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Comment Math Helvetici 53(1978) 73-91 Birkhauser Verlag Basel

Sur les groupes fondamentaux des H-espaces

François Borel

1. Introduction

Dans ce travail, nous désignerons par H-espace un espace de Hopf X ayant le

type d'homotopie d'un complexe cellulaire fini Grâce au théorème de Hopf
(1941), nous savons que l'algèbre de cohomologie rationnelle H*(X, Q) est une
algèbre extérieure A(xu xr) a r générateurs de degrés respectifs 2nx-
1, 2nr — 1 Nous dirons alors, en accord avec la terminologie connue, que X est

un H-espace de rang r, de type (2rii -1, 2nr - 1), et de semi-type (nu nr)
Nous noterons d la dimension (2n1-l)+ + (2nr-l) de X

La cohomologie rationnelle d'un H-espace ne fixe pas son type d'homotopie
Elle ne change par exemple pas si l'on passe à un revêtement fini Cependant, en

1970, Curjel et Douglas ont démontré qu'il n'existe qu'un nombre fini de types
d'homotopie de H-espaces ayant même cohomologie rationnelle [7] II en résulte
en particulier qu'un H-espace ne possède qu'un nombre fini de revêtements

compacts (au type d'homotopie près) Le but de ce travail est de contrôler
explicitement cette situation, en décrivant les limitations imposées à la structure
de TTxiX) par celle de H*(X, Q) Une formulation équivalente du théorème de

Curjel-Douglas est qu'il n'existe qu'un nombre fini de H-espaces de dimension
donnée C'est pourquoi nous énoncerons nos résultats, dans la mesure du possible,

en donnant simultanément les limitations fournies par le type, le rang et la
dimension de X

Le groupe fondamental d'un H-espace est abéhen de génération finie De
plus, si dans le type de X figure exactement k fois l'entier 1, on voit facilement (cf
[8, th 2 1]) que X a le type d'homotopie de Yx(S1)lc, avec Y un H-espace de

rang r- Je et de groupe fondamental tt^Y) sous-groupe de torsion de tt^X) La
partie libre de tt^X) est donc contrôlée par le type de X de façon précise, et nous
n'envisagerons par la suite que des H-espaces à groupe fondamental fini

Un premier renseignement sur la structure de tt1(X) est alors fourni par
l'étude des suites spectrales de Bockstein de X En effet, le nombre de facteurs
cycliques p-pnmaires de tt1(X) ne peut excéder le rang de X Ce résultat,
implicite dans les travaux de Browder [6], peut s'énoncer de façon plus précise
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74 FRANÇOIS BOREL

THEOREME 1. Soit p premier. Le nombre de facteurs cycliques p-primaires de

iri(X) est inférieur ou égal au nombre de puissances de p figurant dans le semi-type
deX.

La situation dans le cas des groupes de Lie compacts a été étudiée par Borel
[1], qui compare les cohomologies modulo p d'un groupe de Lie G et de son
revêtement universel. Il démontre que l'effet du groupe fondamental consiste à

modifier le degré de certains générateurs des algèbres de Hopf correspondantes.
On en extrait une relation entre la décomposition p-primaire de ir^G) et le type
de G. Une démarche semblable, faisant appel aux travaux de Browder [4, 5, 6] et
de Lin [9], permet d'obtenir des résultats analogues dans le cas des H-espaces.
Notons gp l'ordre du sous-groupe de p-torsion de tti(X). Si p est impair, on a le

THEOREME 2. (a) gp est un diviseur de nqinq2- • • nq% où les n^ sont les

puissances de p figurant dans le semi-type (ni,..., nr\
(b) loggp^d-(logp)l(2p-l)
(c) /oggp<2r- logp.

Les résultats de Lin n'ont pas d'analogue pour p=2, où la situation est,

comme toujours, plus délicate. On peut cependant démontrer:

THEOREME 3. Le thérorème 2 est valable pour p 2 sous Vune des deux

hypothèses suivantes:

(a) le revêtement universel n'a pas de 2-torsion

(b) la cohomologie modulo 2 du revêtement universel est une algèbre de Hopf co-
associative

3(b) découle d'un résultat annoncé par Harper et Lin dans [10].

THEOREME 4. Si la 2-torsion de rr^X) est cyclique d'ordre 2m, le semi-type
de X contient 2f, avec f^m.

Le résultat concernant g2 valable de manière générale est le suivant:

THEOREME 5. (a) g2 est un diviseur de la plus grande puissance entière de 2

inférieure au nombre (In^n^* • • nq3)(log82)l/2(4Iog2)
1/2 où les nqi sont les puissances

de 2 figurant dans le semi-type (nu nr)

(b) 2

Les démonstrations des théorèmes 1 à 5 sont groupées dans les paragraphes S

et 6. Auparavant, les paragraphes 2 et 3 rassemblent les données techniques
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nécessaires sur les algèbres de Hopf et la suite de Bockstein d'un H-espace. Le
paragraphe 4 fait alors intervenir de façon plus précise la topologie algébrique des

H-espaces, et analyse en détail les interactions entre le groupe fondamental et le

semi-type. En conclusion (paragraphe 7), nous illustrons les théorèmes
principaux par quelques échantillons explicites.

