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Comment. Math. Helvetici 53 (1978) 73-91 Birkhiuser Verlag, Basel

Sur les groupes fondamentaux des H-espaces

Francols BOREL

1. Introduction

Dans ce travail, nous désignerons par H-espace un espace de Hopf X ayant le
type d’homotopie d’un complexe cellulaire fini. Grace au théoreme de Hopf
(1941), nous savons que I’algébre de cohomologie rationnelle H*(X, Q) est une

algebre extérieure A(x;,...,x,) a r générateurs de degrés respectifs 2n,—
1,...,2n,—1. Nous dirons alors, en accord avec la terminologie connue, que X est
un H-espace de rangr, de type 2n,—1,...,2n,—1), et de semi-type (n,, ..., n,).

Nous noterons d la dimension 2n;—1)+---+(2n,—1) de X.

La cohomologie rationnelle d’un H-espace ne fixe pas son type d’homotopie.
Elle ne change par exemple pas si ’on passe a un revétement fini. Cependant, en
1970, Curjel et Douglas ont démontré qu’il n’existe qu’un nombre fini de types
d’homotopie de H-espaces ayant méme cohomologie rationnelle [7]. Il en résulte
en particulier qu'un H-espace ne possede quun nombre fini de revétements
compacts (au type d’homotopie preés). Le but de ce travail est de contrdler
explicitement cette situation, en décrivant les limitations imposées a la structure
de m(X) par celle de H*(X, Q). Une formulation équivalente du théoréme de
Curjel-Douglas est qu’il n’existe qu’un nombre fini de H-espaces de dimension
donnée. C’est pourquoi nous énoncerons nos résultats, dans la mesure du possi-
ble, en donnant simultanément les limitations fournies par le type, le rang et la
dimension de X.

Le groupe fondamental d’'un H-espace est abélien de génération finie. De
plus, si dans le type de X figure exactement k fois ’entier 1, on voit facilement (cf
[8, th. 2.1]) que X a le type d’homotopie de Y X (S")*, avec Y un H-espace de
rang r—k et de groupe fondamental m,(Y) = sous-groupe de torsion de 7r,(X). La
partie libre de m,(X) est donc controlée par le type de X de fagon précise, et nous
n’envisagerons par la suite que des H-espaces a groupe fondamental fini.

Un premier renseignement sur la structure de m,;(X) est alors fourni par
I’étude des suites spectrales de Bockstein de X. En effet, le nombre de facteurs
cycliques p-primaires de w,(X) ne peut excéder le rang de X. Ce résultat,
implicite dans les travaux de Browder [6], peut s’énoncer de fagon plus précise:
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74 FRANCOIS BOREL '

THEOREME 1. Soit p premier. Le nombre de facteurs cycliques p-primaires de

m1(X) est inférieur ou égal au nombre de puissances de p figurant dans le semi-type
de X.

La situation dans le cas des groupes de Lie compacts a été étudiée par Borel
[1], qui compare les cohomologies modulo p d’un groupe de Lie G et de son
revétement universel. Il démontre que I’effet du groupe fondamental consiste a
modifier le degré de certains générateurs des algebres de Hopf correspondantes.
On en extrait une relation entre la décomposition p-primaire de m;(G) et le type
de G. Une démarche semblable, faisant appel aux travaux de Browder [4, S, 6] et
de Lin [9], permet d’obtenir des résultats analogues dans le cas des H-espaces.
Notons g, 'ordre du sous-groupe de p-torsion de 7,(X). Si p est impair, on a le

THEOREME 2. (a) g, est un diviseur de n,n, ---n, ou les n, sont les
puissances de p figurant dans le semi-type (n,, ..., n,)

(b) log g, =d - (log p)/(2p—1)

(c) log g, =2r- logp.

Les résultats de Lin n’ont pas d’analogue pour p=2, ou la situation est,
comme toujours, plus délicate. On peut cependant démontrer:

THEOREME 3. Le théroreme 2 est valable pour p=2 sous I'une des deux
hypothéses suivantes:
(a) le revétement universel n’a pas de 2-torsion

(b) la cohomologie modulo 2 du revétement universel est une algébre de Hopf co-
associative

3(b) découle d’un résultat annoncé par Harper et Lin dans [10].

THEOREME 4. Si la 2-torsion de m(X) est cyclique d’ordre 2™, le semi-type
de X contient 2!, avec f=m.

Le résultat concernant g, valable de maniere générale est le suivant:

THEOREME 5. (a) g, est un diviseur de la plus grande puissance entiére de 2
inférieure au nombre (2n,n,, - - - n, )02 8@ B of les . sont les puissances
de 2 figurant dans le semi-type (n,,...,n,)

(b) log g,=<((d +3)/6)? log 2.

Les démonstrations des théorémes 1 & 5 sont groupées dans les paragraphes 5
et 6. Auparavant, les paragraphes 2 et 3 rassemblent les données techniques
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nécessaires sur les algebres de Hopf et la suite de Bockstein d’un H-espace. Le
paragraphe 4 fait alors intervenir de fagon plus précise la topologie algébrique des
H-espaces, et analyse en détail les interactions entre le groupe fondamental et le
semi-type. En conclusion (paragraphe 7), nous illustrons les théorémes prin-
cipaux par quelques échantillons explicites.

