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Growth of leaves

Joun CANTWELL AND LAWRENCE CONLON

Introduction

We study relations between the growth type and the intrinsic topology of
leaves of codimension one. Aside from standard trivialities and a few results on
3-manifolds [C-C2], no such relations have been known. Examples show that
leaves with exponential growth can be topologically very simple, such as planes
and cylinders, or very wild, but we will prove that leaves with polynomial growth
cannot be too complicated topologically. Indeed, our main result (Theorem 4)
implies the existence, for each n =3, of an uncountable infinity of topologically
distinct (n — 1)-manifolds that cannot occur as leaves with polynomial growth in
C? foliations of any closed n-manifold.

In order to be more precise, we must use the concept of ends of an open
manifold [A-S], [Ri], [Ni]. The technical definition will be reviewed in Section 1,
but a few examples here may be intuitively useful. The real line R has exactly two
ends, +o, as does the cylinder S' x R. In Figure 1, the surface N, has a sequence
of isolated ends ‘‘converging” to one limit end, and the surface N, has countably
many sequences of isolated ends approaching limit ends, and a sequence of limit
ends approaching an ultimate limit end. In general, N, is constructed inductively
by setting N,= R* and defining N, to be the infinite connected sum N,_,#
N # -+, k=1.

If N is a manifold, the set €(N) of ends of N has a topology, as suggested in
the above examples, in which it is compact, totally disconnected, and separable. It
is natural to consider the first derived subset &'(N), consisting of the cluster
points of €(N), the second derived subset *(N), consisting of the cluster points
of €'(N), etc. By convention, €°(N) = &(N). In the above examples, E“(N,) is a
single point.

DEFINITION. An open manifold N is of type k if €*(N) is a finite, nonempty
set. A closed manifold is said to be of type —1.

We will see in Section 1 that, for each n=2, there are uncountably many
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homeomorphism classes of n-manifolds that do not have type k for any integer
k=-1.

Let M be a closed manifold equipped with a foliation &. Let L be a leaf of %,
x € L. By relativizing a Riemannian metric from M to L, we can define the growth
function g () of L to be the Riemannian volume of the open ball in L of radius ¢
centered at x. We say that L has polynomial growth of degree r if there is a
polynomial P of degree r such that g (t)= P(t), t=0, and r is the smallest integer
for which this is true. At the other extreme, L has exponential growth if there are
positive constants A, B, and C such that g (t)+ C= Ae”, t=0. The growth type
of L is independent of the choice of metric on M and of x € L [P2]. The growth
can also be defined, without a metric, in terms of the growth at xe L of the
holonomy pseudogroup of ¥ [P2].

Let ¥ be of class C? and codimension one. For leaves L €  with polynomial
growth, we will give a detailed structure theory of the closure L¢ of L in M. This
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can be viewed as a generalization to foliations of codimension one of the classical
Poincaré-Bendixson theory. This analysis of L¢ will make the ends of L visible in
terms of the simpler leaves around which these ends are winding, leading thereby
to an upper bound on the type of L. On the other hand, it will also give a lower
bound to the degree of growth of L.

'T'he principal consequence (Theorem 4) of the above theory will be that leaves
with polynomial growth of degree r can have type at most r. If the leaf is proper,
its type can be at most r— 1. This generalizes the trivial fact that leaves with
growth of degree 0 are compact.

The case in which L (with polynomial growth) is not compact and does not
wind around any compact leaf is of some independent interest. This happens
precisely when & is without holonomy and without compact leaves. In addition to
the considerable structure theory already available for such foliations [No], [Sa],
[T], we prove (Theorem 3) that each leaf has at most two ends.

In Section 6 we sketch some simple examples of leaves not of finite type with
growth properly between polynomial and exponential growth. Independently, G.
Hector [H] has produced similar examples exhibiting uncountably many distinct
nonexponential growth types in a single foliation.

Unless otherwise specified, & will denote a transversely oriented C? foliation
of codimension one on a closed, oriented n-manifold M.

1. Technicalities about ends

Let N be an open, connected manifold and select a nest K, c K, < --- c K, <

- © N of compact subsets such that N = U K,. For each i, suppose that U, is a
component of N—K; such that U;2U,> --- >U,;> ---. Then {U} is said to
define an end e of N and to be a fundamental neighborhood system of e. Given
another nest {K/} and a corresponding system {U!} defining an end e’, we will say
that e = ¢’ if and only if each U; contains some U/ and each U} contains some U,
A sequence {e,} of ends is said to converge to an end e if every fundamental
neighborhood of e is also a fundamental neighborhood of all but a finite subset of
{e.}. Similarly, a sequence {x,} of points of N converges to an end e if each
fundamental neighborhood of e contains all but a finite subset of {x,}. There
results a compactification NU &(N) of N, and é(N) is compact, totally discon-
nected, and separable [A —S].

By transfinite induction, we define derived subsets €*(N) for all ordinals a. As
before, €°(N)= &(N) and, if €~(N) has been defined, then €**!(N) is the set of
cluster points of €*(N). If a is a limit ordinal and €®(N) has been defined for all
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B <a, then €*(N)= Nz, E¥(N). In this last case, *(N) is not empty unless some
&P (N) is empty, B<a.