Cette thèse a été réalisées sous la direction du professeur François Sigrist. Je

tiens à lui exprimer ici ma reconnaissance pour les encouragements qu'il m'a
prodigués et pour l'aide précieuse et constante qu'il m'a apportée. Mes remerciements

s'adressent également aux professeurs Ulrich Suter et Claude Weber,
membres du jury.

2. Suite spectrale de Browder et forme biprimitive

La cohomologie d'un H-espace à coefficients dans un corps est une algèbre de

Hopf. Pour les notations et définitions, nous renvoyons le lecteur à Borel [3] et
Milnor-Moore [11]. Nous utiliserons de façon essentielle des résultats de Browder
[6], que nous énoncerons sous une forme appropriée à notre travail.

Soit A une algèbre de Hopf différentielle sur Z/p. Nous la supposerons
associative, commutative et de dimension finie. Nous noterons m sa multiplication
et m' sa comultiplication. Soit Â l'idéal des éléments de degré strictement positif.
En définissant:

F°A A Fn+1A m(Â <g> FnA)

on obtient une filtration décroissante de A, stable pour la différentielle d. Notons
(ErA, dr) la suite spectrale bigraduée associée et rappelons que

T7P,<iA — tw AP+q/prq+i ap+ci

Nous utiliserons les mêmes symboles m et m' pour les multiplications et comultip-
lications induites par m et m' sur ErA. Nous avons:

LEMME. (Er, dr) est une suite spectrale d'algèbres de Hopf associatives, corn-
mutatives et primitivement engendrées (Le. ayant un ensemble de générateurs x, dits
primitifs, tels que m'x 1 <8> x + x ® 1).

Soient maintenant B ErA, p0 la projection naturelle de B sur B et pn le

morphisme {(p0® Po)"0 ® 1 ® • • • ® l}pn-i. En définissant GnB ker pn, on
obtient une filtration croissante de B, stable pour la différentielle dr. Nous noterons
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(SEB, sdr) la suite spectrale associée. Pour les multiplications et comultiplications
induites, nous avons:

LEMME. (SEB, sdr) est une suite spectrale d'algèbres de Hopf associatives,

commutatives et biprimitives (le. primitivement engendrées et sans éléments primitifs
décomposables).

THEOREME. Les algèbres de HopfœEErA et 0EEr+1A sont isomorphes. On peut
donc enchaîner les suites spectrales d'algèbres de Hopf biprimitives: 0EE0A,
xEEçyA,..., ooEE0A =* qEExA, iEEtA,..., ooEErA =* 0EEr+1A, tEEr+1A,.... La
suite spectrale ainsi obtenue est stationnaire et ooEEooA — 0EE0H(A).

0EE0A, appellée forme biprimitive de A, est l'unique algèbre de Hopf
biprimitive isomorphe à A comme espace vectoriel gradué. On démontre facilement

que cette construction est fonctorielle. Pour indiquer comment la structure
d'algèbre de la forme biprimitive de A se déduit de celle de A, nous rappelerons
tout d'abord le théorème de structure de Borel qui s'énonce:

THEOREME. Une algèbre de Hopf associative et commutative de dimension

finie sur Zip est le produit tensoriel d"algèbres extérieures A(x) avec x de degré

impair, et d' algèbres polynomiales de la forme Z/p[y]/(ypf) (y de degré pair si

La forme biprimitive d'une telle algèbre est alors décrite par la

PROPOSITION 2.1. La forme biprimitive d'une algèbre de Hopf A est

Valgèbre obtenue à partir de A en remplaçant les facteurs Z/p[y]/(ypf) par
des facteurs Z/p[yo]/(yo) ® • ' *® Z/p[y/-i]/(yj?-i), les y, correspondant aux yp<

via Visomorphisme d'espace vectoriel entre 0EE0A et A.

COROLLAIRE 2.2. Si A est une algèbre extérieure, les algèbres A et 0EE0A
sont isomorphes.

3. Suites de Bockstein et algèbres de type (n, 2q)

Pour mettre en évidence les relations entre le groupe fondamental d'un
H-espace X et son semi-type, nous étudierons les suites spectrales de Bockstein
de X, d'une part avec les méthodes exposées au paragraphe précédent, d'autre
part à l'aide des algèbres test A(n,2q) définies par Browder. Nous utiliserons
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plusieurs résultats de ce dernier. Pour leurs démonstrations, nous renvoyons le

lecteur à [4, 5,6].
La suite de Bockstein modulo p est la suite spectrale associée au couple exact:

H*(X, Z) > H*(X, Z)

H*(X,Z/p)

induit par la suite exacte des coefficients Z>i>Z-jL^Z/p. Nous la noterons
{Bk(X, Z/p), fck} en rappelant que Bx H*(X, Z/p) et que, si l'on note /* le

morphisme naturel de H*(X, Z) dans B*(X, Z/p), on a (avec les abus de notation
standards):

C'est une suite spectrale convergente d'algèbres de Hopf associatives et commuta-
tives. Sa limite B^ décrit le semi-type (nl,..., nr) de X de la manière suivante:

ÇZ/p) est isomorphe à (H*(X, Z)/torsion) <8> Z/p. Or ce dernier terme est,
d'après Borel [2], l'algèbre extérieure A(xl,..., xr) sur des générateurs xt de

degré 2n,-l.
On déduit de la définition de la suite spectrale de Bockstein le lemme et le

corollaire suivants:

LEMME 3.1. (a) étant donnés un entier k, et y e Bk(X, Z/p), bmy 0 pour tout
m>k si et seulement si y est dans Vimage de j*

(b) ker il pH*(X, Z) + T^1 où T*"1 est Vensemble des u e H*(X, Z) tels que

COROLLAIRE 3.2. Soir u€H*(X,Z) d'ordre additif pm avec j*v*O. Alors
7*1? esf un cycle permanent pour les bk et un bord pour bm.