Cette these a été réalisées sous la direction du professeur Francgois Sigrist. Je
tiens a lui exprimer ici ma reconnaissance pour les encouragements qu’il m’a
prodigués et pour I’aide précieuse et constante qu’il m’a apportée. Mes remercie-
ments s’adressent également aux professeurs Ulrich Suter et Claude Weber
membres du jury.

b

2. Suite spectrale de Browder et forme biprimitive

La cohomologie d’'un H-espace a coefficients dans un corps est une algebre de
Hopf. Pour les notations et définitions, nous renvoyons le lecteur a Borel [3] et
Milnor-Moore [11]. Nous utiliserons de fagon essentielle des résultats de Browder
[6], que nous énoncerons sous une forme appropriée a notre travail.

Soit A une algebre de Hopf différentielle sur Z/p. Nous la supposerons
associative, commutative et de dimension finie. Nous noterons m sa multiplication
et m’ sa comultiplication. Soit A I'idéal des éléments de degré strictement positif.
En définissant:

FPA=A F""'A=m(AQ®F"A)

on obtient une filtration décroissante de A, stable pour la différentielle d. Notons
(E,A, d,) la suite spectrale bigraduée associée et rappelons que

ES“’A —_ Fqu+q/Fq+1Ap+q.

Nous utiliserons les mémes symboles m et m’ pour les multiplications et comultip-
lications induites par m et m’ sur E,A. Nous avons:

LEMME. (E, d,) est une suite spectrale d’algébres de Hopf associatives, com-
mutatives et primitivement engendrées (i.e. ayant un ensemble de générateurs x, dits
primitifs, tels que m'x=1Q® x+x® 1).

Soient maintenant B = E,A, p, la projection naturelle de B sur B et p, le
morphisme {(po ® po)m")® 1@ - - - ® 1}p,_,. En définissant G"B = ker p,, on ob-
tient une filtration croissante de B, stable pour la différentielle d,. Nous noterons
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(EB, .d,) la suite spectrale associée. Pour les multiplications et comultiplications
induites, nous avons:

LEMME. (,EB, .d,) est une suite spectrale d’algeébres de Hopf associatives,
commutatives et biprimitives (i.e. primitivement engendrées et sans éléments primitifs
décomposables).

THEOREME. Les algébres de Hopf .EE,A et (EE, .1 A sontisomorphes. On peut
donc enchainer les suites spectrales d’algébres de Hopf biprimitives: (EE(A,
1EE A, ..., -EEcA =,EE A, EEA,...,.EE,A=\EE, 1A, 1EE,1A,.... La
suite spectrale ainsi obtenue est stationnaire et .EE.A = EE H(A).

oEE,A, appellée forme biprimitive de A, est I'unique algébre de Hopf
biprimitive isomorphe 2 A comme espace vectoriel gradué. On démontre facile-
ment que cette construction est fonctorielle. Pour indiquer comment la structure
d’algebre de la forme biprimitive de A se déduit de celle de A, nous rappelerons
tout d’abord le théoreme de structure de Borel qui s’énonce:

THEOREME. Une algébre de Hopf associative et commutative de dimension
finie sur Z/p est le produit tensoriel d’algebres extérieures A(x) avec x de degré
impair, et d’ algebres polynomiales de la forme Z/p[yll(y®') (y de degré pair si
p#2).

La forme biprimitive d’une telle algebre est alors décrite par la

PROPOSITION 2.1. La forme biprimitive d’une algébre de Hopf A est
I’algébre obtenue & partir de A en remplagant les facteurs Z/p[y]/(y"') par
des facteurs Z[p[yo)/(y§) ® - - - ® Z/p[ys-1)/(y$-1), les y: correspondant aux y*
via I’isomorphisme d’espace vectoriel entre EE,A et A.

COROLLAIRE 2.2. Si A est une algébre extérieure, les algébres A et EE,A
sont isomorphes.

3. Suites de Bockstein et algébres de type (n,2q)

Pour mettre en évidence les relations entre le groupe fondamental d’un
H-espace X et son semi-type, nous étudierons les suites spectrales de Bockstein
de X, d’une part avec les méthodes exposées au paragraphe précédent, d’autre
part & 'aide des algebres test A(n,2q) définies par Browder. Nous utiliserons
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plusieurs résultats de ce dernier. Pour leurs démonstrations, nous renvoyons le
lecteur a [4, 5, 6].
La suite de Bockstein modulo p est la suite spectrale associée au couple exact:

H*(X,Z) & » H*(X, Z)

d i*

H*(X,Z/p)

induit par la suite exacte des coefficients Z>>Z > Z/p. Nous la noterons
{B.(X,Z/p), b} en rappelant que B,=H*(X,Z/p) et que, si 'on note ji le
morphisme naturel de H*(X, Z) dans B¥(X, Z/p), on a (avec les abus de notation
standards):

bz =jip " dz.

C’est une suite spectrale convergente d’algebres de Hopf associatives et commuta-
tives. Sa limite B, décrit le semi-type (ny, ..., n,) de X de la maniere suivante:

B¥*(X, Z/p) est isomorphe a (H*(X, Z)/torsion) ® Z/p. Or ce dernier terme est,
d’aprés Borel [2], I’algébre extérieure A(xy,...,x,) sur des générateurs x; de
degré 2n,—1.

