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Riemannsche Flichen mit Eigenwerten in (0, })

PeETER BUSER

1. Einleitung

Wir betrachten kompakte Riemannsche Flachen M vom Geschlecht g=2. Es
gibt auf M genau eine mit der konformen Struktur vertragliche Metrik gy, mit
konstanter Kriimmung —1. Zu gy gehort ein Laplace-Operator A und eine
Lebesque-Integration f+— fa fdM. Durch f, g+ fa fgdM wird C*(M) zu einem
Prahilbertraum. Das Eigenwertproblem Au = Au liefert ein in diesem Raum
vollstandiges Orthonormalsystem von Eigenfunktionen uo, u;, u,,... mit den
Eigenwerten Ag=0< A <Ay, < - -+, A, = +x,

Seit McKean [6] ist die Frage nach kleinen Eigenwerten interessant.
B. Randol [8] hat mit Hilfe der Selbergschen Spurformel gezeigt, dass zu
einer beliebig vorgegebenen Fliche fiir jedes m eine endlichblattrige
Ueberlagerungsfliche existiert, fiir die A,, <3. Die Blitterzahl ist dabei ganz
betrachtlich, und es stellt sich die Frage, ob es nicht schon fiir kleines Geschlecht
Flichen mit Eigenwerten in (0, 3) gibt. Vorallem aber sagt [8] nichts dariiber aus,
ob z.B. A; beliebig klein werden kann. Mit einer Methode von Frank Lobell [5]
konstruieren wir Beispiele, um zu zeigen, dass beides moglich ist:

SATZ 1. Zu jedem g=2 und fiir alle ¢ >0 gibt es eine Riemannsche Fldche
vom Geschlecht g mit A, 3<e.

Nun ist zu vermuten, dass sogar bei fest vorgegebenem Geschlecht beliebig
viele Eigenwerte in (0,%) liegen konnen. Tatsichlich lasst sich dies fiir jedes
Intervall (0,%+¢€), >0, leicht einsehen: Bedeutet nimlich [, die Linge der
kiirzesten nicht in einen Punkt ausgearteten geschlossenen Geodatischen, so gilt
allgemein

SATZ 2. Fiir jede Riemannsche Fliche vom Geschlecht g=?2 ist
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26 PETER BUSER

und man kann zu jedem Geschlecht beliebig Beispiele mit kleinem [, angeben
(s.u.). Es ist deshalb umso iiberraschender, dass die Anzahl der Eigenwerte im
Intervall (0, ) selbst beschrinkt bleibt:

SATZ 3. Fiir jede Riemannsche Fldche vom Geschlecht g=2 ist
A4g—2:>%-

Wir beweisen dies mit dem Minimaxprinzip von Courant, indem wir die Fliache in
4 g —2 geoditische Dreiecke zerlegen und zeigen, dass auf jedem solchen Dreieck
der kleinste positive Eigenwert des Neumannproblems grosser ist als 3.

Die Zahl } ist somit eine regelrechte Schwelle fiir das Spektrum des Laplace-
Operators, und zwar ergibt sich hier eine Parallele zu einem auf ganz anderem
Wege gewonnenen Resultat von H. Huber, der mich auf dieses Thema aufmerk-
sam gemacht hat, und dem ich an dieser Stelle fiir seine Hilfe meinen Dank
aussprechen mochte. Bezeichnet fiir eine gegebene Fliche A(x) die Anzahl
Eigenwerte, die im Intervall [0, x] liegen, gezahlt mit ihren Multiplizititen, so hat
H. Huber entdeckt, dass firr jedes ¢ >0 das Verhiltnis A(3)/AG+¢) beliebig
klein wird, wenn nur [/, geniigend gross ist, wobei zu bemerken ist, dass es zu noch
so grossem I, Flichen mit beliebig hohem A (3) gibt [3]. Das Spektrum kann sich
also mit [, — « beliebig stark an der Stelle 1 verdichten. Dieses Phinomen tritt
nun auch im Falle /[, — 0 auf, sofern noch das Geschlecht festgehalten wird. Aus
Satz 2 und 3 folgt namlich direkt

SATZ 4. Fiir jede Riemannsche Flidche vom Geschlecht g=2 gilt

Je  (4m(g—1)\
A(:%+s)>4quog( I )1

A@ 4g—1

(e>0).