Chacune des algèbres Bk satisfait aux hypothèses du paragraphe précédent. La
suite spectrale biprimitive associée a les propriétés suivantes:

PROPOSITION 3.3. Supposons que sEErBk soit produit tensoriel d'une algèbre
extérieure A(zu zm) et d'algèbres polynomiales Z/p[yJ/(yf) 1 <i<n, avec yt
de degré pair et z] de degré impair. Avec une numérotation des générateurs
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convenable, et en notant d s(bk)n Valgèbre différentielle sEErBk peut s'écrire sous

forme de produit tensoriel des algèbres différentielles suivantes:
(1) A(z,)®Z/p[yI]/(yf), l^i^t avec f<n, m dzt yt et dyt 0, dont

Vhomologie est A(xt) avec xx - zjf"1
(2) V algèbre engendrée par zt+u zm, yf+1,..., yn avec d 0, isomorphe à

son homologie.

(comme l'anneau des coefficients est un corps, l'homologie d'un produit tensoriel
est le produit tensoriel des homologies)

On appelle algèbre de type (n, 2q) l'algèbre sur Z/p

Z/p[ao]/(a8)<g>. • •®Z/p[an_J/(ap^1)<g>Z/p[aJ

(où les a, sont de degré 2qpl), sur laquelle on a défini par récurrence la

comultiplication suivante:

m'a% 1 <g> a, + a, (8) 1 + G, Go 0

Gl+i - ((l®aI + a,®l)p-(l(8)ar+af«)l)) + (l<8)aI + aI<8)l)p"1GI
P

Nous utiliserons dans nos démonstrations le résultat suivant:

LEMME 3.4. Soit wep-torsion de H2q(X, Z) satisfaisant
(1) z /*w# 0 est primitif et d'ordre multiplicatif p
(2) wp pkw' avec fc>l et z' j*wr9*0. On a:
(a) Si w est d'ordre additif p\ r > 2, a/ors k l et Vapplication f(a0) z, /(ax)

z' dé/îmf un morphisme d'algèbres de Hopf f: A(l,2q)-»B2(X,Z/p)
(b) Si w esf d'ordre additif p, z' es* primitif dans Bk+1(X, Z/p).

(a) est un cas particulier de [5, Th 3.7]. Une idée similaire permet de démontrer
(b): Comme z est primitif,

® 1 + pA

avec p2A 0 puisque pw 0. Dès lors

pkm*w' m*wp (1®w + w®1 + pA)p

£
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puisque pw 0 et p2A 0. Donc

m*w'=l®w' + w'®l + « avec ueTk

On en déduit par 3.1 que

m*z'= l<g> z' + z'®\ dans Bk+1.

3.4(a) est un cas particulier de la construction de ce que Browder appelle une
suite d'implication. Nous n'utiliserons qu'une seule propriété d'une telle suite, que
nous énoncerons sous forme de remarque, laissant au lecteur le soin de vérifier
qu'elle correspond bien à la construction faite sous [5, Th 3.11].

REMARQUE 3.5. Soit w e H2q(X, Z) d'ordre additif pm tel que z /* w* 0 soit

primitif. Alors z possède une suite d'implication z° z,..., zm~l de longueur
m - 1, ce qui signifie en particulier qu'il existe des entiers n, r, s ^ 0 et k > 1, et un
morphisme f:A(n, 2qpr)-*Bk(X, Zip) tel que f(apn°) z"1'1 e B2kqpm~\X, Zip).

4. Relations entre le groupe fondamental et le semi-type de X

Comme nous l'avons annoncé dans l'introduction, nous supposerons que
TTt{X) est un groupe fini. Considérons un revêtement g:X-*X de fibre G et
notons K l'espace d'Eilenberg-MacLane K(G, 1). Nous rappelerons le résultat
suivant:

Quitte à remplacer X et X par des H-espaces ayant même type d'homotopie, il
existé une fibration /:X->K(dite application classifiante) de fibre X. Les applications

/ et g sont compatibles avec les multiplications des H-espaces X, X et K G
agit trivialement sur H*(X, Z).

La situation s'applique en particulier au revêtement universel X de X. Alors
l'étude des termes de bas degré total de la suite spectrale (cohomologique) de

Leray-Serre associée à la fibration f : X-* K Kiir^X), 1) permet de montrer que
/* induit les isomorphismes suivants:

HX(X, Z) - H\K, Z) 0 H^X, Z/p) - H\K, Zip)

H2(X, Z) - H2(X, Z) - ir^X) H2(X, Z/p) - H2(X, Z/p).