On déduit de la définition de la suite spectrale de Bockstein le lemme et le
corollaire suivants:

LEMME 3.1. (a) étant donnés un entier k, et y € B,.(X, Z/p), b,,y =0 pour tout
m =k si et seulement si y est dans ’image de j¥
(b) ker j¥=pH*(X,Z)+ T“ ' ou T*! est ’ensemble des u e H*(X, Z) tels que

p“ tu=0.

COROLLAIRE 3.2. Soit ve H¥*(X, Z) d’ordre additif p™ avec j*v#0. Alors
j*v est un cycle permanent pour les b, et un bord pour b,,,.

Chacune des algébres B, satisfait aux hypothéses du paragraphe précédent. La
suite spectrale biprimitive associée a les propriétés suivantes:

PROPOSITION 3.3. Supposons que ;EE, B, soit produit tensoriel d’une algébre
extérieure A(zy,...,z,) et d’algébres polynomiales Z/p[y;)/(y?) 1=i=n, avec y,
de degré pair et z; de degré impair. Avec une numérotation des générateurs



78 FRANCOIS BOREL

convenable, et en notant d = ,(b,),, I’algebre différentielle EE B, peut s’écrire sous
forme de produit tensoriel des algébres différentielles suivantes:

(1) A(z)®Z/ply)(y?), 1<i<t avec t=n,m dz;=y, et dy,=0, dont
I’homologie est A(x;) avec x; = z;y?™!

(2) ’algebre engendrée par z,,1,...,Zm Yis1s---, Yo avec d =0, isomorphe a
son homologie.

(comme I’anneau des coefficients est un corps, ’homologie d’un produit tensoriel
est le produit tensoriel des homologies)

On appelle algebre de type (n, 2q) ’algebre sur Z/p
Z/plao)/(af)®- - - ®Z/pla,-,)/(a}_1) ®Z/pl[a,]

(ou les a; sont de degré 2qp'), sur laquelle on a défini par récurrence la
comultiplication suivante:

ma=19a,+a,®1+G, G,=0
Gt =;1; (1®a+a®1P-(1®af+a?®@1)+(1®a+a® 1)’ 'G,
Nous utiliserons dans nos démonstrations le résultat suivant:

LEMME 3.4. Soit w € p-torsion de H*(X, Z) satisfaisant

(1) z=j*w# 0 est primitif et d’ordre multiplicatif p

(2) wP=p*w' avec k=1 et z2’=j*w'#0. On a:

(a) Si w est d’ordre additif p’, r=2, alors k =1 et I’application f(a,) = z, f(a;) =
z' définit un morphisme d’algébres de Hopf f: A(1,2q)— B,(X, Z/p)

(b) Si w est d’ordre additif p, z' est primitif dans B, (X, Z/p).

(a) est un cas particulier de [5, Th 3.7]. Une idée similaire permet de démontrer
(b): Comme z est primitif,

m*w=1Q@w+w®1+pA
avec p?A =0 puisque pw = 0. Dés lors

pm*w =m*wP=(1@w+w®1+pA)

=(1@w+w®1) +p2 (")(1 @ w+w® 1) (pAP~ +(pA)

i

=1@w?+w®@1=p“(1Qw+w'®1)
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puisque pw =0 et p>A =0. Donc
m*w=19w+w®1+u avec ueT*

On en déduit par 3.1 que

m*2’=1®2z'+z’®1 dans B,,,.

3.4(a) est un cas particulier de la construction de ce que Browder appelle une
suite d’implication. Nous n’utiliserons qu’une seule propriété d’une telle suite, que
nous énoncerons sous forme de remarque, laissant au lecteur le soin de vérifier
qu’elle correspond bien a la construction faite sous [5, Th 3.11].

REMARQUE 3.5. Soitwe H*3(X, Z) d’ordre additif p™ tel que z = j*w# 0 soit
primitif. Alors z posséde une suite d’implication z°=z,...,z™ ' de longueur
m—1, ce qui signifie en particulier qu’il existe des entiers n,r,s=0 et k=1, et un
morphisme f: A(n,2qp")— B,(X, Z/p) tel que f(a%)=z"""'e Bi*" (X, Z/p).

4. Relations entre le groupe fondamental et le semi-type de X

Comme nous I’avons annoncé dans l'introduction, nous supposerons que
m(X) est un groupe fini. Considérons un revétement g:X— X de fibre G et
notons K l’espace d’Eilenberg-MacLane K(G, 1). Nous rappelerons le résultat
suivant:

Quitte 4 remplacer X et X par des H-espaces ayant méme type d’homotopie, il
existe une fibration f: X— K(dite application classifiante) de fibre X. Les applica-
tions f et g sont compatibles avec les multiplications des H-espaces X, X et K. G
agit trivialement sur H*(X, Z).

