and fundamental group

JEAN-CLAUDE HAUSMANN

Introduction

The main results of this paper are an existence and a classification theorem for
manifolds having a given fundamental group and a given (twisted) homology type.
More precisely, let (X, dX) be a Poincaré pair of formal dimension n in the sense
of [W, Chapter 2], with X connected, #,(X)=a and orientation character
o : 7w — Z/2Z. Suppose that dX is either empty or a closed CAT-manifold, where
CAT denotes a category of manifolds among the following: differentiable (C”),
piecewise linear (PL) or topological (TOP).

Let @:H——>7 be an epimorphism of finitely presented group and let
n:0X — BH=K(H, 1) be a lifting of the natural map j: X — Bm. One defines

car(X rel 0X; @) as the set of equivalence classes of homotopy commutative
diagrams of the following form:

M —- BH

'

X —> Br
where

(1) M is a compact manifold of dimension n with orientation character f*(w)
and 7,k :m(M)— H is an isomorphism.

(2) f:(M,0M)— (X,3X) is a map of degree one such that
— fx:Hye(M; Z7) — Hy(X; Z7) (twisted coefficients) is an isomorphism.
-f|8M:8M — 8X is a CAT-homeomorphism and p ° m,(f | dM) = m(x | aM).
—The torsion of f, which is well defined in Wh(7) is equal to zero.

Such a diagram is denoted by (M, f, k). Two diagrams (M,, f,, k,) and
(M, f,, k,) are called equivalent if there exists a cobordism (W, M,, M,) and a
homotopy commutative diagram:

113
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such that:

(a) myx is an isomorphism,

(b) F is a map of degree one, Fy:Hye(W;Zw)— He(MXI;Zm) is an
isomorphism and the torsion of F is equal to zero in Wh(#). One asks also that
F|aW-int (M,U M,) be a CAT-homeomorphism onto §X x L.

By omitting the conditions on torsions in the above definitions, one gets
another set denoted ¥&,r(X rel 0X; ).

For instance, for e=s or h, e r(X rel 9X;id,) = Feor(X rel 8X) where the
latter denotes as usual the homotopy CAT-structures on X (rel 4X), as defined by
Sullivan-Wall [W Chapter 10]. If X = 8", E,1(X; @) (abbreviation used when
dX is empty) is the set of (Hyg-and-;)-cobordism classes of homology spheres
with fundamental group identified with H (see Section 6).

When n=5 and ker @ is locally perfect (see Section 2), we establish a
bijection from L (X reldX; ®) to a subset of P r(XreloX)x[X, BH']
where «: BH — BH" is the map obtained by the Quillen plus construction with
respect to ker @. (It will be previously shown that ker & is perfect if
Fear(Xrel 0X; @) is not empty). This is the classification Theorem (Theorem
2.2) which will be proved in Section 4. The argument needs a variation of the
results of [H2] which is made in Section 3.

In Section 5, we deduce from the classification Theorem an existence result for
manifolds having a given fundamental group and a given twisted homology type.
Many examples of new manifolds can be constructed in this way. For instance, we
give a sufficient condition for a group to be the fundamental group of a knot
whose infinite cyclic cover is acyclic (Its Alexander modules are thus all zero).

In view of the classification and existence theorem, the groups m;(BN*') (N
perfect) play an important role. Therefore, we give in the final Section 7 several
computations of m;(BN™) for some classical perfect groups N.

The classification Theorem is the result of several successive generalizations.
In a first (unpublished) note [H1] the author announced the result for the case
X =8" (See Section 6) but with the hypothesis that BN has finite skeleta
(algebraically: N is of type (FP) in the sense of [B-E]). Later, P. Vogel [V2]
generalized this case by removing the hypothesis (FP). Theorem 2.2 and 5.1 were
announced in [H4] for X empty and N finitely presented. Finally, the technique
of [H-V] enabled the author to prove the results in the generality stated here (N
locally perfect).

2. Basic constructions and statement of the classification theorem

We keep here the notations of the introduction.
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LEMMA 2.0 If ¥car(X rel 0X; @) is not empty, then N =ker @ is perfect.
(ie N=[N, NJ]).

Proof. Let (M, f, k) represent a class of e (X rel 3X; @). Denote by X the
universal cover of X and by My the cover of M with fundamental group N.
Condition b) of the definition of FE (X reldX; @) implies that f My — X
induces an isomorphism on integral homology. Then N is perfect. Il

Observe that f: M — X can be identified with the Quillen plus map with
respect to N.