An elementary argument shows that,-if (2 denotes the first uncountable
ordinal, then €?(N) is either empty or is a Cantor set. Thus, one only considers
&*(N) for 0=a=<{. Evidently, €?(N) is a Cantor set if and only if €(N) is
uncountable.

DEFINITION. The open manifold N is of type a <2 if €*(N) is a finite,
nonempty set. If no such a exists, N is of type (2.

Examples may be helpful. If {N, } denotes the sequence of surfaces constructed
in the introduction, we can form a limit surface N, =lim,_,, N, (where » denotes
the first infinite ordinal). Indeed, connected sum has the ‘““‘absorption” property
N, #Nio1=N,,, so we set N,=N,#N,# --- #N,# ---. Then €°(N,) is a
single point, so this surface has type w.

In Figure 2 we depict a surface with a Cantor set of ends. It is worth
remarking that the complete Riemannian metric implicit in Figure 2 gives an
example of exponential growth. Indeed, surface area grows roughly like the
powers of 2.

Figure 2
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Given a < (), there are compact, totally disconnected subsets E <[0, 1] such
that the a-th derived set E“ is finite and nonempty. The Cantor set gives an
example of E<[0, 1] with E?#0. Thus, for 0<a =(2 and n =2, one can imbed
suitable E< S" and obtain an n-manifold N=S"—E of type a. In particular,
there are uncountably many topologically distinct n-manifolds that are not of
finite type.

Ends play a role in foliation theory as follows. Given an noncompact leaf L of
¥ and e E(L), let {U;} be a neighborhood system for e, denote the closure of U,
in the ambient manifold M by U, and define the asymptote of e to be A, = N U .
This is a compact, F-saturated set. In classical Poincaré-Bendixson theory, the
asymptotes of the two ends of a noncompact line of flow L are called the limit sets
of L.

2. Existence of contracting holonomy

We describe two situations in which the phenomenon of contracting holonomy
will arise in this paper.

Let L be a leaf of & such that L° is transversely a Cantor set. That is, L is
nowhere dense and is not proper. Let R be a finite disjoint union of compact arcs
transverse to % such that each leaf in L° meets the interior of R. By [Pl,
246-247], the holonomy pseudogroup I" defined by # on R contains a finitely
generated sub-pseudogroup I', whose restriction to LN R coincides with that of
I'. Consequently, [Sa, Theorem 1] implies that, if each leaf of L is nonproper,
then arbitrarily near any leaf approached only from one side by L (i.e., a leaf
corresponding to an endpoint of the Cantor set) there passes a leaf of L with an
element of 2-sided contracting holonomy. Actually, the proof in [Sa] shows that
the requirement that every leaf of L be nonproper can be relaxed substantially,
and this is necessary for our purposes since we do not intend that L® be a
minimal set.

THEOREM 1. (Sacksteder) Suppose that L is a nowhere dense, nonproper leaf
of %, and that some leaf L, approached by L only from one side is also nonproper.
Then, arbitrarily near L., a leaf L, of L° can be found which has an element of
2-sided contracting holonomy.

This result, together with methods of J. Plante [P2], has a corollary that will be
needed.

COROLLARY. If L is a leaf of ¥ having nonexponential growth, then L¢ does
not contain an exceptional minimal set.
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Proof. Suppose X < L¢ is an exceptional minimal set. By Theorem 1, there is a
leaf L, < X having an element vy of 2-sided contracting holonomy at (say) x,€ L;.
Let J be a compact transverse interval through x,, small enough that J < dom (y).
Since L has nonexponential growth and L NJ##, there is a holonomy invariant
measure u defined on J such that w(J)=1 [P2, 3.1]. But {x,}=N;;_,y"(J), hence
uixo} = 1. It follows that each point of the infinite set L; NJ has measure 1, a
contradiction. W

Let L and L' be leaves of & such that L is proper and is in the limit set of L’.
Fix a transverse arc T through L and an identification T=[—1, 1] such that
{0}=TNL and L'N (0, 1] accumulates on 0. Let I} be the pseudogroup on T
defined by the holonomy along L.

The following is what is actually established in the proof of [S-S, Theorem 1].

LEMMA 1. (Sacksteder and Schwartz) Under the above hypotheses, there is an
€ >0 such that, for each t,€ (0, €) < T, there is an element ye I, with y(t)<t,,
0<t<e.

THEOREM 2. If L' has polynomial growth and L is as above, then L has an
element of contracting holonomy on whatever side is approached by L'.

