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Riemannsche Flàchen mit Eigenwerten in (0,|)

Peter Buser

1. Einleitung

Wir betrachten kompakte Riemannsche Flâchen M vom Geschlecht g ^2. Es

gibt auf M genau eine mit der konformen Struktur vertràgliche Metrik g^ mit
konstanter Krùmmung -1. Zu gM gehôrt ein Laplace-Operator A und eine

Lebesque-Integration f^>$MfdM. Durch /, g»-» $MfgdM wird C*{M) zu einem
Prâhilbertraum. Das Eigenwertproblem Au Xu liefert ein in diesem Raum
vollstândiges Orthonormalsystem von Eigenfunktionen u0, Uuu2,... mit den

Eigenwerten Ao 0 < At ^ A2 ^ • • •, Àn —> +<».

Seit McKean [6] ist die Frage nach kleinen Eigenwerten intéressant.
B. Randol [8] hat mit Hilfe der Selbergschen Spurformel gezeigt, dass zu
einer beliebig vorgegebenen Flàche fur jedes m eine endlichblâttrige
Ueberlagerungsflàche existiert, fur die Àm < \. Die Blàtterzahl ist dabei ganz
betrâchtlich, und es stellt sich die Frage, ob es nicht schon fur kleines Geschlecht
Flâchen mit Eigenwerten in (0, \) gibt. Vorallem aber sagt [8] nichts darûber aus,
ob z.B. Ai beliebig klein werden kann. Mit einer Méthode von Frank Lôbell [5]
konstruieren wir Beispiele, um zu zeigen, dass beides môglich ist:

SATZ 1. Zu jedem g^2 und fur aile e>0 gibt es eine Riemannsche Flàche

vom Geschlecht g mit A2g-3<e.

Nun ist zu vermuten, dass sogar bei fest vorgegebenem Geschlecht beliebig
viele Eigenwerte in (0,4) liegen kônnen. Tatsâchlich lâsst sich dies fur jedes
Intervall (0,i+e), e>0, leicht einsehen: Bedeutet nàmlich /0 aie Lange der
kûrzesten nicht in einen Punkt ausgearteten geschlossenen Geodàtischen, so gilt
allgemein

SATZ 2. Fur jede Riemannsche Flàche vom Geschlecht g ^ 2 ist

Am<i + I
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26 PETER BUSER

und man kann zu jedem Geschlecht beliebig Beispiele mit kleinem /0 angeben
(s.u.). Es ist deshalb umso ùberraschender, dass die Anzahl der Eigenwerte im
Intervall (0, |) selbst beschrânkt bleibt:

SATZ 3. Fur jede Riemannsche Flàche vom Geschlecht g^2 ist

Wir beweisen dies mit dem Minimaxprinzip von Courant, indem wir die Flâche in
4g-2 geodâtische Dreiecke zerlegen und zeigen, dass auf jedem solchen Dreieck
der kleinste positive Eigenwert des Neumannproblems grôsser ist als \.

Die Zahl J ist somit eine regelrechte Schwelle fur das Spektrum des Laplace-
Operators, und zwar ergibt sich hier eine Parallèle zu einem auf ganz anderem

Wege gewonnenen Résultat von H. Huber, der mich auf dièses Thema aufmerk-
sam gemacht hat, und dem ich an dieser Stelle fur seine Hilfe meinen Dank
aussprechen môchte. Bezeichnet fur eine gegebene Flâche A(x) die Anzahl
Eigenwerte, die im Intervall [0, x] liegen, gezàhlt mit ihren Multiplizitâten, so hat
H. Huber entdeckt, dass fur jedes e>0 das Verhàltnis Afy/A(l + e) beliebig
klein wird, wenn nur l0 genûgend gross ist, wobei zu bemerken ist, dass es zu noch

so grossem l0 Flâchen mit beliebig hohem A (l) gibt [3]. Das Spektrum kann sich

also mit l0 —» o° beliebig stark an der Stelle \ verdichten. Dièses Phànomen tritt
nun auch im Falle /0-> 0 auf, sofern noch das Geschlecht festgehalten wird. Aus
Satz 2 und 3 folgt nâmlich direkt