DEFINITION OF ¢,:%car(XreldX; @) — Fea(XreldX). Let (M, f, k)
represent a class of e (X rel 3X; @). Since both 7w and H are finitely pre-
sented, N is the normal closure in H of finitely many elements. If n=35, the
Quillen plus construction with respect to N can be made by adding finitely many
two and three cells to MX1c M X, as in [H2 §3]. One thus obtains a cobordism
(W, M, M’) trivial on the boundary such that W and M’ have the homotopy type
of M™ (simple homotopy type if e =s). We call W a plus cobordism from M (it is
a semi-s-cobordism from M’ in the sense of [H-V].) The map f: M — X extends
to a map f:W— X which restricts to f':M'— X. This latter is a homotopy
equivalence (simple if e =s) and defines a class of F& (X rel 8X). The reader
will check easily that the class of f' depends only on the class of (M, f, k) in

caT(X rel 0X; @). This defines a map

¢1 :yEAT(Xrel E)X; @) = yecAT(X l‘el GX).

DEFINITION OF ¢,: ¥ (X rel0X; @) — {X; BH'}. Let (M, f, k) repres-
ent a class of Pear(X el 0X; P) and let f: W— X be constructed from f as
above. Let a: X — W be a homotopy inverse of f. The functoriality of the plus
construction with respect to N provides a map «*: W— BH", unique up to
homotopy, such that «* | M =t ° k (4;: BH— BH™). By the universal property
of the plus maps, the homotopy class of k*°a depends only on the class of
(M, f, k) in FEar(X rel 3X; P). Therefore, this defines a map

¢2:Fear(Xrel 0X; @) — [X; BH']
where [X; BH*] denotes the set of homotopy classes of maps g: X — BH" such

that g |dX =y o u (the homotopies being fixed on 8X).
Let @*: BH* — B7 be the map given by functoriality of the plus construction.
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Define {X; BH"} as the subset of classes of [X; BH"] represented by g: X —
BH" such that

w18 =m (D) o my(j)
m,g is surjective.

LEMMA 2.1. Im ¢,<{X; BH"}.
Proof. The fact that 7,(k* e a)=m,(®*) " o ,(j) follows from the equation:

@+0K+oazjofoa~_~j

The surjectivity of m,(k* o a) follows from the following identifications

m(X) = ‘"'2()2) — Hz(X) — HZ(MN)

+ TS
(i ca) malk o) H>kn

Wz(BH+) «— 772(BN+) —— H,(N) = H,(N)

l

oMl

A group G is called locally perfect if every finitely generated subgroup of G is
contained in a finitely generated perfect subgroup of G. This implies that G is
perfect. For various properties of locally perfect groups see [V2 §5] and [H-V].

CLASSIFICATION THEOREM 2.1. Suppose that N =ker 0 is locally per-
fect and that the formal dimension of the Poincaré pair (X,0X) is =5. Then the
map

¢ = (@1, ¢2): Scar(X rel 9X; @) —> Star(X rel X)X {X; BH"}
is a bijection.

Remarks.

(1) Fear(Xrel 3X) can be studied by standard surgery techniques (Ex. [W
Chapter 10]).

(2) {X; BH"} is a subset of [X; BH"|. Here one may use obstruction theory
(but BH" is not a simple space in general). For instance, if Hg(N; Z) is finite for
all *, then m,(BH™) are finite for all i=2 (see Section 7) and thus {X; BH'}is a
finite set.
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3. Manifolds structures on Z-Poincaré complexes which are not finite

In this section, we prove a variation of the [H2 Theorem 5.1.] which we need
in order to prove Theorem 2.1.

Let 1 - N— H— 7 — 1 be a short exact sequence of groups, where 7 and H
are finitely presented and N is perfect. Let w : m — Z/2Z be a homomorphism. Let
(Z,0Z) be a CW-pair where Z is connected and dZ is a closed CAT-manifold of
dimension n— 1. Assume that 7,(Z) = H and that (Z*,02Z) (v:Z — Z", plus with
respect to N) is a Poincaré pair in the sense of [W, §2]. (In particular Z™ is
equivalent to a finite complex and its simple homotopy type can be defined).
Therefore, (Z,9Z) is a Zw-Poincaré pair [B2].

Let (M",dM) be a CAT-manifold pair. A map f:(M, dIM)— (Z,92Z) is called
an e-Zm-equivalence (e =s or h) if:

(1) f is of degree one and r,f is an isomorphism.

(2) f7'(3Z)=0M and f|dM is a CAT-homeomorphism.

(3) f4:Hy(M;Zw)— Hy(Z; Z) is an isomorphism.

(4) If e=s, the torsion of tof: M — Z" is equal to zero in Wh().

Two e-Zm-equivalences f;: (M, dM;) — (Z,0Z) are called equivalent if there
exists a CAT-cobordism (W, M;, M,) and a map

F:(W’ Ml? M2)—'> (ZX Iv ZX{O}, Zx{l})
such that:

(1) aW=M,UM,U (an s-cobordism W, between dM; and dM,).

(2) F|M;=f, F| Wy: Wy—3Z x I as a CAT-homeomorphism.

(3) m,F is an isomorphism and F,:Hy(W;Zn)— H(ZXI;Z%) is an
isomorphism.

(4) The torsion of F is equal to zero if e=s.