2. Beweis der Sitze 1 und 2

Das folgende Konstruktionsverfahren wurde von Frank Lobell in seiner
Dissertation eingefiihrt. Es sei H die hyperbolische Ebene, gy der Riemannsche
Masstensor auf H mit der konstanten Kriimmung —1. Wir konstruieren zuerst ein
~sogenanntes Spitzeck, das ist ein geoditisches Viereck in H mit drei rechten
Winkeln und einem spitzen Winkel ¢. r und r’ seien die an ¢ liegenden Seiten, s
und s’ die gegeniiberliegenden (siche Figur 1). Wir wihlen ¢ = 7/3 und betrach-
ten r=3 als Parameter. Die iibrigen Bestimmungsstiicke des Spitzecks sind nun
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Figur 1

festgelegt, und zwar gilt nach den Formeln der hyperbolischen Trigonometrie [7]
p. 79 :

1 S _=r
= —— <5
s=ArlTg (J3 Sin r) e ()
3 (r=3)
s’ = ArCos (‘/7 Cos r) >1. (2)

Durch fortgesetzte Spiegelung des Spitzecks an den Seiten r und r’ ensteht ein
abgeschlossenes Sechseck D, das von den geoditischen Segmenten ¢+~ o;(t),
t—c(t), te[0,1],i=1,2, 3, berandet ist. Dabei ist ¢1([0,3])=5", c1([3,1]) =35,
¢i(1) = 0:(0) und o;(1) = ¢;+1(0), Indizes modulo 3. Nach (1) haben die Segmente c;
eine Liange

I(c;)=2 ArTg ( )<%e"’. (3)

1
J3Sinr

Durch Verdoppelung von D in zwei ‘“‘Ubereinanderliegende” Exemplare D, D',
und durch anschliessende Identifikation von o;(¢t) mit oi(¢t), te[0,1],i=1,2,3,
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entsteht eine berandete Flache Y (das Y-Stiick) mit den drei Randkurven

c;(21) fiir te[0,1]

c!(2-21) fir tef3 11 (4)

t—> %(t)={

die homéomorph ist zu einem kompakten ebenen Kreisbereich mit zwei Lochern.
Das Y-Stick tragt in natiirlicher Weise eine Riemannsche Metrik der
konstanten Krimmung —1: Setzt man

Yi=Y'“(0'i~1U0'i+1)

und

p, wenn peD

¢::Y,—H, ¢i(p)={5,-(p), —_— peD"

wobei S;: H— H die Spiegelung der hyperbolischen Ebene an der Geodatischen
o; < H bedeutet, so bilden die drei Koordinatensysteme {Y;, ¢;} einen differen-
zierbaren Atlas fir Y. Weil nun jede Ueberlappungsabbildung ¢;°¢;' die
Umgebung ¢;(Y;NY;) in H isometrisch auf die Umgebung ¢;(Y;NY,) abbildet,
wird durch die Definition gy (A, B) = gu(dixA, ¢ixB) unabhangig von der speziel-
len Wahl des Koordinatensystems auf Y ein Riemannscher Masstensor gy
eingefithrt (A, B zwei Tangentialvektoren zum selben Aufpunkt pe Y, ¢, die
Differentialabbildung von ¢). Die Randkurven (4) sind Geoditische beziiglich gy
mit der Lange

li =l('yi)=21(ci)<56—'. (5)

Das Y-Stiick dient nun als Baustein fiir unser Beispiel: Zuerst stellt man
2(g—1) identische Kopien Y?,..., Y>*2 von Y her mit den Rindern yf i=
1,2,3, k=1,...,2(g—1). Diese verheftet man zu einer zusammenhingenden
orientierbaren Flaiche M vom Geschlecht g, indem man modulo 2g—2 fir
k=1,...,2g—2 vy5(t) mit ¥5*'(1—¢) und y1“(¢t) mit y7“*'(1 1) identifiziert. Wie
man leicht sieht, gibt es dann auf M genau eine Riemannsche Metrik gy, welche
auf jedem Y-Stiick mit gy libereinstimmt. gy, besitzt konstante Krimmung —1.

Fiir die Abschatzung der Eigenwerte betrachten wir auf Y die drei wegen (2)
disjunkten Streifen L; ={p € Y/dist (p, v:)<1}. Fithren wir auf H Fermikoordina-
ten p = (x, y) e R?* mit der Geoditischen ¢; als x-Achse ein, so lauten Masstensor
und Volumenelement [4] p. 67

gy =dx* Cosy+dy?, dH=dxdy Cosy, (6)
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und es gilt L; N D ={(x, y)/0<x <2s,0< y=<1}. Hieraus sehen wir, dass wegen
(5 und r=3

1

vol (L,-)=liJ' Costdt>6e™" <1, (7)

0

Andererseits besitzt Y nach der Formel von Gauss-Bonnet den Inhalt vol (Y) =
21r. Definieren wir deshalb fir pe Y

dist(p,dY), wenn dist(p,aY)=<1,
1 sonst,

<P(p)={

so ist ¢ stetig auf Y, mit Ausnahme von dL; beliebig oft differenzierbar, und wir
erhalten aus (7) die Ungleichung