SATZ 4. Fur jede Riemannsche Flàche vom Geschlecht g ^ 2 gilt

1-1

A(i) 4g-1

2. Beweis der Sàtze 1 und 2

Das folgende Konstruktionsverfahren wurde von Frank Lôbell in seiner

Dissertation eingefùhrt. Es sei H die hyperbolische Ebene, gn der Riemannsche

Masstensor auf H mit der konstanten Krûmmung -1. Wir konstruieren zuerst ein

sogenanntes Spitzeck, das ist ein geodâtisches Viereck in H mit drei rechten
Winkeln und einem spitzen Winkel <p. r und r' seien die an ç liegenden Seiten, s

und s' die gegenûberliegenden (siehe Figur 1). Wir wâhlen <p tt/3 und betrach-
ten r 2* 3 als Parameter. Die ûbrigen Bestimmungsstûcke des Spitzecks sind nun
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festgelegt, und zwar gilt nach den Formeln der hyperbolischen Trigonométrie [7]
p. 79

o —

s' ArCos (fCosr)>l.

(1)

(2)

Durch fortgesetzte Spiegelung des Spitzecks an den Seiten r und r' ensteht ein
abgeschlossenes Sechseck D, das von den geodâtischen Segmenten t^ar^t),
t *-* ct(t\ t g [0,1], i 1,2, 3, berandet ist. Dabei ist cri([0, |]) 5', Ci([è, 1]) s,

c,(l) o-,(0) und at(l) cl+1(0), Indizes modulo 3. Nach (1) haben die Segmente c,

eine Lange

(3)

Durch Verdoppelung von D in zwei "ûbereinanderliegende" Exemplare D, D',
und durch anschliessende Identification von at(t) mit orf(f), te[0,1], ï 1,2,3,
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entsteht eine berandete Flache Y (das Y-Stuck) mit den drei Randkurven

(c.(2t) fur te[OAl^T'(0 k(2-2r) fur teillV (4)

die homôomorph ist zu einem kompakten ebenen Kreisbereich mit zwei Lôchern.
Das Y-Stùck tràgt in natûrlicher Weise eine Riemannsche Metrik der

konstanten Krûmmung — 1: Setzt man

und

wenn peD
wenn peD

wobei Sl:H-> H die Spiegelung der hyperbolischen Ebene an der Geodàtischen

o-tc:H bedeutet, so bilden die drei Koordinatensysteme {Y,, <£,} einen differen-
zierbaren Atlas fur Y. Weil nun jede Ueberlappungsabbildung <£, ° 071 die

Umgebung ^(Y.nYJ) in H isometrisch auf die Umgebung <f>l(YinY}) abbildet,
wird durch die Définition gY(A, B) gni^A, <&#£?) unabhângig von der speziel-
len Wahl des Koordinatensystems auf Y ein Riemannscher Masstensor gY

eingefùhrt (A, JB zwei Tangentialvektoren zum selben Aufpunkt p e Yl9 <f>* die

Differentialabbildung von <f>). Die Randkurven (4) sind Geodâtische bezùglich gY
mit der Lange

U — Kji) — 2l(ct)<5e~r. (5)

Das Y-Stûck dient nun als Baustein fur unser Beispiel: Zuerst stellt man

2(g-l) identische Kopien Y1,..., Y28"2 von Y her mit den Rândern yf i
1,2, 3, k 1,..., 2(g-1). Dièse verheftet man zu einer zusammenhàngenden
orientierbaren Flache M vom Geschlecht g, indem man modulo 2g-2 fur
k 1,..., 2g-2 yï(t) mit y£+1(l -1) und y\\t) mit yf+1(l - 0 identifiziert. Wie
man leicht sieht, gibt es dann auf M genau eine Riemannsche Metrik g^, welche
auf jedem Y-Stùck mit gY ùbereinstimmt. g^ besitzt konstante Krùmmung -1.

Fur die Abschâtzung der Eigenwerte betrachten wir auf Y die drei wegen (2)

disjunkten Streifen Lt={pe Y/dist(p, y^^l}- Fùhren wir auf H Fermikoordina-
ten p (x,y)eR2 mit der Geodàtischen c, als jc-Achse ein, so lauten Masstensor
und Volumenelement [4] p. 67

gn dx2 Cos y + dy2, dH dx dy Cos y, (6)
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und es gilt L, DD ={(x, y)/0^x^2s9 0=^ y =^1}. Hieraus sehen wir, dass wegen
(5) und

vol(Ll) U Costdt>6e'r<l (7)