Proof. Indeed, suppose L does not have an element of contracting holonomy.
Choose t, € L'N(0, €) and vy, € I; such that y,(1)<t,, 0<t<e. By assumption,
lim y}(t,)=t,>0. Choose y,€I; such that y,(1)<t,, 0<t<g, and set t;=
lim y3(t,)>0. In this way choose infinite sequences {y;}<I; and {t}=(0, ¢)
such that y,(f)<t, 0<t<g, and lim,_,. yi(t,) = ... Let I, be the pseudogroup
generated by {y,,..., ¥}, and let g denote the growth function of I} at ¢,
[P2]. Let gi(n) denote the number of distinct points of L'NT of the
form yp®ypd V.. y1®(t,) where all n(i)=0 and Y*_, n(i)<n. These points
are necessarily in (f,,, €). Evidently, gi(n)=n+1, and g/, (n)=
gr(n)+gx(n—1)+--- +1. It is well known that, if g;(n) is a polynomial in n of
degree k, then the above summation defines a polynomial in n of degree k +1.
Indeed, Y[., i* is such a polynomial [B], [D], [W]. Furthermore, g.,(n) domi-
nates gx.,(n). As in [P2], the growth type of L' can be computed from the growth
function at t, of a suitable holonomy pseudogroup I relative to a finite generating
set I'". Augmenting I'' by the elements {y,,..., 7.} and their inverses gives a
larger pseudogroup and a new growth function at t,, but the type of growth is
unchanged. By the above, it follows that, for each k=1, L' has growth type
greater than that of some polynomial of degree k. This contradiction completes
the proof. W
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Remark. While Theorem 1 holds only for C? foliations, Lemma 1 and,
consequently, Theorem 2 are true for ‘“continuously C'” foliations, that is, for
foliations integral to a C° (n —1)-plane field. For C? foliations, we conjecture that
the condition of polynomial growth on L' can be relaxed to nonexponential
growth, but an example in Section 6 shows that this is not true for continuously
C! foliations.

3. Leaf preserving flows

Let X © M be a compact %-saturated set, let U be an open saturated subset of
int (X), and let U be dense in X. Finally, let ¢ : RX X— X be a C° flow with the
following properties.

(a) The homeomorphism ¢, : X— X maps each leaf diffeomorphically onto a
leaf, Vt.

(b) The flow is stationary on X — U.

(c) The flow is nonsingular on U and transverse to %|U, the flow lines
coinciding pointwise with the orthogonal trajectories to %|U relative to a
Riemannian metric on M.

(d) If E denotes the tangent bundle to %|U, the Jacobian ¢+:E— E is a
bundle map varying continuously with ¢.

The above situation has arisen in [C-C2], in [Sa], and in [P1] with X a
manifold, possibly with boundary. In the present paper we cannot require that X
be a manifold.

For the following proof, we remark that the endset can be defined via a nest
K,<K,c --- cL where each K; is a compact manifold with boundary. Thus
L — K, has only a finite number of components.

An end e of L will be called nonproper if the asymptote A, contains L.

PROPOSITION 1. If L is a leaf in U that is dense in X, then L has either one
or two nonproper ends.

Proof. If L is dense in X, then at least one of the finitely many components of
L — K, is also dense in X. Call this dense component U, and, inductively, choose
components U;,, of U;,—K;,,, each dense in X. Then {U;} is a neighborhood
system for a nonproper end of L.

We show that there are at most three nonproper ends. If ¢, 1<i=<4, are
distinct nonproper ends of L, one can find a compact, connected manifold K< L
such that one component W of L — K is a neighborhood both of e, and e,, but not
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of e; nor e,. Let S < 8K be the boundary of W in L. Since K is connected, L — S
has exactly two components, W itself and a neighborhood V of e; and e,.

Fix xo€ S and choose sequences {x;, }»-1, 1=i=<4, of points of L converging
to ¢; and such that x;,,— x, in M. We can suppose that there are ¢, € R such that
t.,.—>0 and ¢, (x,)=x;,. By (a) ¢, maps L to itself and, by (d), the diameters of
the sets ¢, (S) are bounded, so for each i=1, 2, 3, 4 we can choose ;= ;,, so that
the manifolds S; = ¢, (S) are disjoint and S, U S, = W, S; US, < V. Furthermore,
assuming that each x;, is sufficiently “near” ¢, we obtain a component W’ of
W—S,—S, bounded by S, U S, US, and a component V' of V—S;— S, bounded
by S;US,US.

By (d), the orientation of L is preserved by ; = ¢,, 1=i=4. Orient S so that
W' lies to the left and V' to the right. Orient S; by carrying the orientation of S to
S; via ¢,

If W’ lies to the right of both S, and S,, we produce a contradiction as follows.
Since ¢,(W’) lies to the left of S; and ¢r,(W’) lies to the left of S,, the same holds
for W, =¢,(W) and W,=¢,(W). Thus W, is the component of L—S, not
containing W’ and W, is the component of L — S, not containing W’'. We claim
W, N W, =0 since, otherwise, there is a path from W, to W’ not meeting S,.
Also, W, and W,c W. But W, 2 ¢,(W,) = ¢, ¥o,(W) = Y, (W) = W,, this being
the desired contradiction. Thus we can assume that W’ lies to the left of S,.

A completely similar argument shows that W’ cannot lie to the right of S,
while lying to the left of both S, and S. Similarly, V' must lie to the right of both
S; and S,. But then, the component of L —S,—S;— S, bounded by S,US;U S,
lies to the left of S, and to the right of both S, and S,, leading to the same
contradiction. Thus L has at most three nonproper ends.