L lgrad ¢|* dY < 4e—'J-Y o> dY. (8)

Die 2(g—1) auf M stetigen Funktionen ¢ :¢@i(p)=¢(p), wenn pe Y* und
or(p) =0, wenn p& Y, sind linear unabhingig. Also gibt es eine Linearkombina-
tion f=Y%%7 aw mit fp fu; AM =0 fiir j=0,...,2g—4, dabei ist {ug, us, ...}
ein vollstandiges Orthonormalsystem von Eigenfunktionen des Laplace-Operators
auf M.

f ist fiir das Courantprinzip zugelassen, also gilt auf M wegen (8)

_fuallerad P dM_ 255 o7 fy grad o dY

T <4e™".
T fuffdM 22 alfye® dY

Dabei war r =3 beliebig gewahlt, womit Satz 1 bewiesen ist. Wir bemerken noch,
dass wegen (5) auf der soeben konstruierten Fliche [o<5e™".

Satz 2 ist eine Folgerung aus einem Satz von S. Y. Cheng [1]: Sei n: H—> M
lingentreue Ueberlagerungsabbildung, y eine normale geschlossene Geodétische
der Lénge l, und ¥ ein Ueberlagerungsweg von y. Wir beschreiben H durch
Fermikoordinaten p=(x,y) mit ¥(¢)=(t,0) als x-Achse. Wenn wir zu jedem
pEeM denjenigen iiber p liegenden Punkt p wéhlen, der am nédchsten bei
(0,0) liegt, erhalten wir einen Fundamentalbereich F fiir M, der in A=
{(x, y)/=lo/2<x<1y/2,~d < y=<d} liegt, wobei d=sup {dist (p, q)/p, g€ M} den
Durchmesser von M bedeutet. Mit (6) ist 47 (g — 1) = vol (F)<2l, f§ cos t dt, also,
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weil I, viel kleiner ist als 47r(g—1):

d = ArSin (2—7—7%_—1)) >log (4—1(—1%?—12) >0. (9)

Da nach Cheng A,, <i+(167°m?/d?), ist Satz 2 mit (9) bewiesen.

3. Beweis von Satz 3

Fiir den Beginn ist es zweckmissig, auf H geodatische Polarkoordinaten
p=(p,y), pe(0,0), yeS'=R/[y~ y+27] mit Zentrum poc H einzufithren.
Masstensor und Volumenelement lauten

gy = dp*+Sin’ pdy?, -dH =Sin pdp dy.

Es sei c:I— H, c(t)=(p(t), y(t)) mit y(t)<d eine stiickweise glatte Jordan-
kurve, fiir die eine der folgenden beiden Eigenschaften zutrifft: 1. I=[0, 1],
c0)=c(l). 2. I=(0,1), O0<y()<a fir ein ac(0,27) und lim,,, y(t)=0,
lim,_,; y(t) = a. Im ersten Fall berandet ¢ allein, im zweiten Fall ¢ zusammen mit
den Geodatischen t—a(t)=(t,0), t—>b(t)=(t.a) ein einfachzusammen-
hiangendes Gebiet G (Figur 2).

LEMMA 1. Vor. G ist das oben beschriebene Gebiet, fe CY(G)NC(GUc),
fle =0. Beh.

2 > l __1—)[ 2
L lgrad i dH’(4+4Sin2d/2 _faH.
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Beweis. Wir begniigen uns mit dem Fall, dass G wie in Figur 2 nicht von ¢
allein berandet ist. Wir diirfen annehmen, dass (g f> dH =1. Definieren wir
A={(p,y)eH/0<p<d,0<y<a}2G und u(p)=7(p) fir peG, u(p)=0 fir
peA—G, so ist ue C'(A), und es folgt nach Cauchy-Schwarz

1 2
J grad fi? dHZZ (J lgrad ul| dH) :
G G

Nun ist

J lgrad ul| dH=J lgrad u| dH
G A

JaLd a
=
0

cou
ap

a fd
SinpdpdwaJ; L uSinpdpdy = w,

wenn o = inf {{5 |h’| Sin p dp/f§ h Sin p dp/h stiickweise glatt auf (0, d], h=0, h=0,
h(d) = 0}. w andert seinen Wert nicht, wenn man fiir die Funktionen h zusatzlich
verlangt, dass he Cl[(_), d], h(0)=1 und h'<0 auf [0,d]. In diesem Fall erhilt
man aber durch Substitution t= h{p) und anschliessende partielle Integration
wegen der Monotonie von Sin x/(Cos x—1) in x >0:

d

d
J |h'| Sin pdp = — J. h'(p) Sin p dp
0 0

Y - Sin d
=J; Sin (h~(1)) dtB—Cosd—l
__—Sind Jl t Sin (h™'(1))

Cosd—1J, h'(h7'(1)
_ Sind
Cosd—1

J Cos (h™'(¢))—1 dt

dt
d

J’ h(p) Sin p dp.