La décomposition des revêtements, et l'application itérée du lemme 4.1 ci-
dessous (cas particulier de [6, Th 5.8]) permettent de décrire les relations existant
entre les algèbres de cohomologie modulo p de X et X. Etant donné un
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revêtement X de X de fibre Z/pm, la cohomologie modulo p de X est la limite de

la suite spectrale {Er, dr} de Leray-Serre, de terme

E** H*(K, Z/p) ® H*(X, Z/p)

Rappelons que H*(K, Zip) =- A(x) <g> Z/p[y] (deg x 1, deg y 2), sauf si p 2 et
m 1, où H*(K, Z/2) - Z/2[x] (deg x l).Ona:

LEMME 4.1. L'unique différentielle non triviale de {Er, dr} est une différentielle
d d2p' (s ^ 0) décrite par:
du yp* 6 E%£~H*(K, Zip) où u est un générateur (de degré 2ps -1) de E%**=*

H*(X, Z/p). (Convention si p 2 et m 1 : nous noterons x2 y).

Nous pouvons maintenant démontrer la

PROPOSITION 4.2. Soit v un générateur de tt^X) H2(X, Z) supposé cyclique

d'ordre pm, p premier impair, v et y sa réduction modulo p ont même ordre

multiplicatif pp.

Un récent résultat de Lin [9] nous sera essentiel. Il s'énonce:
Dans la cohomologie modulo p (impair) d'un H-espace 1-connexe, les

générateurs polynomiaux se trouvent en des degrés de la forme 2(1+ p+ • • • +
p<), (f^l) ou 2(l + p+ ¦ ¦ ¦ +pk~1 + pk+1+ • ¦ • +p<), (fc^l).

Nous utiliserons ce résultat pour montrer que si l'application classifiant le

revêtement universel est /:X-^X K(tt1, 1) et si u est un élément primitif de

degré 2pp de 0EE0H*(X, Zip), alors uelm/*. Nous observerons tout d'abord
que le terme E** de la suite de Leray-Serre du revêtement universel et
H*(X, Z/p) étant isomorphes comme espaces vectoriels gradués, ils ont même
forme biprimitive. Par 4.1, on peut choisir pour EÎ* un système de générateurs
{z,} ayant la propriété suivante:

-soit z, est image d'un générateur de H*(K, Zip)
-soit z, a pour image un générateur de H*(X, Z/p).
Soit dès lors u un élément primitif (et donc indécomposable) de degré 2pp de

0EE0Ei'*. u est combinaison linéaire de générateurs de cette algèbre, donc

d'après 2.1 combinaison linéaire de puissances p-ièmes de générateurs z, de EÎ*.
Etant donné que d'après Lin il n'y a pas de générateurs de degré 2pk dans

H*(X, Z/p), les seuls z, pouvant entrer en considération appartiennent à l'image
de /*, et donc uelm f*.

Considérons maintenant y /*t>, qui par Borel est d'ordre multiplicatif une
puissance pp de p. Soit w t?^ l et supposons par l'absurde que wp pV/
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0(k > 1, z' /*w' * 0). Puisque H\X, Z) 0, on a: m*v 1 ® t> + u ® 1. Dès lors

z y*w est primitif et nous sommes dans les hypothèses de 3.4 (avec q p*3"1).

Si w est d'ordre additif p2 au moins, nous savons que z et z' sont images par
un morphisme de A(l, 2q) dans B2(X,Z/p) de a0 respectivement ax. En passant
aux formes biprimitives, on en déduit que z' est primitif dans 0EE0B2. Il est donc
la classe d'un élément primitif u de 0EE0B1. Comme u est de degré 2pp, il est

d'après ci-dessus dans l'image de /*. Mais cette image étant nulle en ce degré
(ypP 0!), on en déduit que u 0 donc z' 0, ce qui est absurde.

Si w est d'ordre p, le même raisonnement s'applique en considérant la

sous-algèbre de Bk+1 engendrée par l'élément primitif z'.
L'examen attentif de la démonstration de 4.2 permet de compléter ce résultat

par:

PROPOSITION 4.3. Supposons tt^X) d'exposant p premier impair. Soient

v g TT^X) H2(X, Z) et y sa réduction modulo p. Alors v et y ont même ordre

multiplicatif pp.

En effet on montre de la même manière que si wp pkw\ alors z' /*w' est dans

l'image de /*. Cela permet de conclure par l'absurde puisque w' est d'ordre
additif au moins p2 et que pH*(K, Z) 0.

Nous énoncerons une généralisation facile de 4.2:

REMARQUE 4.4. Soit <in(X) Z/pm* 0 • • • © Z/pm*. Soient vu • •, vs les

générateurs des facteurs cycliques, yu ys leur réduction modulo p d'ordres

multiplicatifs respectifs p^,..., p^\ Pour tout i tel que fr supify}, v, a Vordre

multiplicatif p*3*.

REMARQUE 4.5. Si H*(X,Z/2) n'a pas de générateurs polynomiaux en les

degrés de la forme 2k(fe^l), alors 4.2, 4.3 & 4.4 sont valuables pour p 2.

C'est en particulier le cas lorsque le revêtement universel n'a pas de 2-torsion,
ou encore lorsque l'algèbre de Hopf H*(X, Z/2) est coassociative, comme l'ont
annoncé Harper & Lin dans [10].