La situation s’applique en particulier au revétement universel X de X. Alors
I’étude des termes de bas degré total de la suite spectrale (cohomologique) de
Leray-Serre associée a la fibration f: X— K = K(m,(X), 1) permet de montrer que
f* induit les isomorphismes suivants:

H'(X,Z)=H'(K,Z)=0 H'(X,Z/p)=H'(K, Z/p)
H*(X,Z)=~H*K,Z)=m(X) H*X,Z/p)=H*K,Z/p).
La décomposition des revétements, et I’application itérée du lemme 4.1 ci-

dessous (cas particulier de [6, Th 5.8]) permettent de décrire les relations existant
entre les algébres de cohomologie modulo p de X et X. Etant donné un
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revétement X de X de fibre Z/p™, la cohomologie modulo p de X est la limite de
la suite spectrale {E,, d,} de Leray-Serre, de terme

E3*=H*(K,Z/p)® H*(X, Z/p)

Rappelons que H*(K,Z/p)=A(x) ® Z/p[y] (degx=1, deg y =2), sauf si p=2 et
m=1, ot H*(K, Z/2)=2Z/2[x] (deg x =1). On a:

LEMME 4.1. L’unique différentielle non triviale de {E,, d,} est une différentielle
d =d,,. (s=0) décrite par:
du=y? € EXY=H*(K,Z/p) ou u est un générateur (de degré 2p*—1) de E5¥~
H*(X, Z/p). (Convention si p=2 et m =1:nous noterons x>=y).

Nous pouvons maintenant démontrer la

PROPOSITION 4.2. Soit v un générateur de 7,(X)= H*(X,Z) supposé cycli-
que d’ordre p™, p premier impair. v et y sa réduction modulo p ont méme ordre
multiplicatif p®.

Un récent résultat de Lin [9] nous sera essentiel. Il s’énonce:

Dans la cohomologie modulo p (impair) d’'un H-espace 1-connexe, les
générateurs polynomiaux se trouvent en des degrés de la forme 2(1+p+---+
p), (t=1) ou 2(1+p+ - +p*1+p**t+ ... +p"), (k=1).

Nous utiliserons ce résultat pour montrer que si I’application classifiant le
revétement universel est f: X— K= K(my, 1) et si u est un élément primitif de
degré 2pP de (EE,H*(X,Z/p), alors ueIm f*. Nous observerons tout d’abord
que le terme E** de la suite de Leray-Serre du revétement universel et
H*(X, Z/p) étant isomorphes comme espaces vectoriels gradués, ils ont méme
forme biprimitive. Par 4.1, on peut choisir pour E¥* un syst¢tme de générateurs
{z;} ayant la propriété suivante:

-soit z; est image d’un générateur de H*(K, Z/p)

-soit z; a pour image un générateur de H*(X, Z/p).

Soit dés lors u un élément primitif (et donc indécomposable) de degré 2p® de
oEE,E**. u est combinaison linéaire de générateurs de cette algébre, donc
d’aprés 2.1 combinaison linéaire de puissances p-iémes de générateurs z; de EX™*.
Etant donné que d’aprés Lin il n’y a pas de générateurs de degré 2p“ dans
H*(f(, Z/p), les seuls z; pouvant entrer en considération appartiennent a I'image
de f*, et donc uelm f*.

Considérons maintenant y = j*v, qui par Borel est d’ordre muitiplicatif une
puissance p® de p. Soit w=10v""" et supposons par I’absurde que wP = p“w’#
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O(k=1, z’' = j*w’'#0). Puisque H'(X,Z)=0,0na: m*v=1® v+v® 1. Dés lors
z = j*w est primitif et nous sommes dans les hypothéses de 3.4 (avec q = p®™?).

Si w est d’ordre additif p® au moins, nous savons que z et z' sont images par
un morphisme de A(1, 2q) dans B,(X, Z/p) de a, respectivement a,. En passant
aux formes biprimitives, on en déduit que z' est primitif dans (EE,B,. 1l est donc
la classe d’un élément primitif u de EE,B,. Comme u est de degré 2p®, il est
d’apres ci-dessus dans I'image de f*. Mais cette image étant nulle en ce degré
(y?* =0!), on en déduit que u=0 donc z'=0, ce qui est absurde.

Si w est d’ordre p, le méme raisonnement s’applique en considérant la
sous-algebre de B, ,, engendrée par I’élément primitif z’.

L’examen attentif de la démonstration de 4.2 permet de compléter ce résultat
par:

PROPOSITION 4.3. Supposons m(X) d’exposant p premier impair. Soient
vem(X)=H?*X,Z) et y sa réduction modulo p. Alors v et y ont méme ordre
multiplicatif p®.

En effet on montre de la méme maniére que si w? = p*w’, alors z’ = j*w’ est dans
I'image de f*. Cela permet de conclure par I’absurde puisque w’ est d’ordre
additif au moins p* et que pH*(K,Z)=0.

Nous énoncerons une généralisation facile de 4.2:

REMARQUE 4.4. Soit mi(X)=Z/p™®D---DZ/p™. Soient vy,...,v, les
générateurs des facteurs cycliques, y,, ..., Y, leur réduction modulo p d’ordres
multiplicatifs respectifs p®i, ..., p". Pour tout i tel que B; = sup{B;}, v; a ordre
multiplicatif p®.