The set of equivalence classes of e-Zw-equivalences from CAT-manifold pairs
to (Z,9Z) is denoted by FEar(Z rel 0Z; Zw). If dZ is empty, this coincides with
the definition of $ga(Z;Zm) used in [H2, §5], and if H=m, one has

cat(Zrel 0Z).
There is a map

ANFeAr(Z1el 0Z, ) > Fepr(Z" 1el 02Z)

which is defined using a plus cobordism, as for ¢, of §2.
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THEOREM 3.1. Suppose that N is locally perfect and acts trivially on w,(Z).
Then A is a bijection.

This theorem was proven in [H2, Theorem 5.1] without the hypothesis that N
acts trivially on ,(Z) but under the assumption that Z is a finite complex (or at
least has a finite [n — 1/2]-skeleton). Theorem 5.1 of [H2] is stated for 8Z empty
but the proof holds clearly in the relative case.

The proof given here follows the same idea as in [H-V proof of Theorem 2.1
and 3.1].

Proof. Let K, be a finite complex obtained by attaching 1 and 2 cells to dZ
such that one has a commutative diagram

aZc”Z

%

with 7,a, an isomorphism. By [H-V, Theorem 3.1] there exists a finite
complex K, containing K, and a factorization

Ko< K,

ao\ /cn
Z—>2Z"
such that ¢ ° a, is a plus map. Observe that 7 a,; is onto. Since both 7(K,) and
w,(Z) are finitely presented, one can attach 2-cells to K; to obtain a finite
complex K, and a factorization a,:K,— Z of a; such that ma, is an
isomorphism.

Since Hy(Z,K,;Zmw)=0, one has Hg(Z;K,;Zw)=0 for *#3 and
H;3(Z, K,; Zw)= Hy(K,, K;; Zm) is the free Zmw-module generated by the two
cells of K,-K;. This unique non-zero relative homology group can be killed by
adding 3-cells to K, if and only if the Hurewicz homomorphism w5(Z, K,)—
Hy(Z; K,; Zw) is onto. The universal coefficient spectral sequence for the com-
plex Cy(Z, K,; ZH) gives the exact sequence:

Hy(Z, K;; ZH) — Hy(Z, K;; Z7) — Tort" (Hy(Z, K,; ZH); Z) — 0.
On the other hand, one has

Tor®™ (Hy(Z, K,; ZH)Z ) = Tor®™ (H,(Z, K,; ZH); Z)

=H,(N; H)Z; K,; ZH))
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where the isomorphism (*) is given by [C-E, Theorem 3.1]. Since m,(Z) is a trivial
ZN-module and since H,(Z, K,;ZH)=m,(Z, K,) is a quotient of m,(Z), the
group N acts trivially on H,(Z, K,;ZH) and then H,(N; Hy(Z, K,; ZH))=0.
Thus one has an epimorphism

w3(Z, K3)—>H3(Z, K;; ZH)—>H5(Z, K;; Zmr).

Hence there exists a finite complex K; with a factorization

such that ;a3 is an isomorphism and ¢° a3 is a plus map with respect to N.
By adding more 2 and 3-cells to K5, one may suppose that 0= 7(¢° a;)e Wh.

Since H and 7 are finitely presented, the condition that N is locally perfect is
equivalent to the condition that N is the normal closure in H of a finitely
generated perfect subgroup. Therefore, Theorem 5.1 of [H2] (or rather its relative
version) says that )

Ay : Pear(Ks1€l 0Z Zm) = Fear(ZF 1el 32Z)

is a bijection. Since A; factors through A, one deduces that A is surjective.
For the injectivity of A, let

fi:(M,0M;)—>(Z,0Z)  (i=1or 2)

represent two classes of Foar(Z rel dZ;Zm). Let (P, M;, M!) be two plus cobor-
disms with the corresponding extensions f;:P,— Z* of f. Suppose now that
A(f1) = A(f,) which implies the existence of a e-cobordism (W, M}, M5) and an e-
Zw-equivalence

F:(W,M\,M,)—> (Z*"xXI,Z*x0,Z" X1).

The injectivity of A follows from the already proven surjectivity applied to the
situation:

aW=M,[[ M,uaM, x1—> Z

" l

W=P,UWUP,—> Z*
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4. Proof of the classification theorem

Let X — BH" represent an element of {X; BH*}. Considler BH— BH" as a
Serre fibration with fiber A and take the pull-back diagram:

Z—-£5 BH

/

X |y (Z and y depend on a)

&
X —> BH*

LEMMA 4.1.

(i) m,B is an isomorphism and the following diagram

Z-L5BH
vl ld)
X—-L—> B

is homotopy commutative.
(ii) Hy(y;Z7)=0 (Then (Z,0X) is a Zw-Poincaré pair).
(iii) N acts trivially on m,(Z)

Proof. (i) one has the diagram

m(X) — m(A)— m(Z) — m(X) —0

- e L

m(BH") —> 7,(A) — m(BH) —> m(BH") — 0

m,a is surjective since a € {X; BH"}. Therefore ;B is an isomorphism. The fact
that « € {X; BH"} also gives the second part of assertion (i).