Dans le cas où le groupe fondamental est un p-groupe quelconque, la situation
est un peu plus complexe:

PROPOSITION 4.6. Soient tt^X) comme sous 4.4, v un générateur d'un
facteur cyclique et y j*v d'ordre multiplicatif p*3. Si v et y n'ont pas même ordre

multiplicatif, alors w t)^"1 est d'ordre additif p.
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Soit / : X-» K K(ttu 1) classifiant le revêtement universel. Si wp pkw' # 0,
z' /*w' est comme sous 4.2 dans l'image de /*:B2(K,Z/p)-»B2(X,Z/p).
Comme H*(K, Z/p) est primitivement engendrée, z' est donc primitif.

Pour démontrer que w est d'ordre additif p, il nous suffit donc de montrer que
si w est d'ordre additif p2 au moins, alors z' n'est pas primitif dans B2. Nous
savons par 3.4 que si cet ordre est au moins p2, il existe un morphisme
g:A(l,2q)-»B2 tel que g(ao) z j*w et g(a1) z'. Comme

mt(a1)=l®al + a1®l+-
P

m*(z')=l®z' + z'<8>l+~((l®z + z<8)l)p-(l®zp + zp®l))
P

dans B2 et z' n'est donc pas primitif.
Nous observerons qu'en vertu de 4.4, ce phénomène ne peut se produire si y

est d'ordre multiplicatif maximal parmi les générateurs de degré 2 de H*(X, Z/p).

PROPOSITION 4.7. (a) Soit v comme sous 4.2. Les puissances successives de v

satisfont à la propriété suivante: II existe une suite d'entiers 0 fo<f1< - - - <fm
0 </m+i tels que vn soit d'ordre additif pmi, pour tout n avec pfi < n<pf+i.

(b) Soit v générateur d'un facteur cyclique d'ordre pm de tt1(X). Le résultat
ci-dessus est valable pour tout i^m-l.

Les puissances vn de v ont évidemment pour ordre additif une puissance de p.
Notons n paq avec (p, q) 1. Il nous suffit, pour montrer (a), de montrer que si

vn~l est d'ordre additif pk, alors vn est:

d'ordre additif pk si qï 1

d'ordre additif pk ou pk-1 si q 1.

On a:

Si q# 1, la binomiale (£*) n'est pas divisible par p. Puisque vn~x est d'ordre
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additif pk et n'est pas divisible par p d'après 4.2, on a:

pk~x{
a jvpa <8> vn~pa + termes de bidegrés différents

5*0.

Il en découle que pk~1vnît0, ce que nous voulions démontrer.
Si q l, la binomiale (JJ--1) n'est pas divisible par p2, nous pouvons donc

démontrer de la même manière que pk~2vnî60.
La partie (b) se démontre de la même manière à l'aide des résultats plus

faibles de 4.6.

PROPOSITION 4.8. (a) Si ir^X) a un facteur cyclique d'ordre pm, alors dans
le semi-type de X figure la suite de nombres suivante: pfi,... ,p/m avec 0<ft<
¦ ¦ ¦ </„.

(b) Soit 77"i(X) Z/pmi © • • • © Z/pm». Les mx -1 premiers nombres fournis par
chaque facteur cyclique en application de (a) forment des sous-ensembles disjoints
du semi-type de X.

Nous démontrerons ce résultat en détectant des générateurs de l'algèbre
extérieure Bœ(X, Z/p). Comme nous l'avons vu au paragraphe 3, les degrés de ces

générateurs déterminent le type de X.
(a) On déduit de la formule bkz j*p~k+l dz que si dxx 0 alors bkxt 0 pour

tout fc. On en déduit également que si on a bkz =/*u, ugH*(X, Z), alors
(p~k+1 dz-v)e ker jf et donc d'après 3.1:

dz pk-1v + pkv' i/eH*(X,Z).

Considérons un revêtement de X, de groupe fondamental Z/pm. Soient v et
{/,} comme sous 4.7, et notons

vt étant d'ordre additif pm"I+1 et j*vt étant non nul, il existe d'après 3.2 un
élément zx tel que 6m_I+1zl j*vt. Comme on l'a vu ci-dessus, cela signifie que
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Mais d est un morphisme de H*(X, Z)-modules, donc

=pm-iv*+(Pm-i+ivrv,=o.

Pour xI 2j*vf"1 (de degré (2p/i-l) + 2(p-l)p/~1 2p/*-l) nous avons
dx, 0. C'est donc un cycle permanent de la suite de Bockstein. Il reste à voir que
c'est un générateur de B*,, ou ce qui revient au même (cf 2.2), un générateur de

oEEqBoo. Pour ce faire, nous étudierons la longue suite spectrale d'algèbres
biprimitives de premier terme 0EE0B1 et de dernier terme qEEqB^ (cf paragraphe
2).

yt j*vt est puissance p-ième d'un générateur de Bl9 il est donc par 2.1 un
générateur de OEEOBU et par 3.3 reste un générateur dans la suite spectrale
jusqu'au moment où il devient un bord. Comme bm_l+1zl yl, 3.3 nous permet
d'affirmer qu'il existe 5 et r tels que zx soit générateur de sEErBm_l+1 et que

Nous savons qu'alors

xt z,yf-1 est un générateur de s+1EErBm_l+1

Comme on l'a vu, xt est un cycle permanent de la suite spectrale {Bk}, donc

également pour tout k de la suite {sEErBk}. Dès lors xt est un générateur, tout
d'abord de 0EJ50Bm_I+2, isomorphe à 00EE00Bm_I+1, mais aussi de 0EE0Bk pour
tout k >: m - i 4- 2, donc de 0EE0Boo, ce que nous voulions démontrer.