Andererseits besitzt Y nach der Formel von Gauss-Bonnet den Inhalt vol(Y)
2tt. Definieren wir deshalb fur pe Y

fdist(p, dY), wenn dist (p,dY)=s 1,

so ist <f> stetig auf Y, mit Ausnahme von dL, beliebig oft differenzierbar, und wir
erhalten aus (7) die Ungleichung

I ||grad<p||2dY<4£rr| <p2 dY.
Jy Jy

(8)

Die 2(g-l) auf M stetigen Funktionen <pk :cpk(p) <p(p), wenn peYk und
<Pk(p) 0, wenn pé Yk, sind linear unabhângig. Also gibt es eine Linearkombina-
tion / Xfc=i2 <*k<Pk mit JMM ^M 0 fur / 0,..., 2g -4, dabei ist {uo> Uu • • •}

ein vollstândiges Orthonormalsystem von Eigenfunktionen des Laplace-Operators
auf M

/ ist fur das Courantprinzip zugelassen, also gilt auf M wegen (8)

^ Jm ilgrad /f dM I2II2 a? Jv ||grad cp\\2 dY

Dabei war r^=3 beliebig gewâhlt, womit Satz 1 bewiesen ist. Wir bemerken noch,
dass wegen (5) auf der soeben konstruierten Flâche /0<5e~r.

Satz 2 ist eine Folgerung aus einem Satz von S. Y. Cheng [1]: Sei tt:H-+ M
lângentreue Ueberlagerungsabbildung, y eine normale geschlossene Geodâtische
der Lange l0 und y ein Ueberlagerungsweg von y. Wir beschreiben H durch
Fermikoordinaten p (x, y) mit y(t) (t, 0) als x-Achse. Wenn wir zu jedem
peM denjenigen ûber p liegenden Punkt p wâhlen, der am nâchsten bei
(0,0) liegt, erhalten wir einen Fundamentalbereich F fur M, der in A
{(x,y)/-lo/2^x^lo/2,-d^y^d} liegt, wobei d -sup{dist (p, q)lp, qeM} den
Durchmesser von M bedeutet. Mit (6) ist 47r(g-l) vol(F)^2/0JoCOS tdt, also,
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weil /0 viel kleiner ist als 47r(g-l):

Da nach dheng Am ^| + (167r2m2/d2), ist Satz 2 mit (9) bewiesen.

3. Beweis von Satz 3

Fur den Beginn ist es zweckmâssig, auf H geodâtische Polarkoordinaten
p (p, y), pe(0, oo), y eS1 R/[y »-* y + 2tt] mit Zentrum poeH einzufûhren.
Masstensor und Volumenelement lauten

gH dp2 + Sin2 p dy2, dH Sin p dp dy.

Es sei c:I-*H, c(t) (p(t)9y(t)) mit y(f)^d eine stùckweise glatte Jordan-
kurve, fur die eine der folgenden beiden Eigenschaften zutrifft: 1. J [0,1],
c(0) c(l). 2. I (0,1), 0<y(0<« fur ein ae(0,27r) und lim^oy(0 0,

limt^i y(0 a. Im ersten Fall berandet c allein, im zweiten Fall c zusammen mit
den Geodâtischen t *-* a(t) (t,O), t •-» b(t) (U a) ein einfachzusammen-

hângendes Gebiet G (Figur 2).

LEMMA 1. Vor. G ist das oben beschriebene Gebiet, feC\G)nC(GUc),
/|e=0. Beh.
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Beweis. Wir begnûgen uns mit dem Fall, dass G wie in Figur 2 nicht von c

allein berandet ist. Wir diirfen annehmen, dass JG/2dH=l. Definieren wir
A={(p,y)eH/0<p<d,0<y<a}^G und u(p) f(p) fur peG, u(p) O fur
peA-G, so ist ueCx{A), und es folgt nach Cauchy-Schwarz

Nun ist

J'«
ça ^u r<x çd
I — Sinpdpdy^ù)\ I uSinpdpdy

o Jo dp Jo Jo

wenn <o inf {Jo |h'| Sin p dp/Jo ^ Sin p dp/h stiickweise glatt auf (0, d], h ^ 0,
/i(d) 0}. w ândert seinen Wert nicht, wenn man fur die Funktionen h zusàtzlich
verlangt, dass h€C1[0, d], h(0)=l und /i'<0 auf [0, d]. In diesem Fall erhâlt
man aber durch Substitution t=h(p) und anschliessende partielle Intégration
wegen der Monotonie von Sin x/(Cos x - 1) in jc >0:

|fe'| Sin p dp - h\p) Sin p dp
Jo Jo

Sin (h (O)dr^-—7-7! Cosih'^ty-ldt
h

-Sin
Cos

Sind rd

Cos d -1

ind PrSMfrV))
d-lJo h'(h-x(0)

^

h(p)Sin pdp.