(ii) Observe that A is also the fiber of BN — BN". Since this last map is a
homology isomorphism and BN™ is simply-connected, A is acyclic. But A is the
fiber of Zy — X where Zy is the covering-of Z with fundamental group N and X
the universal covering of X. Therefore, Hy(y; Z) is an isomorphism.

It follows that Z — X can be identified with the map Z — Z™.

(iii) The fiber A is the Dror-acyclic functor A(BN) of BN (see [D1] for the
definition of A(BN)). A is thus characterized by m,(A)=N, where N is the
universal central extension of N [K2] and N acts trivially on m,(A) for i =2. Let
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P=1Im (m,(A) = 7,(Z)) and Q =Im (7,(Z) — m,(X)). One has the exact sequence
of ZN-modules

0>P->mZ)—»Q—0

where P and Q are trivial ZN-modules. Since N is perfect, (iii) follows, as in [D.
Lemma 2.6], from the five lemma used in the diagram

O— P—> m,(Z)—> Q—0

0=H,(N, Q) — Hy(N, P) — Hy(N; m(Z)) — Hy(N; Q)— 0

We can now give the proof of the classification Theorem. Let

(f’, a)E yEAT(X rel GX)X{X; BH+}.

By Lemma 4.1, the map Z —— X satisfies the hypothesis of Theorem 3.1. Thus
the map

A Fear(Zrel 0X; Zm) — Fear(X rel 0X)

is bijective and there is a class of Pear(ZreldX;Zm) represented by
f:(M, M) — (Z, 3X) such that A(f)=f". Then (M, yof,B°f)=(f',a) and ¢ is
surjective.

Now if ¢(M, f, k)= o(M, f, ©)=(f', @), then k and k both factor through Z.
The injectivity of ¢ then follows from the injectivity of A,.

5. Existence theorem

In this section, we will deduce the following result from the classification
Theorem.

5.1 EXISTENCE THEOREM. Let M" be a closed CAT-manifold of dimen-

sion n=5, with m;(M)=m. Let 1 > N— H-2> 7 — 1 be an extension of  such

that, H is finitely presented, N is locally perfect and H,(N;Z)=0 (trivial action).
Let p: 7w (dM) — H be a lifting of m,(0M) — .
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Assume that one of the following conditions is realized:

(a) @": BH" — Bw admits a homotopy section s:Bmw— BH™ such that the
following diagram is homotopy commutative

BH —*—— BH*

A

oM — M — Bmw

(b) H'(Bmw,dM; m;_(BH*"))=0 for A<i<n (m_,(BH") is a Zw-module since
w, P+ . . .
7w(BH") ——— 7 is an isomorphism).

(c) H(M,oM; m;_(BH*))=0 for i=4 (w=m (M) whence m,_,(BH") is a
Zm,(M)-module).

Then there exists a compact CAT-manifold V" with V=M and a map
f: V— M such that

1) m(V)=H, w,f = ® and w,(dM)— (V) is equal to pw.
(2) @ (V)=f*w,(M) where w, is the first Stieffel-Whitney class.
(3) fy:Hg(V;Zm)— Hye(M,Z) is an isomorphism and 0= 7(f) e Wh.

Remarks and Examples

(1) If M and aM are simply connected, condition (a) is realized. When M = S",
this gives the theorem of Kervaire [K1]. The manifold V which will be con-
structed by our proof will be M#3X where 3 is the homology sphere with
fundamental group N constructed in [K1].

(2) Condition (a) is automatically satisfied when oM is empty and the
cohomology dimension of = is <3. It is also fulfilled when 7= and H;(N; Z) are
finite for all i and the orders of # and of H;(N;; Z) are relatively prime (and oM
empty). Indeed, the order of 7 and the order of m(BN™)=m,(BH") (i=2) are
then relatively prime and thus, by transfer, H*(w; my_(BH*))=0 for * =3,

EXAMPLE. M"=L;, a lens space with p prime to 120 and N =4, the
binary icosaedral group.
(3) Condition (a) is satisfied if H — 7 has a section s:7 — H such that

.
0H— Bw
is homotopy commutative.
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(4) The condition H,(N)= 0 is necessary to obtain properties (1) and (3). The
condition H,(N)=0 is necessary when m,(M)=0.

COROLLARY 5.2. Let 1> N—>H—>Z—1 be a short exact sequence of
groups where H is finitely presented and is the normal closure of one element, N is
locally perfect and satisfies H,(N; Z) = 0 (trivial action). Then, for any n =5, there
is a smooth knot n:S8" > 8" such that w,(S" —n(S" %)= H and such that the
infinite cyclic cover of S —n(8"7?) is acyclic.