REMARQUE 4.5. Si H*(X,Z/2) n’a pas de générateurs polynomiaux en les
degrés de la forme 2*(k=1), alors 4.2, 4.3 & 4.4 sont valuables pour p=2.

C’est en particulier le cas lorsque le revétement universel n’a pas de 2-torsion,
ou encore lorsque 'algebre de Hopf H*(X, Z/2) est coassociative, comme 1’ont
annoncé Harper & Lin dans [10].

Dans le cas ou le groupe fondamental est un p-groupe quelconque, la situation
est un peu plus complexe:

PROPOSITION 4.6. Soient m(X) comme sous 4.4, v un générateur d’un
facteur cyclique et y = j*v d’ordre multiplicatif p®. Si v et y n’ont pas méme ordre
multiplicatif, alors w=v?""" est d’ordre additif p.
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Soit f:X-—> K= K(r, 1) classifiant le revétement universel. Si w? = p*w’ #0,
z'=j*w' est comme sous 4.2 dans l'image de f*:B,(K,Z/p)— B,(X,Z/p).
Comme H*(K, Z/p) est primitivement engendrée, z' est donc primitif.

Pour démontrer que w est d’ordre additif p, il nous suffit donc de montrer que
si w est d’ordre additif p?> au moins, alors z’ n’est pas primitif dans B,. Nous
savons par 3.4 que si cet ordre est au moins p? il existe un morphisme
g:A(1,2q)— B, tel que g(ap) =z =j*w et g(a,)=2z'. Comme

ma)=1Qa,+a,® l+%((1®ao+a0®1)”—(1®a8+a5® 1))
m*(z')=1®z’+z'®1+-:;((1®z+z®1)"—(1®z"+zp®1))

dans B, et z' n’est donc pas primitif.
Nous observerons qu’en vertu de 4.4, ce phénomene ne peut se produire si y
est d’ordre multiplicatif maximal parmi les générateurs de degré 2 de H*(X, Z/p).

PROPOSITION 4.7. (a) Soit v comme sous 4.2. Les puissances successives de v
satisfont a la propriété suivante: Il existe une suite d’entiers 0= f,<f,<---<f,. =
B <fm+1 tels que v" soit d’ordre additif p™~', pour tout n avec p" <n <ph+,

(b) Soit v générateur d’un facteur cyclique d’ordre p™ de m,(X). Le résultat
ci-dessus est valable pour tout i=m —1.

Les puissances v" de v ont évidemment pour ordre additif une puissance de p.
Notons n = p*q avec (p, q) = 1. Il nous suffit, pour montrer (a), de montrer que si

n—1

v"~! est d’ordre additif p*, alors v" est:

d’ordre additif p* si q# 1

d’ordre additif p* ou p*~'si g=1.

On a:
n\ . »
m*vn=2(i)vl®vn l.
i

Si gq# 1, 1a binomiale (}-) n’est pas divisible par p. Puisque v"~' est d’ordre
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additif p* et n’est pas divisible par p d’aprés 4.2, on a:

a

p

m*(p*o") = p*'m*v

p"‘l(n )v"“ @ v P #0 et donc

n

o

= pk—l(: )UP"‘ ® v"7P* +termes de bidegrés différents

Il en découle que p*~'v"# 0, ce que nous voulions démontrer.

Si g=1, la binomiale (}=-) n’est pas divisible par p? nous pouvons donc
démontrer de la méme maniére que p*“ *v"# 0.

La partie (b) se démontre de la méme maniere a 'aide des résultats plus
faibles de 4.6.

PROPOSITION 4.8. (a) Si m(X) a un facteur cyclique d’ordre p™, alors dans
le semi-type de X figure la suite de nombres suivante: p", ..., p' avec 0<f, <
e <fm'

(b) Soit m((X)=Z/p™@D--- DZ/p™. Les m;— 1 premiers nombres fournis par
chaque facteur cyclique en application de (a) forment des sous-ensembles disjoints
du semi-type de X.

Nous démontrerons ce résultat en détectant des générateurs de [’algebre
extérieure B, (X, Z/p). Comme nous ’avons vu au paragraphe 3, les degrés de ces
générateurs déterminent le type de X.

(a) On déduit de la formule b,z = j¥p~ "' dz que si dx; =0 alors b,x; =0 pour
tout k. On en déduit également que si on a bz =jfv,ve H*(X,Z), alors
(p™**' dz—v)e ker j¥ et donc d’aprés 3.1:

dz =p* v +p*v’ v'e H¥(X, Z).
Considérons un revétement de X, de groupe fondamental Z/p™. Soient v et
{f.} comme sous 4.7, et notons

v ="

v; étant d’ordre additif p™~'*! et j*v; étant non nul, il existe d’aprés 3.2 un
élément z; tel que b,,_;,,z, = j*v,.. Comme on Ia vu ci-dessus, cela signifie que

4 m—i+1,_./

dz;=p™ v, +p vl
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Mais d est un morphisme de H*(X, Z)-modules, donc

d(zj*v?™) = (dz;)(v?7?)

= p ol +(p™ " 0f ;= 0.