Finally, suppose that e,, e,, and e; are distinct nonproper ends. One finds a
compact, connected K < L as usual so that L — K has exactly three components
W,, respective neighborhoods of ¢, i =1, 2, 3. Let S; < 6K denote the boundary
of W, in L, and by drilling suitable tunnels out of K| if necessary, assume that S,
is connected. Using a sequence in L converging to e, in L U €(L) and to x,€ S, in
M, we argue as before to find a real number ¢ such that ¢ = ¢, maps L to itself
and has ¢(K)< W,. Remark that the homeomorphism ¢: L— L extends to a
homeomorphism ¢: L U €(L)—L U &(L) and that nonproper ends are carried by
 to nonproper ends. The manifold (S,) separates L into two components, one
of which, ¢(W,), is a neighborhood of exactly one nonproper end. The compo-
nent containing S; must also contain W, and W,, hence cannot be ¢(W,). Thus
Y(W,)< W, and §i(e,) = e,. If $(W,) does not contain S, then it does not meet S,
and ¢(W,) < W,, contradicting the fact that W, is a neighborhood of only the one
nonproper end e,. Similarly, ¢(W;) must contain S;. But ¢(W,) NY(W,)=
Y(W, N W,)=0, and this contradiction completes the proof. W
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THEOREM 3. If ¥ is a foliation without holonomy (for instance, this is the
case if F has no compact leaves and has at least one leaf with nonexponential
growth) then each leaf of ¥ has at most two ends.

Proof. By the argument in [P1, 6.3], together with the corollary to Theorem 1,
the foliation has no holonomy if it has no compact leaf and at least one leaf has
nonexponential growth. By [Sa, Theorem 6], if ¥ has no holonomy, there is a flow
satisfying our hypotheses with X = U =M, and either all leaves are compact or
each leaf is dense in M. In the case of a dense leaf L, M itself is the only minimal
set of ¥, so A, =M, Veec &(L). By Proposition 1, L has at most two ends. W

Remark. We can list all open, orientable surfaces that occur as leaves in C?
foliations without holonomy of closed 3-manifolds. If T, denates the closed,
orientable surface of genus g, then standard examples on T, X S' show that R’
and R2# R> so occur (for g=1) and that T, and T.# T., so occur (for g>1),
where T, denotes the orientable surface with one end and infinite genus. By
Theorem 3 and the classification theory [Ri], the only remaining possibilities are
R*#T,., R*°#T, and R*# R*# T, g=1. A noncompact leaf in a foliation
without holonomy is dense and, by [Sa, Theorem 6] and [P2, Theorem 6.3}, it has
polynomial growth. Thus, Theorem 5 of [C—C2] shows that the above possibilities
cannot occur.

4. The structure of L°

Let L be a leaf of & having polynomial growth of positive degree. Suppose M
is not a minimal set. By the corollary to Theorem 1, there must be a compact leaf
in L¢, and it is standard that there can only be finitely many such.

DEFINITION. Each compact leaf of L€ is said to be of class 0. A leaf L'< L¢
is of class k=1 if L' is asymptotic only to leaves of class at most k—1 and to at
least one leaf of class k—1.

Let C denote the union of all leaves of finite class in L — L. We will establish
the following two results by a sequence of lemmas.

PROPOSITION 2. There are only finitely many leaves in C, and each has an
element of contracting holonomy on whatever side is approached by L.

PROPOSITION 3. If L is proper, then L — C = L. Otherwise, U=L°*—Cis a
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dense subset of X = L¢, U is open in M, and there is a topological flow ¢ : R X X—
X such that X, U, and ¢ satisfy properties (a), (b), (c), and (d) of Section 3.

For proper leaves the analogies with Poincaré-Bendixson theory should be
evident.

LEMMA 2. If L'cL°—L is a leaf of finite class, it is a proper leaf and,
consequently, L' has an element of contracting holonomy on whatever side is
approached by L.

This lemma is evident, the element of contracting holonomy being guaranteed
by Theorem 2.

Fix a compact transverse 1-manifold R (possibly with boundary) such that, for
each leaf F of class 0, FN R is a single point in int (R). It follows that every leaf
of L° meets int (R). Note that we do not demand that R be connected.

LEMMA 3. For each k=0, there are at most finitely many leaves in L® of
class k.

Proof. For k =0, this has been observed above, so suppose k=1. Let {L;};_,
be an infinite set of leaves of class k, and suppose that there are only finitely many
leaves of class <k —1. This will lead to a contradiction and the lemma will follow
by induction.