EXAMPLE. Let us consider the universal central extension [K2]:
0> HyS;Z)>S—>S—>1

of a finitely presented simple group S. One can take for H the semi-direct product
of Z with $ for any Z-action on S. Indeed, in view of Corollary 5.2, it suffices to
prove that H is normally generated by one element (S is finitely presented and
H,(S;Z)= H,(S;Z)=0). Since S is simple, H,(S; Z) is the whole center of S and
the Z-action on $ induces a Z-action on S. Choose a € S such that a 'xa# x* for
a least one x € S, where x' is the image of x under the action of a generator ¢ of Z.
Call G a lifting of a in S. Then dt~" generates normally H. Indeed the relation
a =t induces non trivial relations in S and as S is simple, the perfect group
S/{a'yd=y', ye S} must be a quotient of H,(S;Z), then must be trivial. Thus
a=t implies y=1 for all ye S and t=1.

Proof of Corollary 5.2. This comes from the existence theorem for (M, M) =
(S'x D" ', §'x 8" ?), the complement of the trivial knot, and the lifting
p:m(S'x 8" %) =Z— H sends 1€Z onto a normal generator of H. The lifting u
gives rise to a section of @ and then a section of @*. Therefore condition (a)
holds and the manifold pair (V", §' X S"72) given by the existence theorem is the
complement of the required knot. W

Proof of Theorem 5.1. The hypothesis H,(N;Z)=0 implies that 7,(BN")=

m,(BH") = 0. Therefore, using the classification theorem, a map f: V— M satis-
fying (1) to (3) will exist if and only if there is a lifting a:

oM —+— BH*

/7' +
N a,’ -
7

M - Bn
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of the classifying map j. Indeed, such an a belongs to {M, BH'} and f may be
deduced from (V, f, 8) = ¢ '(idps, @).

If &* admits a section s, compatible with u, one can take a =sv°j. Thus,
Theorem 5.1 is proved for condition (a).

One can always define a section s® of ¢* compatible with u over dM union
the two skeleton of B, since m,;®" is an isomorphism. The fact that 7,(BH") =0,
together with condition (b) show that there is no obstruction to extending s® in
s:Bm— BH". Thus one gets condition (a) fulfilled. Finally, when condition (c)
holds, one gets a as an extension of s‘® ¢ j by obstruction theory (using again the
hypothesis m,(BN")=0).

The proof of Theorem 5.1 is now complete. W

6. Classification of homology spheres

Let us consider the set e r(X; @) when X =S8". One has H=N, & =0 and
there is no difference between the cases e =s or h. Thus, LEar(S™; @) will be
denoted by $ca1(S", H) throughout this section. By Theorems 2.1 and 5.1, or
[K1], Lcar(S", H) is not empty if and only if H is finitely presented and
H,(H) = H,(H) = 0.

Let (M",f,A)€ Pcar(S", H). The manifold M" is an oriented (integral)
homology sphere. We shall omit in the notation the data of f which is here
redondant; indeed, by obstruction theory, there is only one homotopy class of
map M — S" of degree one. Roughly speaking, F,(S", H) classifies the
n-dimensional oriented CAT homology spheres with fundamental group iden-
tified to H, up to (Hy,-and ,)-cobordism. The bijection ¢ of Theorem 2.1 can be
expressed in the following form

¢:Pcar(S"; H)=m,(BH")
when CAT =PL or TOP
¢:Pore(S"; H) = 6,D 7, (BH)

where 6, is the Kervaire-Milnor group of homotopy spheres [KM].
The group law on 6, ® n,(BH*) or m,(BH") can be geometrically interpreted
in Lcar(S™; H) in at least two ways:

(1) connected sum of maps followed by a fitting of the fundamental group like
in the proof of 3.1. This gives the groups wL(BH) of [H3].
(2) The law of the groups C,(K) of [H1]. Recall that the elements of C,(K)
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are pairs (M, f) where M is a n-dimensional PL-homology sphere and f: K - M
is an embedding from a fixed acyclic polyedron K (2 dim K+2<n) into M such
that = f is an isomorphism. The sum is a connected sum around a regular
neighborhood of K. If we pose w7 (K)= H, the fundamental group of M is
identified with H via m;f. One thus obtain an element of ¥p;(S™; H). Then, the
groups C,(K) of [H1, Chapter 2] are isomorphic to =, (Bm,(K)*). The isomorph-
ism between ¥p (S"; H) and w,(BH™) was first established by the author [H1]
when H is a finitely presented group of type (FP) (See [B-E] for the original
definition which is equivalent to BH has finite skeleta). If H is of type (FP) one
can deduce that the complex Z of § 4 has also finite skeleta and Theorem 5.1 of
[H2] can be used in the proof of Theorem 2.1 instead of our Theorem 3.1. The
first proof of the general case is due to P. Vogel [V2 Theorem 1.5] and uses a
different principle.

Problem. Find a finitely presented perfect group which is not of type (FP).