Pour x;=zj*v?™' (de degré (2p"—1)+2(p—1)p’'=2p"—1) nous avons
dx; = 0. C’est donc un cycle permanent de la suite de Bockstein. Il reste a voir que
c’est un générateur de B,, ou ce qui revient au méme (cf 2.2), un générateur de
oEEyB.. Pour ce faire, nous étudierons la longue suite spectrale d’algebres
biprimitives de premier terme ,EE B, et de dernier terme ,EE B, (cf paragraphe
2).

y; = j*v; est puissance p-iéme d’un générateur de B, il est donc par 2.1 un
générateur de (EE,B,, et par 3.3 reste un générateur dans la suite spectrale
jusqu’au moment ou il devient un bord. Comme b,,_;,,z; =y;, 3.3 nous permet
d’affirmer qu’il existe s et r tels que z; soit générateur de EE.B,,_;., et que
s(bm—iv1)rzi = yi-

Nous savons qu’alors

x; = zy?™! est un générateur de ,,,EE,B,,_;,,

Comme on I’a vu, x; est un cycle permanent de la suite spectrale {B,}, donc
également pour tout k de la suite {,EE,B,}. Dé¢s lors x; est un générateur, tout
d’abord de (EE,B,,_;,,, isomorphe a .EE.B,,_;.;, mais aussi de (EE B, pour
tout k=m—i+2, donc de ,EE,B.,, ce que nous voulions démontrer.

Le méme raisonnement, appliqué a2 un générateur de chacun des facteurs
cycliques de (X), permet de démontrer (b). Etant donné un facteur Z/p™, on
obtient une famille x,, ..., x,,. Cependant la partie (b) de 4.7, plus faible que la
partie (a), ne permet pas d’affirmer que b, x,, =0 pour tout k. C’est pourquoi nous
ne pouvons démontrer ’existence que de m —1 générateurs de B..

Par 3.3, chacun des x; correspondant a 'un ou ’autre des facteurs cycliques
figure dans un facteur différent du produit tensoriel qu’est B.. Ces x; forment
donc un sous-ensemble non-redondant de générateurs, ce qui justifie I’affirmation
selon laquelle les sous-ensembles du semi-type correspondants a des facteurs
cycliques différents sont disjoints.

5. Démonstration des théoréemes 1 a 3

Dans ce paragraphe, nous supposerons que ;(X) est un p-groupe, ce qui
revient a étudier non pas X, mais le revétement de X (de méme type!) ayant pour
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groupe fondamental la p-torsion de m,(X). Le théoréme 1 est une conséquence
directe de 3.3:

THEOREME 1. Soit p premier. Le nombre de facteurs cycliques p-primaires de
m.(X) est inférieur ou égal au nombre de puissances de p figurant dans le semi-type
de X.

Si H*(X,Z)=m(X) est le groupe Z/p™@® --@®Z/p™, si nous notons
vy, ..., 0 les générateurs des facteurs cycliques, et y,,...,y, leurs réductions
modulo p, nous avons une famille z,,...,z, de générateurs de degré 1 de
H*(X,Z/p) tels que pour 1<i<s, b,z =y, Par 3.3, nous en déduisons que
chacun des z; implique I’existence d’un générateur de B., multiple de z; de degré
2p* —1(k;=1). Chaque facteur cyclique Z/p™ implique donc l’existence d’une
puissance de p dans le semi-type de X.

Si m(X)=Z/p™@®Z/p™®---DZ/p™, considérons le revétement X de X
de groupe fondamental Z/p@® Z/p™® - - - D Z/p™, et de fibre Z/p™'. Comme
H*(X,Z/p) et H*(X, Z/p) ont méme nombre de générateurs de degré 1, nous en
déduisons par 4.1 que la seule différentielle non triviale de la suite de Leray-Serre
est d,, et que donc H*(X, Z/p) et H*(X, Z/p) sont isomorphes. En appliquant ce
raisonnement a chaque Z/p™, on obtient la

REMARQUE 5.1. Soit X le revétement de X ayant pour groupe fondame_ntal le
sous-groupe d’exposant p maximal de m(X). Alors H*(X,Z/p)=H*(X,Z/p)
(isomorphisme d’algebre si p# 2, d’espace vectoriel seulement sinon).

Nous pouvons maintenant démontrer le théoré¢me 2 en rappelant que nous
notons g, ’ordre de la p-composante de ;(X), pour p premier impair.

THEOREME 2. (a) g, est un diviseur de ngn,, - - n, ou les n, sont les
puissances de p figurant dans le semi-type (n,,...,n,)

(b) log g, =d - (log p)/(2p—1)

(c) logg,=2s-logp=2r-logp

Démontrons tout d’abord comment (b) découle de (a):
Si g, divise n,, - - - n,, alors log g, <logn, + - - - +log n,. Comme

log k _logp
2k—-1 2p-1

pour tout k=p
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on en déduit:

log p log p
———— -— + “ o s + — — e .
log g, = 2p—1 {2n,-1) (2n, - 1}= 2p—1 d

Supposons maintenant H*(X,Z)=m,(X)=Z/p™® - -@®Z/p™. Notons
vy, ..., 0, les générateurs des facteurs cycliques, et y,,...,y, leur réduction
modulo p. Notons v; et y; les générateurs correspondants dans les cohomologies
des revétements intermédiaires X; de groupe fondamental Z/p™. Par 4.1, y, et ¥,
ont méme ordre, par 4.2 y; et v; ont méme ordre et par 4.7(a) celui-ci est
p® (Bi=my). _