We may suppose that every L; is asymptotic to a fixed leaf L’ of class k—1.
Let T=[—1, 1] be a subinterval of R with L' N T ={0} and such that T meets no
other leaf of class =<k —1. Using the element of contracting holonomy on L', we
can find a compact interval J < T—{0} such that each L, meets J in a point x;. Let
xo€J be a cluster point of {x;} and let L, be the leaf through x, Evidently,
Lo< L¢ and L, cannot be of class <k —1. If L, were proper, then its element of
contracting holonomy (Theorem 2) would provide the contradiction that some L,
is asymptotic to L,. If L, is asymptotic to a proper leaf Lj meeting int (T —{0}),
then the element of contracting holonomy on L gives the same sort of contradic-
tion. If L, is locally dense, it is asymptotic to L, hence to every L;, and any one of
the leaves L; can be chosen to play the role of L, above. Thus, L, is nowhere
dense, is not proper, and is not asymptotic to any proper leaf meeting int (T —{0}).
Without loss of generality, we assume that the endpoints of R do not lie in L§,
hence L NAR =K is a Cantor set and the endpoints of the components of T—K
(except for 0 and the endpoints of T) correspond to nonproper leaves. Let z, be
such an endpoint. By Theorem 1, it follows that, arbitrarily near z, in R, hence in
T —{0}, there passes a leaf L{< L having an element of 2-sided contracting



Growth of leaves 103

holonomy. Since the sequence {L;} approaches L,, it approaches L}, and the
contracting holonomy of L/ again causes some L; to be asymptotic to L}, a leaf
not of class = k—1. I

LEMMA 4. There is a largest integer q=0 for which there exists a leaf in
L<—L of class q. Furthermore, L has growth of degree at least q+1.

Proof. If there were no such integer, then, by Lemma 2 and the argument in
the proof of Theorem 2, we could show that the growth type of L dominates
polynomials of arbitrarily high degree. The same argument proves the second
assertion. Details will be left to the reader. W

The proof of Proposition 2 is now complete.

We will find a noncompact 1-manifold J< R — C such that every leaf of L —C
meets the interior of J, and there will be a holonomy invariant measure g on J,
supported in L°N J and finite on compact sets. This involves a technically fussy
application of [P2, Theorem 3.1 and Lemma 3.2].

Let C, denote the union of leaves in L°—L of class at most j, 0=j=<gq. Of
course, C=C,.

LEMMA 5. For each j=0, 1,...,q there is a finite set of connected com-
ponents of R—C; such that every leaf of L°—C; meets at least one of these
components.

The easy proof of this lemma (by induction on j, using the elements of
contracting holonomy of Lemma 2) will be left to the reader.

Let{P,,..., P,} be a set of components of R — C = R — C, satisfying the asser-
tion in Lemma 5, each being met by some leaf of L — C. If P, =(p, g;), then both
p: and g; belong to C. It is also possible that one endpoint of P; will belong to P,
in which case it belongs to 8R and the other endpoint.belongs to C.

We define J; < P,. If P, contains one of its endpoints, set J;=P,. If P, =(p, q;)
and L N P; clusters at both p, and g;, again set J; = P.. If L N P, does not cluster at
pi> choose a; € (p,, g;) such that (p, a,] N L< =0. Similarly, if L N P; does not cluster
at g;, choose b, € (p, g,) such that [b, q;) N L< =0. If both situations hold, we can
take a; <b,. In these three cases we define J; to be respectively [a;, q;), (p;, b;], or
[a;, b;]. Let J denote the union of all J,, a noncompact 1-manifold with possibly
empty boundary. Every leaf of L°— C meets the interior of J.

Using the elements of contracting holonomy of Lemma 2, choose closed
intervals A, < J; such that every leaf of & that meets J; also meets the interior A
(taken relative to J;) of A;. We emphasize that A? will contain an endpoint if that



104 JOHN CANTWELL AND LAWRENCE CONLON

point is also in 8J,. Let A denote the union of all A;, a compact 1-manifold with
boundary, and let A® denote the union of all A?, this being the interior of A
relative to J.

Let {U,, ..., U,} be a regular open cover of M in the sense of [P2], together
with compact arcs A; < U; transverse to ¥, such that every leaf of ¥ meets the
interior of some A;. Without loss of generality, suppose m=s and A, <A,
1=<i=m. Let I" be the pseudogroup on 4 = J;j_, 4; finitely generated by the
transition functions vy;:4,NU,—4; as in [P2]. Let I, be the pseudogroup
induced on A by I'. Let I, denote the sub-pseudogroup of I', finitely generated
by compositions of the y,’s in chains of length <k. Then I', is the increasing
union |J I, and, in the sense of [P2], I', has nonexponential growth at xe L N A.
By [P2, Theorem 3.1], there is a I',-invariant normalized measure u, on A
supported in L N A. If I'; denotes the pseudogroup induced on J by %, then the
fact that each leaf meeting J also meets A° implies that u, extends to a nontrivial

I';-invariant measure w on J, supported in L°N J and finite on compact subsets of
J [P2, Lemma 3.2].

LEMMA 6. Let L, be a leaf meeting supp (1) and different from L. Then L,
cannot be proper.