Finally, recall that a class of ¥-,r(S", H) represented by «: 3" — BH corres-
ponds to zero in 6, ® m, (BH") (or m,(BH") if CAT =PL or TOP) if and only if
there exists an acyclic compact CAT-manifold A™*! with 3 =9A and such that
the inclusion of ¥ into A induces an isomorphism on the fundamental groups.
The argument of [H3 § 4] shows that ¢,([K])=0 in 7,,(BH"). On the other hand,
when CAT=C~”, a C”-plus cobordiam from 3 to a homotopy sphere 3, union
A"™*! (union over ) constitute a contractible C*-manifold with boundary 3.
Therefore [2,]=0 in &, and thus ¢,((K])=0.

7. Computations of 7,(BN™)

As we have seen in Section 6, the classification up to (Hy-and-r,)-cobordism
of homology spheres with fundamental group N reduces to the knowledge of
m(BN™). This knowledge is also important in view of the existence and classifica-
tion Theorems, for 7;(BN")=m(BH") (i=2) occurs as the obstruction coeffi-
cients in determining {X; BH"}. In Subsection 7.1 below we give some general
results and in Subsection 7.2 we make explicit computation for some classical
cases. Other results, in connection with algebraic K-theory are given in [H3].

7.1. General results

Throughout this section, N is a perfect group and Hy(N) means Hy(N;Z)
(trivial action).
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PROPOSITION 7.1.1. Suppose that H;(N)e € for i<k, where € is a perfect
and weakly complete Serre class of abelian groups [Hu p. 300]. Then w;(BN")e €
for i<k. In particular:

(1) m(BN™) is countable if N is countable.
(2) If H,(N) is finitely generated for i < k then w;(BN™) are finitely generated for
i<k.

(3) If Hi(N) is finite for i <k then w;(BN™) is finite for i <k.

EXAMPLES.

(1) If N is finite, H;(N) is finite for all i. Thus 7;(BN™) is finite for all i and, by
obstruction theory, {X; BH"} is a finite set. In particular there is finitely many
(Hg-and-r;)-cobordism classes of homology spheres of. dimension n=5 with a
given finite fundamental group.

2 If H(N)=0 for all i>0, then m(BN*")=0 for all i. Thus
Fear(X1el 0X; @)=L (X et 0X).

Finitely presented acyclic groups exist, for instance the Highman’s groups of
presentation:

— —1 =3 -1,-2 -1, -2
N,={ay,...,qa, l a,a,a; as’, a,a;a; az>, ..., a,a,a, ai‘}

which are non-trivial when r=4 [Hi]. The two dimensional complex determined
by the above presentation is acyclic and is homotopy equivalent to BN, (see
[D-V)).

Proof of Proposition 7.1.1. If € is perfect and weakly complete, the Serre-
Hurewicz isomorphism Theorem holds [Hu Theorem 1.8]. Then, Proposition
7.1.1 follows from Hy(BN*)= Hy(N) and m;(BN")=1. &

PROPOSITION 7.1.2. Let N, and N, be two perfect groups. Consider the maps

X+

ty:B(N;XN,)" — BN; X BN
and

ty: BN vBN; = B(N; * N,)*
induced by

t.: B(N;x N,)— BN, x BN,
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and

ty: BN;v BN, = B(N, * N,). Then ty and ty are homotopy equivalences.

Proof. Clearly t and t, are homology equivalences. Then ¢t and ty induce
isomorphisms in homology and all the spaces are simply connected.

Remark. If N, and N, are finitely presented and if one represents the
elements of m,(BN;) by homology spheres with fundamental group identified
with N; (Section 6), then an element

(x9 y) € wn(BN-l'-) @ 'n'n(BN;) = Wn(B(Nl * N2)+)

corresponds to the connected sum of the sphere representing x with the one
representing y. The remaining part of w,(B(N;* N,)*) shows the existence of
more sophisticated homology spheres with fundamental group N, * N,.

PROPOSITION 7.1.3. Let 1> A — H— Q— 1 be a short exact of groups
with H and Q perfect and A abelian. Assume that Q acts trivially on A. Then

BA - BH" — BQ"

is a Serre fibration. In particular, m;(BH")= m;(BQ") for i=3.
A similar result, with other hypotheses is due to J. Wagoner [W, lemma 3.1].

Proof. Call F the homotopy fiber of BH"— BQ™. One has the following
commutative diagram:

Bf-———-> BlH——> BI}
F —> BH"— BQ"

in which the two right hand vertical arrows are homology isomorphisms. Our
hypotheses permit us to use the comparison theorem and thus BA— F is a
homology isomorphism. The space F is simple, since the total space BH" of the
fibration is simply connected. The map BA — F is then a homology isomorphism
between simple spaces; such a map is a homotopy equivalence [D3, 4.2].