Considérons maintenant le revétement X ayant pour groupe fondamental le
sous-groupe d’exposant p maximal de m(X), qui a une cohomologie modulo p
isomorphe a celle de X (cf 5.1). Notons également v; et y; les générateurs de
degré 2 correspondants. Par 4.3 y; et v; ont méme ordre multiplicatif p®. Il existe
une famille z4,..., 2z, de générateurs de degré 1 telle que b,z; =y; pour tout
i, 1 =i=v. Par une démonstration analogue a celle de 4.8, et en utilisant 4.3, on
démontre que

pP1—-1

X1 =2,y ooy X, =297 1 (de degrés 2pP —1)
sont des générateurs de B..(X, Z/p). Dans le semi-type figurent donc les nombres
p®, ..., pP. Tlen découle que g, = p™* "™ est un diviseur de ny, - - - ng, ol les n,;
sont les puissances de p figurant dans le semi-type, ce qui démontre (a).

Pour montrer (c), nous observerons que

logg,=(m;+---+m,)logp
<vlog p+{2(m,- - 1)} log p.

Chacun des deux termes ci-dessus est inférieur a s -logp. Le premier par le
théoréme 1(v=<s), le deuxieme par 4.8(b) qui garantit la présence dans le
semi-type, pour chaque facteur Z/p™, de (m;— 1) puissances de p.

THEOREME 3. Tous les résultats démontrés pour p impair aux paragraphes 4
et 5, en particulier le théoréme 2, sont valables pour p=2 sous I’une des deux
hypothéses suivantes:

(a) le revétement universel n’a pas de 2-torsion

(b) la cohomologie modulo 2 du revétement universel est une algébre de Hopf
coassociative.
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Pour s’en convaincre on se rapportera a la remarque 4.5, aux commentaires
qui la suivent et au fait que les démonstrations des propositions 4.6 a 4.8 et du
théoréme 2 reposent sur les propositions 4.2 a 4.4.

6. Démonstration des théorémes 4 et §

THEOREME 4. Si la 2-torsion de m,(X) est cyclique d’ordre 2™, le semi-type
de X contient 2!, avec f=m.

Ce théoréme découle directement de 3.5 appliqué a un générateur w de
H?*(X,Z), d’ordre 2™. En passant aux formes biprimitives on observe que
I’élément z™ ', de degré 2™*', est indécomposable dans la forme biprimitive d’un
terme de la suite de Bockstein de X. Il existe donc par 3.3 un générateur de
B.(X,Z/2), multiple de z™"!, de degré 2/*'—1 avec f=m.

THEOREME 5. (a) g, est un diviseur de la plus grande puissance entiére de 2
inférieure au nombre (2n, n,, -« - n, )88 CEDE oy les n, sont les puissances
de 2 figurant dans le semi-type (n,...,n,)

(b) log g,=<((d +3)/6)* log 2.

Démontrons tout d’abord comment (b) découle de (a): Nous avons

log g, = (log g,)"*(4 log 2)""*(log 2 +log n,, + - - - +log n,).

Puisque, comme nous I’avons déja dit (cf dém. th. 2),

log k _log2
2k—1" 3

pour tout k=2,
nous en déduisons que

1
(log g,)'*=(4 log 2)‘”2(log 2 +i§-2 {2n,— 1)+ +(2n, - 1)})

=(4log2) "*(log 2(1 +3d))

d’ou

+ 2
log g, = (ié-?-) log 2.
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Supposons m(X)=Z/2" ®Z/2"D---DZ/2™ avec m=n; pour tout i. Le
théoréme 4 (appliqué au revétement de groupe fondamental Z/2™) nous garantit
I’existence d’un générateur x de B, de degré 2“*'—1 avec k = m. Le théoréme 1
nous garantit I’existence de s générateurs de B,, distincts de x, de degrés 2"*'—1
avec h=1. On en déduit que 2™** est un diviseur de n, - - - n, ou les n, sont les
puissances de 2 figurant dans le semi-type.

Notons a=log g,(log2) '=m+n,+---+n. Comme nm=m, on a s=
(a/m)— 1. Le calcul différentiel élémentaire nous dit que pour a donné, (m +s)=
2a'?—1. Dés lors a=(a/4)*(m+s+1). Comme 2™** est un diviseur de
Ng, - * * Ng, on en déduit que g, =2 est un diviseur de la plus grande puissance
entiere de 2 inférieure & (2n,,- - - n,)* avec a = (a/4)"?>=(log g,)"*(4 log 2)™'2.

7. Applications

Pour obtenir dans ce travail les bornes pour 7;(X), nous n’utilisons essentiel-
lement que la classification cohomologique des H-espaces. Celle-ci, confrontée a
la provision de H-espaces actuellement a disposition, ne peut guére prétendre a
un contrdle serré. Il est donc relativement difficile d’exhiber des H-espaces
réalisant en toute généralité les estimations obtenues ici. La situation est meil-
leure si I’'on se contente de traiter les composantes p-primaires séparément.
Comme presque tous les résultats ont le comportement attendu vis-a-vis des
produits de H-espaces, on peut considérer les exemples qui suivent comme
convenablement génériques.