Proof. Suppose L, is proper. Let x,€ L, NJ <supp (u). There is an element of
contracting holonomy at x, on whatever side is approached by L N J, hence there
is such a contraction on whatever side is approached by supp (r). Suppose, then,
that x, is not isolated in supp () and let x, € supp (u) be close enough to x, (say,
on the right) so that [x,, x;]<dom (7). Then w(vo(x,), x,]1= r(¥5(x1), ¥o(x1)] and
p(v3(x,), x,]1>0 (since the interior point y,(x,) belongs to the support), hence
B (Yo(x1), x,]>0.  Since  (x, x;]= U7n-1 (v6(x1), ¥o '(xy]), it follows that
p[xo, x,]1=, contradicting the fact that u is finite on compact subsets of J. Thus,
x, must be isolated in supp (u), so u{xe}>0. If L,NJ accumulates at yeJ, a
compact neighborhood of y in J will have infinite measure, so L, can only be
asymptotic to leaves of C. Since L, < C, it follows that L, is of class q+ 1. Since
L, # L, this contradicts Lemma 4. W

LEMMA 7. If L meets supp (i) and is the only leaf of L¢ that does so, then
L¢—~C=L and L is of class q+1 (hence L is proper).

Proof. Since supp (u) is closed in J, the leaf L cannot be asymptotic to any leaf
in ¢ except, perhaps, to itself. In this latter case LN J=L NJ is nowhere dense
and perfect, hence this set is uncountable. But a finite set of transverse arcs

cannot meet a single leaf in an uncountable set of points. All assertions
follow. W
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LEMMA 8. If supp (u) is met by some leaf L, # L, then every leaf of L°—C'is
locally dense in M and supp (n) =J.

Proof. Suppose L, is not locally dense in M. Without loss of generality,
assume that the endpoints of R do not lie in L. Then, by Lemma 6, L5 N R must
be a Cantor set. Also, by Lemma 6, L{NJ cannot be met by a proper leaf
different from L. Not every endpoint of intervals in the complement of L§ in
int (J) can correspond to a proper leaf since, in that case, all would lie on L and L
would not be proper after all. Thus, there is y € int (J) such that y is an endpoint
of a component of R —L§ and the leaf through y is nonproper. Arbitrarily near y
in R, hence in int (J), there is z€ LN R corresponding to a leaf having an
element of 2-sided contracting holonomy (Theorem 1). This is a cluster point in J
of supp (u), so the argument in the proof of Lemma 6 again applies and
contradicts the finiteness of w on compact sets.

Thus L, is locally dense in M, and, necessarily, L <int (L§) and L is dense in
that set. It also follows that L NJ < supp (1), hence that LN J=supp (u). Thus,
supp (u) is open and closed in J and every leaf meeting supp (p) is dense in that

set. W

In order to complete the proof of Proposition 3, we consider the case in which
L is not proper. That is, every leaf of L — C is locally dense in M. Set X =L° and
U=L°-C, and remark that every leaf in U is dense in X. We want to produce a
topological flow ¢ : R X X— X satisfying (a), (b), (c), and (d) of Section 3.

In the standard way, choose a smooth transverse circle 3 to #such that 3 < U and
such that % is an integral curve to a unit normal field v to %. Since L meets 3 and
has nonexponential growth, one again applies [P2, Theorem 3.1] to produce on 3
a normalized measure v invariant under holonomy. Each leaf of %|U meets 3 in a
dense subset, so supp (v) = 3. There results a transverse invariant measure (again
denoted by v) on the saturated set U with supp (v) = U, hence one obtains local
reparametrizations of the integral curves to v | U so as to define a local flow on U
that preserves the local leaves.

If Ly<= C is a leaf bordered on at least one side by U, the existence of the
element of contracting holonomy implies that the measure is unbounded near L,
on whatever side is bordered by U. Consequently, since each L'< C is either
bordered on at least one side by U, or is approached on at least one side by such
leaves, the local flow extends to one on all of X, stationary at all points of C and
nonsingular on U. By the compactness of X, this defines a global flow and
properties (a), (b), and (c) are satisfied. For property (d), proceed as in [Sa,
Theorem 6] by changing the differentiable structure on U so as to make the flow
smooth and so as not to change the differentiable structures of the leaves nor the
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smoothness of %| U. The new tangent bundle of U contains E in a natural way as
the tangent bundle of %| U and property (d) follows. The proof of Proposition 3 is
complete.

5. The topology of L

We continue with the hypotheses and notations of Section 4.

For 0= k=g, let E, be the set of e € E(L) such that A, contains a leaf of class
k. Let E,,, be the set of nonproper ends of L. Remark that §(L)=E,>E, >

- 2E, 2 E,,, and that E_,, is empty if L is proper, and, in any case, is finite
by Proposition 1. Recall that the derived set Ej is the set of cluster points of E,.

PROPOSITION 4. If 0=k=gq, then E.c E,_,.

Proof. Let e € E;, and let {¢;};, be a sequence of elements of E, converging to
e in &(L). Since there are only finitely many leaves of class k, we lose no
generality in assuming that there is one such leaf L, contained in every A,. We
can also suppose that the filtration K, < K,< --- < K, < - - - < L is such that one
component U; of L —K; is a neighborhood of e and of all ¢; with j=i, 1=i<w.
Finally, it can be arranged that U, is not a neighborhood of e;, for each i. That is,
for each i, U;— U,,, is a neighborhood of e; but not of ¢; for j#i. Also, {U,}i_, is
a neighborhood system for e and L,< (U, — U,,,)¢ for all i.