Folgl'ich ist co ^ Sin d/(Cos d - 1), also JG ||grad /||2 dH^\{\ + l/(Sin2 d/2)) q.e.d.
Fur den nàchsten Hilfssatz beschreiben wir H in der oberen Halbebene

H {(*, y) g R2/y > 0} mit gH y'2(dx2 + dy2), dH y'2 dx dy, A y2((d2/
ax2) + (d2/dy2)). Fur ein in H beschrânktes Gebiet B bezeichne W(B) die Menge
der auf B stetigen quadratisch integrierbaren Funktionen / mit verallgemeiner-
ten ersten partiellen Ableitungen fx, fy. Fur feW(B) definieren wir grad/
y2(Md/dx)+fy(d/dy)). Dann ist fur f,geW(B) das Intégral JBgH(grad/,
grad g) dH ]B (&& +/ygy) dx dy definiert.
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Unter einer Eigenfunktion des Neumannproblems auf B verstehen wir eine
nicht identisch verschwindende Funktion u e C°°(jB) fl W(B) mit

Au 17W fur ein 17 ^ 0 und gn(grad u, grad if/) dH (10)

iffAudH fur aile tye W(B).
Jb

LEMMA 2. Vor. De: Habgeschlossenes geodàtischesDreieck mitDurchmesser
d sup {dist (p, q)/p9 q e D},

feC°(D)nW(D), [ fdH=l, J

JEtefc.

1 4 4Sin2d/2

Beweis. Ist tji der kleinste positive Eigenwert des Neumannproblems fur D
und v mit JD u2 dH 1 eine zugehôrige normierte Eigenfunktion, dann gilt
bekanntlich

||grad/f dH^ £ ||grad «f dH= r?!. (11)

Da die Koeffizienten des Laplace-Operators A analytisch sind, besteht u~1(0)

aus stùckweise glatten analytischen Jordankurven. Es gibt deshalb ein Gebiet
G ci D so, dass G und v die Voraussetzungen von Lemma 1 erfùllen. Setzen wir
nun if/ v auf G und ip - 0 auf Ô-G, so ist 1^ € W(D), und wir erhalten aus

(10) und Lemma 1:

Thj u2dH=J vAvdH=\ ^AvdH=\ gn (grad <A, grad u) dJFf

Wegen JG t?2 dH^ 0 ist Lemma 2 bewiesen, und die Vorbereitungen fur
den Beweis von Satz 3 sind abgeschlossen.
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Nach Fricke-Klein [2] p. 318 betrachten wir eine feste Triangulation der
Flâche M in 4g-2 geodâtische Dreiecke Dk. Wir fûhren folgende Bezeichnungen
ein: dk sup {dist (p, q)/p, q e Dk}, 1/(8 Sin2 4/2) : ôk. ek vol DJil +SÔk), Ek
{p e Dfc/dist (p, dDk)^ jLtk}, wobei fik > 0 so klein gewâhlt ist, dass vol Ek < ek.

Wir wâhlen 4g - 2 Funktionen <pk e C°(M) mit 0 =^ <pk ^ 1, çk 0 auf M-Dk,
<pk 1 auf Dfc - Ek. Nach dem Minimaxprinzip von Courant ist

(12)

wo

Wegen

Jm llgrad /||2 dM= Igtf JDfc ||grad ff dM
(13)

genùgt es zu zeigen, dass

£ ||grad/||2d*fs*(i+8k)£ fdM (14)

fur aile fe&. Ist nun /^O auf Dk, so o.B.d.A. Jd^/2 dM= 1, und es gilt wegen

Also gibt es ein ak mit |ak|^V«k/vol (Dfc), fur welches jDkf+akdM 0. Nach
Lemma 2 ist

f ||grad/f <*M^a + 26fc)f (f + 2akf+ a2k)

JDk JDk
dM

Aus (11)-(14) folgt À4g_23=|+mink 8k >i q.e.d.
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