Le même raisonnement, appliqué à un générateur de chacun des facteurs

cycliques de rr^X), permet de démontrer (b). Etant donné un facteur Z/pm, on
obtient une famille xl9...9 xm. Cependant la partie (b) de 4.7, plus faible que la

partie (a), ne permet pas d'affirmer que bkxm 0 pour tout k. C'est pourquoi nous
ne pouvons démontrer l'existence que de m -1 générateurs de B*,.

Par 3.3, chacun des xt correspondant à l'un ou l'autre des facteurs cycliques
figure dans un facteur différent du produit tensoriel qu'est Bx. Ces xt forment
donc un sous-ensemble non-redondant de générateurs, ce qui justifie l'affirmation
selon laquelle les sous-ensembles du semi-type correspondants à des facteurs

cycliques différents sont disjoints.

5. Démonstration des théorèmes 1 à 3

Dans ce paragraphe, nous supposerons que irt(X) est un p-groupe, ce qui
revient à étudier non pas X, mais le revêtement de X (de même type!) ayant pour
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groupe fondamental la p-torsion de tt^X). Le théorème 1 est une conséquence
directe de 3.3:

THEOREME 1. Soit p premier. Le nombre de facteurs cycliques p-primaires de

ttx{X) est inférieur ou égal au nombre de puissances de p figurant dans le semi-type
de X.

Si H2(X,Z)=-7r!(X) est le groupe Z/p™1 © • • © Z/pm% si nous notons

Vi,...,vs les générateurs des facteurs cycliques, et y1?..., ys leurs réductions
modulo p, nous avons une famille z1?..., zs de générateurs de degré 1 de

H*(X, Z/p) tels que pour l<i<s, fcmz, y,. Par 3.3, nous en déduisons que
chacun des zx implique l'existence d'un générateur de JEL, multiple de z, de degré
2pki- \{kx> 1). Chaque facteur cyclique Z/pm« implique donc l'existence d'une
puissance de p dans le semi-type de X.

Si 7T1(X) Z/pmi©Z/pm2©- • -®Z/pm% considérons le revêtement X de X
de groupe fondamental Z/p©Z/pm2© • • -©Z/pm% et de fibre Z/pmi-1. Comme
H*(X, Z/p) et JtF*(X, Z/p) ont même nombre de générateurs de degré 1, nous en
déduisons par 4.1 que la seule différentielle non triviale de la suite de Leray-Serre
est d2, et que donc H*(X, Z/p) et H*(X, Z/p) sont isomorphes. En appliquant ce

raisonnement à chaque Z/pm-, on obtient la

REMARQUE 5.1. Soit X le revêtement de X ayant pour groupe fondamental le

sous-groupe d'exposant p maximal de tt^X). Alors H*(X, Z/p) — H*(X, Z/p)
(isomorphisme d'algèbre si p^2, d'espace vectoriel seulement sinon).

Nous pouvons maintenant démontrer le théorème 2 en rappelant que nous
notons gp l'ordre de la p-composante de tt^X), pour p premier impair.

THEOREME 2. (a) gp est un diviseur de nqinq2 • • • nq% où les nqt sont les
puissances de p figurant dans le semi-type (nl9..., nr)

logp<2r • logp

Démontrons tout d'abord comment (b) découle de (a):
Si gp divise nqi • • • nqs, alors log gp <log nqi+ • • • +log nqs. Comme

log (c logp
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on en déduit:

Supposons maintenant H2(X, Z) « ^(X) Z/pm* © • • • © Z/pm*. Notons

«!,..., vv les générateurs des facteurs cycliques, et yu yv leur réduction
modulo p. Notons vt et y, les générateurs correspondants dans les cohomologies
des revêtements intermédiaires X% de groupe fondamental Z/pm». Par 4.1, y, et y,

ont même ordre, par 4.2 y, et û, ont même ordre et par 4.7(a) celui-ci est

p* (ftssm,).
Considérons maintenant le revêtement X ayant pour groupe fondamental le

sous-groupe d'exposant p maximal de ttx(X), qui a une cohomologie modulo p
isomorphe à celle de X (cf 5.1). Notons également vt et y, les générateurs de

degré 2 correspondants. Par 4.3 y, et u, ont même ordre multiplicatif pPi. Il existe

une famille zu..., zv de générateurs de degré 1 telle que bxzx - y, pour tout
i, 1 < i < y. Par une démonstration analogue à celle de 4.8, et en utilisant 4.3, on
démontre que

*i ZiypPl-\ • • •, *v ^tf*-1 (de degrés 2p* -1)

sont des générateurs de Bœ(X, Z/p). Dans le semi-type figurent donc les nombres
pfi%,..., p0v. Il en découle que gp pmi+ +m* est un diviseur de nqi • • • nqs où les nqj

sont les puissances de p figurant dans le semi-type, ce qui démontre (a).
Pour montrer (c), nous observerons que

toggP^(wi+ ' ' • +m,,)logp

< V log p + |£(ttl| - 1)| lOg p.