Select xo€ L, and a transverse arc T properly crossing L, at x, and such that
T —{x,} meets no leaf of class <k. We can assume that (U, — U,,,) N T accumu-
lates on x, from the right for all i.

Let vy, be the element of contracting holonomy defined on T,=(x,, y]< T by
a loop o, on L, based at x,. For each i, choose ¢ >0 such that, for every x € T,
that is g;-close to x,, the holonomy path from x to y,(x) that is the lift of o,
misses the compact set K,,,cLcM. We can assume ¢ | 0. Choose x;e€
(U; = U,y NT, to be g;=close to x,. Then y§(x;)e U, — U,,, forall n=0. If i#j, it
follows that the sets {yg(x;)}n-0 and {y5(x;)}»-o are disjoint.

For each integer i>0 there exists an integer n,=0 so that y,=vy,"(x;)€
[vo(y), y]. We claim that the points y; are mutually distinct. Otherwise, for some
i# j and for n > max {n;, n;}, we would have y5 "(x;) = v "(x;) in contradiction to
the above paragraph. Let y'€[y,(y), y] be an accumulation point of {y;} and let L’
be the leaf through y'. Since T—{x,} meets no leaf of class <k, L’ is not such a
leaf.

For a fixed but arbitrary number i + 1, choose m so large that yg'(y) is ¢;-close
to x,. Since also x; is g-close to x, for j=i+1, we see that yg'(y;)=vo "™(x;) is a
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point of U,,;. That is, yg'(y) €[vs' ™ (y), vo(¥)IN Uy, j=i+1. Thus U, ac-
cumulates at y3'(y")eL’. Since L'c L¢ is a leaf not of class <k, it follows that
ecE ... B

We are ready to prove the main result. We need not assume M to be
orientable nor ¥ to be transversely orientable.

THEOREM 4. Let L be a leaf of dimension n—1 in a C? foliation of a closed
n-manifold. If L has polynomial growth of degree r, then L has type at most r. If L
is proper, then the type is at most r—1.

Proof. By passing.to a finite cover we obtain the situation in which the
n-manifold M is orientable and the foliation is transversely orientable, so we can
assume this without loss of generality.

If L is compact, then r =0 and the type of L is —1. If M is a minimal set, then
r=1 and, by Theorem 3, the type of L is 0. Thus, we assume that M is not a
minimal set and that L is noncompact.

By Lemma 4, r=q+ 1. By Proposition 4, the type of L is at most g+ 1. If L is
proper, then E_,, =# and the type is at most q. W

Elsewhere we have shown [C—-C1] that every orientable surface of finite type
occurs with polynomial growth as a leaf in suitable C* foliations of suitable closed
3-manifolds. It is not true [C-C2] that every such surface so occurs in all closed
3-manifolds.

We do not know an example of a C? foliation with a leaf of type r having
growth of degree r, but it is not difficult to construct examples, for all integers r
and p with 1=p=r, of smooth foliations with leaves having growth of degree r
and type r—p.

We give an application of our theory to foliations ‘‘almost without holonomy.”
Such a foliation has nontrivial holonomy only along the compact leaves [M].

COROLLARY. If % is almost without holonomy, then each leaf is of type at

most 1, and the proper leaves are of type at most 0. The leaves of type 1 have at
most two limit ends.

Proof. We assume there is a compact leaf. Otherwise we are reduced to
Theorem 3. It is known, and easily proven using [Sa, Theorem 4 and the proof of
Theorem 6] and a relative version of [P2, Theorem 6.3], that every leaf of & has
polynomial growth. By Theorem 2, each leaf can only be asymptotic to a compact
leaf or to a nonproper leaf, so, for any noncompact leaf L, the integer q of
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Lemma 4 is 0. By Proposition 4, if L is proper and noncompact, it is of type 0,
while a nonproper leaf L is of type at most 1. For a nonproper leaf, Proposition 1
asserts that E, has at most two elements. Since the limit ends are in E,, all
assertions are proven. I

6. Subexponential growth

We give examples showing how essential it has been to assume polynomial
growth as opposed to subexponential growth in the results of this paper.

Let T designate the closed, orientable surface of genus 2, and choose disjoint
circles C, and C, on T that together do not separate T. Let F, G:I—1 be C’
diffeomorphisms, 0<r=oo, that are C"-tangent to the identity at 6I. Cut TXI
apart along C, xI and reglue with the identification (x, t)=(x, F(t)) and do the
same along C, XTI with (x, t)=(x, G(t)). This converts the product foliation of
TxI to a C" foliation of T X I, C'-trivial at the boundary, denoted by &(F, G).
This can be viewed as part of a C"-foliation of Tx S'. If r=0, the foliation is
continuously C’.

Fix F (with r=o) so that F(tf)>t on int (I). For notational convenience,
identify I with [—o, ©] in such a way that F(#)=t+1, —o<t<o, Also, fix a
basepoint x,€ T.

We will choose G=G,, 0=a=w, and so obtain infinitely many foliations
F* =%(F, G,). The symbol L will denote the leaf of #* containing the point
(x0, t). Remark that L*=L¢,,.