0

Folglich ist w = Sin d/(Cos d — 1), also [ |jgrad f|* dH=%(1+1/(Sin® d/2)) q.e.d.

Fiir den nichsten Hilfssatz beschreiben wir H in der oberen Halbebene
H={(x,y)eR*/y>0} mit gyg=y *(dx*+dy®), dH=y *dxdy, A=y*(5*/
9x%)+(9°/ay?)). Fiir ein in H beschrinktes Gebiet B bezeichne W(B) die Menge
der auf B stetigen quadratisch integrierbaren Funktionen f mit verallgemeiner-
ten ersten partiellen Ableitungen f,, f,. Fiir fe W(B) definieren wir grad f=
y*(f.(3/3x)+f,(3/dy)). Dann ist fiir f, ge W(B) das Integral (g gu(gradf,
grad g) dH = | (f.g + [, /) dx dy definiert.
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Unter einer Eigenfunktion des Neumannproblems auf B verstehen wir eine
nicht identisch verschwindende Funktion u e C”(B)N W(B) mit

Au=nu firein n=0 und J gu(grad u, grad ¢) dH (10)
B

=J' YyAudH fir alle ¢ W(B).
B

LEMMA 2. Vor. D < H abgeschlossenes geoddtisches Dreieck mit Durchmesser
d =sup {dist (p, q)/p, q € D},

fe C=(D)N W(D), J fPdH=1, J fdH=0.
Beh.

1 1
dfPdH=—+—F—.
L lgrad fl 4" 4Sind)2

Beweis. Ist m; der kleinste positive Eigenwert des Neumannproblems fiir D
und v mit jpv?dH=1 eine zugehdrige normierte Eigenfunktion, dann gilt
bekanntlich

L lgrad f|? dH = L lgrad v|]* dH = 7;. (11)

Da die Koeffizienten des Laplace-Operators A analytisch sind, besteht v~'(0)
aus stiickweise glatten analytischen Jordankurven. Es gibt deshalb ein Gebiet
G <= D so, dass G und v die Voraussetzungen von Lemma 1 erfiillen. Setzen wir
nun y=v auf G und Y =0 auf l%——G, so ist ¢.e W(l%), und wir erhalten aus
(10) und Lemma 1:

mI vde=I vAvdH*—-I ;IJAvdH=J gu(grad ¢, grad v) dH
G G D D
= [ Merad ol amt
G

= (4 Tasin’d2 ) L v” dH.

Wegen fgv°>dH#0 ist Lemma 2 bewiesen, und die Vorbereitungen fiir
den Beweis von Satz 3 sind abgeschlossen.
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Nach Fricke-Klein [2] p. 318 betrachten wir eine feste Triangulation der
Flache M in 4g —2 geoditische Dreiecke D,. Wir fithren folgende Bezeichnungen
ein: d, = sup {dist (p, q)/p, q € D}, 1/(8 Sin® di/2): = 8. &, =vol D/(1+88), Ex =
{p € Di/dist (p, 0Dy) < p}, wobei u, >0 so klein gewihlt ist, dass vol Ey < &.

Wir wiahlen 4g —2 Funktionen ¢ € C°(M) mit 0@, <1, ¢ =0 auf M— D,
¢x =1 auf D, — E;. Nach dem Minimaxprinzip von Courant ist

.. Jmgrad fI dM
(i S T TV t12)

wO

9={feC’°°(}\/I)/f$é0, j f(pde=0,k=1,...,4g—2}.

M

Wegen
fua lgrad fI7 dM _ 74532 foe lgrad fIF dM .
fmf* dM ¥ I, fF aM
geniigt es zu zeigen, dass
[ leraa P ave=+50 [ am (19
D, K

fiir alle fe &. Ist nun f£0 auf Dy, so 0.B.d.A. p, f?dM =1, und es gilt wegen
{p. fer dM =0

[ o

Also gibt es ein a; mit |ax|<.&/vol (Dy), fur welches fp, f+ax dM =0. Nach
Lemma 2 ist

J’Dk f1— @) dMlsJ Ifl dM < Ver.

Ey

'[ Ilgrad f"2 dM?(;lf‘l"sz)J‘ (fz+ 2akf+ ai) dM
Dy

Dy

=(G+280)(1-2 |ax| Vex) > 5+ bk

Aus (11)—(14) folgt A4p—» =%+min, & >3, q.e.d.
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