Chacun des deux termes ci-dessus est inférieur à 5 • log p. Le premier par le
théorème l(i/<s), le deuxième par 4.8(b) qui garantit la présence dans le
semi-type, pour chaque facteur Z/pms de (m, -1) puissances de p.

THEOREME 3. Tous les résultats démontrés pour p impair aux paragraphes 4

et 5, en particulier le théorème 2, sont valables pour p-2 sous Vune des deux
hypothèses suivantes:

(a) le revêtement universel n'a pas de 2-torsion
(b) la cohomologie modulo 2 du revêtement universel est une algèbre de Hopf

coassociative.
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Pour s'en convaincre on se rapportera à la remarque 4.5, aux commentaires

qui la suivent et au fait que les démonstrations des propositions 4.6 à 4.8 et du
théorème 2 reposent sur les propositions 4.2 à 4.4.

6. Démonstration des théorèmes 4 et 5

THEOREME 4. Si la 2-torsion de ttx(X) est cyclique d'ordre 2m, le semi-type
de X contient 2f, avec f>m.

Ce théorème découle directement de 3.5 appliqué à un générateur w de

H2(X, Z), d'ordre 2m. En passant aux formes biprimitives on observe que
l'élément zm~\ de degré 2m+1, est indécomposable dans la forme biprimitive d'un
terme de la suite de Bockstein de X. Il existe donc par 3.3 un générateur de

B»(X,Z/2), multiple de zm~\ de degré 2f+1-l avec />m.

THEOREME 5. (a) g2 est un diviseur de la plus grande puissance entière de 2

inférieure au nombre (2nqinq2- • • nq ^1ogg2)l/2(4iog2)-w Q^ jes n^ SQnt ^es pUissances
de 2 figurant dans le semi-type (nu nr)

(b) 2

Démontrons tout d'abord comment (b) découle de (a): Nous avons

log g2 =£ Oog g2)1/2(4 log 2)"1/2(log 2 + log nqx + • • • + log nqs).

Puisque, comme nous l'avons déjà dit (cf dém. th. 2),

log k log 2
_JL_S^L_ pourtout fca2,

nous en déduisons que

d'où

l°g g2 — c. I°g2.
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Supposons tti(X) Z/2m © Z/2"1 © • • • © Z/2n* avec m > nt pour tout i. Le
théorème 4 (appliqué au revêtement de groupe fondamental Z/2m) nous garantit
l'existence d'un générateur x de Bœ de degré 2k+1- 1 avec k > m. Le théorème 1

nous garantit l'existence de s générateurs de B^, distincts de x, de degrés 2h+1-1
avec fc > 1. On en déduit que 2m+s est un diviseur de nqi • • • nqi où les nqj sont les

puissances de 2 figurant dans le semi-type.
Notons a log g20og 2)"1 m + ni + • • • + ns. Comme nt^m, on a s >

(a/m) -1. Le calcul différentiel élémentaire nous dit que pour a donné, (m + s)>
2al/2-l. Dès lors a <(a/4)1/2(rn + s + l). Comme 2m+s est un diviseur de

nm ' ' ' nq,> on en déduit que g2 2a est un diviseur de la plus grande puissance
entière de 2 inférieure à (2nqi- • -nqs)a avec a (a/4)1/2 (log g2)1/2(4 Iog2)"1/2.

7. Applications

Pour obtenir dans ce travail les bornes pour tt^X), nous n'utilisons essentiellement

que la classification cohomologique des H-espaces. Celle-ci, confrontée à

la provision de H-espaces actuellement à disposition, ne peut guère prétendre à

un contrôle serré. Il est donc relativement difficile d'exhiber des H-espaces
réalisant en toute généralité les estimations obtenues ici. La situation est meilleure

si l'on se contente de traiter les composantes p-primaires séparément.
Comme presque tous les résultats ont le comportement attendu vis-à-vis des

produits de H-espaces, on peut considérer les exemples qui suivent comme
convenablement génériques.

EXEMPLE 1. X PSl/(p), p premier. Le semi-type est (2,3, ..,p), le

groupe fondamental Z/p. X illustre, pour p, le théorème 1(tt^(X) est cyclique) et
le thérorème 2 (l'ordre de tti(X) divise p). Pour p 2, PSU(2) SO(3), et un calcul
facile montre qu'on réalise les limites du théorème 5.

EXEMPLE 2. X PE6, groupe de Lie exceptionnel. Le semi-type est

(2, 5,6, 8,9,12), le groupe fondamental Z/3. X illustre, pour p 3, le théorème 1

et en partie le théorème 2 (l'ordre de tti(X) divise 9). C'est en retournant à la

démonstration du théorème 2 (proposition 4.8) que l'on force tt^X) à être

cyclique d'ordre 3. Cet exemple illustre le fait que dans le cas où des hypothèses

plus fortes sont à disposition (comme ici: une seule puissance de 3 dans le

semi-type), les propositions du paragraphe 4 peuvent fournir des résultats plus
précis que le théorème 2 lui-même (nous y avons d'ailleurs recouru dans les

exemples D et E ci-dessous). C'est pour éviter une formulation extrêmement
encombrante de ce dernier que nous avons renoncé à formuler de manière
exhaustive les résultats obtenus au paragraphe 4.
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Les applications qui suivent sont de caractère plus global, et donnent, à partir
du semi-type, le contrôle fourni par les résultats de ce travail. A quelques
exceptions évidentes près, la borne obtenue n'est pas optimale, et ne peut être
améliorée que grâce à la connaisance explicite des espaces considérés. Un
exemple est fourni dans [12], où les auteurs partent des résultats ci-dessous pour
obtenir le contrôle exact du groupe fondamental pour tous les H-espaces de rang
2. Nous appellerons tt(X) le groupe abélien fini obtenu à l'aide des théorèmes 1 à