EXEMPLE 1. X=PSU(p), p premier. Le semi-type est (2,3,..,p), le
groupe fondamental Z/p. X illustre, pour p, le théoréme 1(7,(X) est cyclique) et
le théroréme 2 (I’'ordre de m,(X) divise p). Pour p =2, PSU(2) = SO(3), et un calcul
facile montre qu’on réalise les limites du théoréme 5.

EXEMPLE 2. X=PE,, groupe de Lie exceptionnel. Le semi-type est
(2,5,6,8,9, 12), le groupe fondamental Z/3. X illustre, pour p =3, le théoréme 1
et en partie le théoreme 2 (I'ordre de (X) divise 9). C’est en retournant a la
démonstration du théoréme 2 (proposition 4.8) que I'on force m(X) a étre
cyclique d’ordre 3. Cet exemple illustre le fait que dans le cas ou des hypotheses
plus fortes sont a disposition (comme ici: une seule puissance de 3 dans le
semi-type), les propositions du paragraphe 4 peuvent fournir des résultats plus
précis que le théoréme 2 lui-méme (nous y avons d’ailleurs recouru dans les
exemples D et E ci-dessous). C’est pour éviter une formulation extrémement
encombrante de ce dernier que nous avons renoncé a formuler de maniére
exhaustive les résultats obtenus au paragraphe 4.
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Les applications qui suivent sont de caractere plus global, et donnent, a partir
du semi-type, le contrdle fourni par les résultats de ce travail. A quelques
exceptions évidentes pres, la borne obtenue n’est pas optimale, et ne peut étre
améliorée que griace a la connaisance explicite des espaces considérés. Un
exemple est fourni dans [12], ou les auteurs partent des résultats ci-dessous pour
obtenir le controle exact du groupe fondamental pour tous les H-espaces de rang
2. Nous appellerons 7(X) le groupe abélien fini obtenu a I’aide des théoremes 1 a
5, et qui contient donc un sous-groupe isomorphe a 7;(X). Nous grouperons les
illustrations en un tableau suivi des commentaires appropriés:

Hypothése sur X Conclusion pour 7(X)

(A) X est un groupe de Lie
de semi-type (nq,...,n,)
(B) X est un groupe de Lie
de dimension d [ (X)| =24
(B') X=(SOQ)y w(X) = (Z/2)
© X est un H-espace de semi-
type 2my,2m,,...,2m,)
(D) X a le type d’un groupe
de Lie exceptionnel:

|m(X)| divise n, - - - n,

w(X) est un 2-groupe

G,:(3,11) m(X)=1Z/2

F,:(3,11,15,23) w(X)=Z/8DZ/8
E¢:(3,9,11,15,17,23) m(X)=Z/8DZ/8DZ/3DZ/5
E;:(3,11,15,19, 23,27, 35) m(X)=Z/8DZ/8

Eg:(3,11,23,27,35,39,47,59) w(X)=Z/8DZ/8
(E) X est un H-espace de rang

2, de type:
(3,3) m(X)=Z/2DZ/2
(3,5) m(X)=Z/2DZ/3
(3,11) m(X)=17Z/2
7,7) m(X)=Z/2DZ/2

Pour (A) et (B) on peut affaiblir I’hypothese sur X en supposant que X est un
H-espace homotopiquement associatif. Cette condition est suffisante pour appli-
quer le théoréme 3 qui, joint au théoréme 2, donne le résultat. (C) fait unique-
ment appel au théoréme 1. Pour (D) il est nécessaire de combiner les résultats des
théorémes 1 et 4 et la proposition 4.8. La classification des H-espaces 1-connexes
de rang 2 est connue: a I’exception du type (3, 11), ceux-ci sont sans torsion, ce
qui permet d’obtenir (E) a I’aide des théorémes 3 et 4 et de la proposition 4.8.
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Finalement il peut €tre utile de comparer les estimations en fonction de la
dimension. On démontre de fagon élémentaire a I’aide des théorémes 3, 4 et 5 les
deux inégalités suivantes:

Si X est homotopiquement associatif, ou de revétement universel sans torsion,
alors

l,n,.(X)l < 2d/3
sinon

lﬂ.(x)| < 2((d+3)/6)2.

L’hypothése d’associativité homotopique est suffisante si I’on fait appel, comme
dans la remarque 4.5 et le théoreme 3(b), au résultat annoncé par Harper et Lin
[10], mais dont nous ne connaissons pas la démonstration. Mentionnons cepen-
dant qu’en renforgcant I’hypothése et en supposant que X est un groupe de Lie, le
résultat en question se déduit d’un théoreme classique de Bott:

Pour G un groupe de Lie 1-connexe, £2G est sans torsion. (An application of
the Morse theory to the topology of Lie groups, Bull. soc. math. de France
84(1956)251-282.)

Il en découle, comme corollaire d’un théoréme de Browder [5,6.2] que
H*(G, Z/2) n’a pas de générateurs en des degrés de la forme 2*, ce qui nous
permet d’appliquer 4.5.
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