Set G,=identity. Every leaf of %°, except the-boundary leaves T X {+o}, will
be homeomorphic to the surface of type 0 with two ends as pictured in Figure 3.

Let 0<Ny<N;<---<N,<--- be a sequence of integers. We will define
{G,} inductively, 1 <k <w, so that G, —G,_,= ¢, is a C” bump function van-
ishing identically outside of (N,, N, +1). If we choose the bump functions so that,
for each r=0, the sequence {o{ };_, of r™ derivatives converges to 0 uniformly
and rapidly enough, we can guarantee that G, =lim,_,, G, is a C” diffeomorph-
ism and is C”-tangent to the identity at +o. In any case, G, will be a
homeomorphism.

Figure 3
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Figure 4

Choose ¢;=0=<a,<b;=<1=d; and define ¢,=G,— G, as above so that
supp (¢,) =[N, +a,, N, +b,]. Inductively, choose ¢, =a, <b,=d, so that ¢ €
(ax_1, bi_y) and G, _{(Np_;+¢)=N,_, +d,, and choose ¢, = G, — G, _,; so that
supp (¢x) =[Ny +a,, N, + b, ]. All of this can be done in such a way that the first k
derivatives of ¢, have absolute values uniformly as small as desired. Thus,
G, =lim,_,, G, is a C” diffeomorphism as desired.

LEMMA 9. If a.<t<b,, then L* is a surface of type k, and if te
[co, @ JU[by, di], then L¥= L. Finally, if te N5~ [aw b, then LY is of type w.

Proof. For te(ay, b,), L¥=L* where s =t+ N,. Then s(n)= G}(s), ne Z, will
define distinct points for distinct values of n, and L* will be the infinite connected
sum of the leaves L.}, ne Z (for k =1, cf. Figure 4).
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By induction, the leaves L%} are of type k—1, so L¥ is of type k. Clearly,
Li=LF"1 if te[c, a,]U[by, d,]). Finally, if te (\[a, b, ], choose a fundamental
system {V;} of open neighborhoods of T x{}, let C; denote the complement of V;
in TX[—o, »], and arrange that *|C, = #'|C; and that L* N V, has exactly one
component of type >i, 0=<i<o. It is rather easy to see that this is possible. If
K < LY is compact, choose N so large that K < Cg, hence exactly one component
of LY — K is a neighborhood of ends of type > N. It follows that €“(Ly) is a single
point. W

Remarks. The closure of Ly contains leaves of class k, all k=0. If ¢; = q; and
d;=b; for j=1, then L? is an everywhere dense leaf, but if ¢; <a; <b; <d; for all
J=1, then LY is a nowhere dense, nonproper leaf. These situations are in contrast
with the behavior of leaves with polynomial growth.

LEMMA 10. If N, =(k+1)* for all k and if te (5~ [a, b ], then L? has
neither exponential nor polynomial growth.

Proof. Since L is of infinite type, it cannot have polynomial growth (Theorem
4). For 0=a =w, let g,(m) denote the number of distinct points in [—oo, ] that
can be reached by applying to ¢t a word in F and G, of length at most m. By
standard theory, g, has the same growth type as the leaf LY, 0<a < w. We will
show that lim,,_,..(1/m) log (g,(m)) =0, thus proving that L}’ has nonexponential
growth. The proof of this is due to Hector [H] and substantially simplifies an
earlier argument of the authors. If k2<m <(k+1)?, then m=<(k+1)><N, and so
g, (m)=g_,(m)=(2m+1)* (a very generous inequality). Since k <+/m, it follows
that (1/m)log(g,(m))=< (1/vVm) log(2m+1) for all m>0. By L’Hopital’s rule,
lim, _,.(1/y/m)log(2m+1)=0. B

A variation on the above theme produces an example showing that, for
continuously C* foliations (as defined in Section 2), the statement of Theorem 2
becomes false when the assumption of polynomial growth is replaced by that of
nonexponential growth.

Again take G,=identity and require that ¢, = G, — G\._, be a bump function
with support in [N, N, +1]. We let o, =1/(k +3), B, = (k+2)/(k +3), and require
that

G.(t)=t, te[N;, No + . JU[N, + B, N, +1]
G(0>1,  te(Ne+a, Ne+By)
Gi (N, tai_1) =N, +Bi_;.
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This time, G, =lim,_,, G, is only asserted to be a homeomorphism and the
foliation ¥ is continuously C'. Every leaf of ¥ is proper.

For 0=a = o, the leaf Lj is independent of a« and will be denoted by L. The
limit set of L), contains L and, as before, a suitable choice of {N,} will guarantee
that L{, has nonexponential growth. .

Again we can choose a fundamental system of open neighborhoods {V;} of
T x{} such that #*|C; = %*|C,, C, the complement of V, in T X[—, «]. Since L
has trivial germinal holonomy in each %', it follows that the same is true for L in
&*. In particular, L cannot have an element of contracting holonomy in %*.

We remark that one can demonstrate the impossibility of carrying out this
construction in such a way that F is of class C* and G, of class C'. This requires a
generalized version of [K, Lemma 1].
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