5, et qui contient donc un sous-groupe isomorphe à tti{X). Nous grouperons les

illustrations en un tableau suivi des commentaires appropriés:

Hypothèse sur X

(A) X est un groupe de Lie
de semi-type (nu nr)

(B) X est un groupe de Lie
de dimension d

(B') X (SO(3))S
(C) X est un H-espace de semi-

type (2m1? 2m2,..., 2mr)
(D) X a le type d'un groupe

de Lie exceptionnel:

F4:(3,11,15,23)
E6:(3,9,ll,15,17,23)
E7:(3,11,15,19,23,27,35)
E8: (3,11,23,27,35,39,47,59)

(E) X est un H-espace de rang
2, de type:

(3,3)
(3,5)
(3,7)
(3, H)
(7,7)

Pour (A) et (B) on peut affaiblir l'hypothèse sur X en supposant que X est un
H-espace homotopiquement associatif. Cette condition est suffisante pour appliquer

le théorème 3 qui, joint au théorème 2, donne le résultat. (C) fait uniquement

appel au théorème 1. Pour (D) il est nécessaire de combiner les résultats des

théorèmes 1 et 4 et la proposition 4.8. La classification des H-espaces 1-connexes
de rang 2 est connue: à l'exception du type (3,11), ceux-ci sont sans torsion, ce

qui permet d'obtenir (E) à l'aide des théorèmes 3 et 4 et de la proposition 4.8.

Conclusion pour tj-(X)

|tt(X)| divise nl • • • nr

|tt(X)|<2w/3)

ir(X) (Z/2)s

ir(X) est un 2-groupe

ir(X) Z/2
7r(X) Z/8 0Z/8
ir(X) Z/8 0 Z/8 0 Z/3 0 Z/5
tt(X) Z/8 0 Z/8
tt(X) Z/8 0 Z/8

tt(X) Z/2©Z/2

l Z/20Z/4
ir(X) Z/2

l Z/20Z/2
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Finalement il peut être utile de comparer les estimations en fonction de la
dimension. On démontre de façon élémentaire à l'aide des théorèmes 3, 4 et 5 les

deux inégalités suivantes:
Si X est homotopiquement associatif, ou de revêtement universel sans torsion,

alors

|7T(X)|<2d/3

sinon

|7T(X)|<2((d+3)/6)2.

L'hypothèse d'associativité homotopique est suffisante si l'on fait appel, comme
dans la remarque 4.5 et le théorème 3(b), au résultat annoncé par Harper et Lin
[10], mais dont nous ne connaissons pas la démonstration. Mentionnons cependant

qu'en renforçant l'hypothèse et en supposant que X est un groupe de Lie, le

résultat en question se déduit d'un théorème classique de Bott:

Pour G un groupe de Lie 1-connexe, flG est sans torsion. (An application of
the Morse theory to the topology of Lie groups, Bull. soc. math, de France

84(1956)251-282.)

Il en découle, comme corollaire d'un théorème de Browder [5,6.2] que
H*(G, Z/2) n'a pas de générateurs en des degrés de la forme 2\ ce qui nous

permet d'appliquer 4.5.

BIBLIOGRAPHIE

[1] A. Borel, Sur Vhomologie et la cohomologie des groupes de Lie compacts connexes, Amer. J.

Math. 76 (1954) 273-342.
[2] Commutative subgroups and torsion in compact Lie groups, Bull. Amer. Math. Soc. 66

(1960) 285-288.
[3] 9 Topics in the homology theory of fibre bundles, Lect. Notes in Math. 36 (1967).

[4] W. Browder, Torsion in H-spaces, Ann. Math. 74 (1961) 24-51.
[5] Higher torsion in H-spaces, Trans. Amer. Math. Soc. 108 (1963). 353-375.
[6] On differential Hopf algebras, Trans. Amer. Math. Soc. 107 (1963) 153-176.
[7] C. R. Curjel & R. R. Douglas, On Espaces offinite dimension, Topology 10 (1971) 385-389.
[8] P. J. Hilton & J. Roitberg, On the classification problem for H-spaces of rank two, Comment.

Math. Helvetici 45 (1970) 506-515.
[9] J. P. Lin, Tçrsion in H-spaces II, à paraître.



Sur les groupes fondamentaux des H-espaces 91

[10] & J. R. Harper, Two torsion in H-spaces, Bull. Amer. Math. Soc 82 (1976) 612
[11] J. W. Milnor & J. C. Moore, On the structure of Hopf algebras, Ann. Math. 81 (1965) 211-264.
[12] F. Sigrist & U. Suter, Sur les H-espaces de rang 2, C. R. Acad Sci. Série A 285 (1976)

887-889.

Institut de Mathématiques
Chantemerle 20
2000 Neuchâtel

Reçu le 22 avril 1977.




	Sur les groupes fondamentaux des H-espaces.