7.2. Some Computations

7.2.1. The binary icosaedral group A
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Recall that A admits the presentation {a, b | a®> = b> = (ab)?} and contains 120
elements. Call F,,, the homotopy theoretic fiber of a map from S> to itself of
degree 120. If X is a space, £2X denotes its loop space.

PROPOSITION. The space 2(BA™) is homotopy equivalent to F,,,

Remark. Considering the h-space structure on S® a map of degree 120 is
given by x — x'2°. Such a map induces the multiplication by 120 on all homotopy
groups. Thus one has

(1) m(BA™)=1
(2) m(BA™)=0
(3) One has an exact sequence

0— ’”i(SB)/lZO‘ﬂ'i(Ss) — m(BAY)—> 7Ti—1(53)120 -0

where m;_,(5%)1,0 is the subgroup of m;(S?) of elements whose order divides 120.
In particular, m;(BA™) is a Z/120? Z-module.
The tables of [T] enables us to compute the order of m;(BA™)

n 344 6 7 8 9 10 11 12 13 14
|m.(BAT)| {120 2 4 24 24 4 6 45 30 8 96 1152

n 15 16 17 18 19 20 21 22
|m,(BA™)| |192 24 180 900 360 576 2304 2304

Proof of the Proposition. The argument comes from [D2, proof of Proposition
9.1]. Let 2, be the Poincaré sphere of dimension 3 with 7,(3,) = A and universal
cover S°. Call U the homotopy fiber of 31— BA*. One has the homotopy
commutative diagram:

S*—3,—> BA

Lol

U—>3;—>BA*

The two right hand maps are homology isomorphisms. The space BA™* is simply
connected and the perfect group A acts trivially on Hy(S*)=Z since AutZ is
abelian. By the comparison Theorem, the map $>— U is a homology isomorph-
ism. Since H,(4)= H,(A)=0, BA™ is 2-connected and U is 1-connected. There-
fore, $*>— U is a homotopy equivalence. Observe that 3%~ $> and, since the
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covering map S>— 3, is of degree 120, the map i is of degree 120. Thus,
ﬂ(B+)=ﬁber (i)::FlZO' .
7.2.2. Fundamental group of a 3-dimensional homomology sphere

Let V be a 3-dimensional manifold such that Hy(V;Z)= H4(S>; Z). By the
Kneser-Milnor unique decomposition Theorem [Mi], V can be written in a unique
way as a connected sum

V=Vi# Vot - #Vm
where V, are prime manifolds. Suppose that (V) is infinite for 1<i<k and

finite for k +1=<i=<m. Therefore, the space BN™ for the perfect group N = #,(V)
can be described as follows.

PROPOSITION. BN" has the homotopy type of

S’v-eevS? V. BA*v---vBAY

h g o

k copies (m—k) copies

where A is the binary icosaedral group, see 7.2.1. In particular, BN" is rationally
equivalent to a bouquet of k copies of S>.

Proof. From [Mi], one deduces that the Vs are of three possible type

(1) (V) is infinite and V,=Bm,(V)
(2) V,=S8'x§?
(3) m,(V) is finite.

Since V is a homology sphere, each V; must be a homology sphere which
excludes possibility 2). Thus V;=Bm(V)) for i<k and V=8> If m;(V) is finite,
then 7,(V;) must be isomorphic to A [K1 Theorem 2]. This proves the proposi-
tion, using Proposition 7.1.2. B

Remark. The existence of 3-dimensional homology spheres V; such that
V,=Bm(V)) is classical. For instance, the ones obtained by gluing the comple-
ments of two non-trivial knots by automorphism of S x S' which exchanges the
factors (classical Dehn’s construction [De]).

Of course, the fundamental group of a 3-dimensional homology sphere is the
fundamental group of a n-dimensional homology sphere for all n=5 [Ke). Take
such a group N with BN*=8>vS> Since m(S>vS?) is infinite for i odd=3,
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there is infinitely many (Hg-and-r,)-cobordism classes of n-dimensional homol-
ogy spheres with fundamental group N for all n odd=5.

7.2.3. Alternate groups

Denote by A, (respectively S,) the alternate (respectively symmetric) group of
permutations of n objects and A, =lim_, A,, S,=lim_, S,. By [P], one has an
isomorphism of m;(BS:) with 7%, the i™ stable homotopy group of spheres. Thus,
the composition A, - A.— S, gives a homomorphism B}:m;(BA;)— ;.

PROPOSITION A

(1) B! is an isomorphism when 2<i<(n—1)/3 or when 2<i<(n+1)/2 and
n=2(mod 3).

(2) BI®Z[3]): m(BAL) Q@ Z[5] - mi @ Z[3]
is an isomorphism for 2<i<(n+1)/2, except if i=3 and n=6.

(3) B¥** (¢ =0 or 1) is an epimorphism with kernel isomorphic to Z/3Z.

The precise determination of Ker B7'*° was pointed out to me by the referee.
The proof of Proposition A is given at the end of this section and uses Proposition
B below.

Let C={1, t} be the group with two elements. If G is an abelian group, we use
the notation by G* for G considered as a trivial Z C-module and G~ when the
C-action is tx = —x. Let F, denote the field with p-elements.

PROPOSITION B (due to P. Vogel). Let k be a finite field of characteristic
p#2. Then

0 if n#0 or 1(modp).
H(S,;F,)=40 if n=Ap or Ap+1 and i<(p—2)A
F, if n=Ap or Ap+1 and i=(p-2)A
In particular Hy(S..; G7)=0 for all abelian group G.
Proof of Proposition B. We use the notations of [V1 Chapter IV]. By [V1
Theorem 4], @, Hy(S,; F;) is the free commutative F{"-algebra generated by the
elements a'V(j, - - - j,)e H; ,...,(S,; F,), where (j,, . . . j,) ranges over all 1-admissible

sequences of positive integers [V1 p. 347]. If (jy, . . . j,) is admissible one checks by
induction on r the inequality

: ..p—1
4+ e 4] 22— — -
J1 B> (p-2) (3
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Let a, - - - a, be a monomial in H;(S,;¥,) where: a,€ H,(Sg(; F,)

i=)a@, n=LB80, BW=p

t=1

Since there is at most one a, of dimension zero (i.e. a(J)e Hy(S,; F))=F,),
one must have n=0 or 1 (mod p). By (a) one has

w(t) _

a(t)= (p—2)
p—-1
whence
i>(n-k)P=2 (b)
p—1

If n = Ap, one must have u(f)=1 for all ¢; then k<A and (b) gives i = A(p—2).
If n=Ap+1, one has a unique t for which u(t)=0; thus k<A +1 and (b) gives
also i=A(p—2). When i=A(p—2) and n= Ap or Ap+ 1, one checks similarly that
a,=a(p—2) for all t, whence H,,_,(S,,;F,) and H,,_5(S,,+1;F,) are both
isomorphic to F,. B

Proof of Proposition A. The map m,(BAZ)— m,(BS.) is an isomorphism for
i=2, since BA; is the universal cover of BS}. Thus it suffices to prove the
isomorphism for m;(BA;)— m,(BAL) or equivalently for H,(A,;F

)—
p
H,(A.;F,) for all prime p. One has the exact sequence of F,C-modules:

O———-)F;—a—->FpC——'—>F;———>O

where a(l)=1—t and r(1)=1
This gives a long exact sequence:

= H;.1(S,; F;) = H(S,; F;) = H(S,; F,C) > H(S,; F;) >

One has Hy(S,;F,C)=Hy(A,;F,) under which identification ay is the
homomorphism induced by the inclusion. Using the five lemma, it suffices to
prove the corresponding isomorphisms for Hy(S,; Fy).
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The isomorphism Hy(S,;F,;) — Hy(S.;F,) for i<(n+1)/2 was proven by
Nakaoka [N Corollary 6.7.]. In the case p=2, one has F; =F,. So, using
Proposition B, one deduces (1) and (2) and the fact that 87 is an epimorphism for
n=3i+¢g £€=0 or 1. To compute Ker B}, one considers the diagram

Hi+1(Bs;; BS.;Z")—— H,,,(BAL; BA,;Z)

i |

Hi(S.;Z") “=——H,(A,; Z)

From above, we deduce that d is an isomorphism modulo 2-torsion and a4 has
a 2-torsion kernel by transfer. As H;,,(BAJ; BA,;Z") is a 3-torsion group, one
has:

ker Bi«—m1(BAZ, BAY)=H,,,(BALBA;;Z)=H(S,; Z") ® Z[3]
Thus it suffices to prove that H;(S,;Z") ® Z[3]=Z/3Z.

Let B and B be the Bockstein homomorphisms for the sequences

0>Z/3Z" > Z/9Z—>Z/3Z" —>0

and
0->Z -2 —>2Z/3Z" >0

respectively. The long homology exact sequence shows that
B : Hy(Ss; F5) > H,(S5; F3)
is surjective. Proposition B shows that

—Hy(S5;F3) =0 \
—H,(S;; F3)=F,, generator a®(1)
—H,(S5; F3)=F,, generator a‘(2).

Thus B(a™(2))= £a”’(1) and B(a™(1))=0.
Since the Bockstein homomorphism behaves like a derivation for the product
of Hy(Sy; k*), the generator a¥(1)'aP(D)* of H;(Ssi..;F3)=F; is equal to
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B(aP(2)a’ (1) 'a™(F)*®). Then the exact sequence

H.1(S0; F3) = Hi(S,; Z7)—> Hi(S,; Z7)—> H,(S,; F;)=F,
B8

Hi(S,; ¥3)

proves that H,(S;;..;Z )®Z [3]=7Z/3Z. The proof of Proposition B is thus
complete.

Remark. As in the proof of Proposition B one can actually show that
H;,(S3i+.; F3)=F;, generated by a®(2)a®’(1)' 'a®(Q)".
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