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Comment. Math. Helvetici 52 (1977) 11-24 Birkhâuser Verlag, Basel

Applications Harmoniques de Variétés Produits

Luc Lemaire*

a. Théorème d'Existence

Soient M, g et M', g' des variétés riemanniennes sans bord, connexes,
compactes, de classe C°° et de dimensions n et n'. A toute application Ue
C°°(M, M') on associe son énergie

E(U)=\ e(U)vg
Jm

où e(U) j\dU\2 est la densité d'énergie de U en un point. Dans des systèmes de

coordonnées locales {x1} et {uK} sur M et M', on a e(L0 5g"l/fUïg'Kt,(U) où

Par définition [3], une application U e C°°(M, M') est harmonique ssi elle est

point critique de la fonction E.
Dans des systèmes de coordonnées locales, notons F et P les composantes des

connexions sur M et M', U^ (d2UK/dxl dx^-F^Uu. la dérivée covariante
seconde de l/\ et AUK g" 17* son laplacien. On montre [3] qu'une application U
est harmonique ssi elle vérifie les équations d'Euler-Lagrange

t( u)k auk + giT£( io ut t/;=o.

t(L7) est appelée la tension de 17.

Une question classique du calcul global des variations concerne l'existence
d'un représentant harmonique dans les classes d'homotopie d'applications entre
variétés compactes. Elle s'est posée lorsque J. Eells et J. Sampson ont démontré

que si la courbure sectionnelle de M' est négative ou nulle, toute classe

d'homotopie contient un tel représentant [3]. Pour cela, ils ont établi pour toute
condition initiale U0:M-> M' que la solution U(x, t)= Ut(x) de l'équation de la

* Aspirant au Fonds National Belge de la Recherche Scientifique, Université Libre de Bruxelles-
University of Warwick.
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12 LUC LEMAIRE

chaleur dU/dt T(U) existe pour tout t positif et qu'une suite Utk (k—»°°)

converge uniformément vers une application harmonique.
Sans cette condition sur la courbure de M', des théorèmes d'existence n'ont pu

être obtenus que pour certaines classes de variétés (p. ex. [10], [7]), et un
contrexemple a montré qu'il n'y a pas toujours existence [4].

Dans le présent article, nous obtenons des théorèmes d'existence (pour des

applications harmoniques ou pour la solution de l'équation de la chaleur) en

supposant que M et M' sont des produits de variétés. Cela nous permet en

particulier d'étendre à des variétés de dimension plus grande des résultats connus
lorsque la dimension de M est 1 ou 2. Nous obtenons principalement le résultat
suivant.

Soient M NxK et M' N'xK' des produits difïérentiables de variétés
riemanniennes compactes. Nous notons Ng, NF et NJR les composantes de la

métrique, de la connexion et de la courbure sur N, et nous employons des

notations similaires sur K, N' et Kf.
Choisissons sur M des systèmes de coordonnées locales (jc1, xr\ xr+1,...,

xn) (xl;xa) tels que les r premières variables constituent des systèmes de

coordonnées sur N, et les suivantes sur K. De même, sur N'xK\ nous
considérons des coordonnées (m1, ur ; ur>+1,..., un (ua ; ma).

Sur M, nous définissons la métrique

V 0

*k) o

0 ^
où <p est une fonction positive de classe Cœ sur N.

Sur M', la métrique g' est définie par:

0

{// étant positive et C~ sur N'.

THÉORÈME 1. Supposons qu'il existe une application harmonique 9*:K-± K'
de densité d'énergie constante, c'est-à-dire une application vérifiant

e(3F) constante.

(i) Soit N=Ie cercle S1. Pour toute classe d'homotopie d'applications de S1
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dans Nf, il existe une application harmonique U de S1 x K dans N' x K' de la forme

U:{x';x2,..., xn)- 12
telle que f soit dans la classe d'homotopie donnée.

(ii) Si N est une surface et si le deuxième groupe d'homotopie de N' est nul, alors

pour toute classe d'homotopie d'applications de N dans Nr, il existe une application
harmonique de NxK dans N'x K' de la forme

U:(x\ *")-> (f"(*\ x2)',®A(x\ xn))

telle que f soit dans la classe d'homotopie donnée.

(iii) Si la courbure sectionnelle de Nf est négative ou nulle, la solution de

Véquation de la chaleur

existe pour tout temps t pour une condition initiale de la forme

xr); *A(xr+1,..., xn)). (2)

Ce théorème est démontré dans les paragraphes b et c.

Au paragraphe d, nous présentons quelques exemples d'applications harmoniques

de densité d'énergie constante, et au paragraphe e nous donnons une
expression explicite des applications harmoniques obtenues lorsque N, K, N' et K'
sont de dimension 1. Finalement, nous rappelons un théorème de non-existence
de R. T. Smith qui contraste avec ces résultats (§f).

Une partie de cet article est extraite de la thèse [6], préparée avec l'aide de

Monsieur James Eells. C'est un plaisir de lui adresser ici tous mes remerciements.

b. Applications Harmoniques

Considérons la situation du théorème 1. L'énergie de U est donnée par:

e(/)+—(/)()<P

E(U)=\ f e(U)vN* •

Jn Jk

(3)
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Un calcul direct en coordonnées locales donne les coefficients des connexions sur
M et M', ce qui permet d'expliciter la tension de U en fonction de / et 2F:

^££'-i> (4)

()-9

Comme 7(90 0 et e(9)=C, r(l/)A 0 et r(U)a ne dépend que des

coordonnées (x1,..., xr) sur N et de leurs images par /. Comme le montre le

lemme suivant, ceci ramène l'étude de l'énergie de U à un problème variationnel

en/.

LEMME 2. Supposons toujours que r(SF) 0 et e(3F) C. Toute application de

M dans M' extrémant Vénergie parmi les applications de la forme:

(x\ ...,xn)-+ (fa(x\ xr); $A(xr+\ xn)) (5)

est harmonique.

Démonstration. Pour un tel point critique U et pour tout champ de vecteurs
le long de U de la forme

va va(x\...,xr), vA 0

nous avons

c'est-à-dire

f f
Jn Jk

Comme t(1/)0 ne dépend pas des variables (xr+1,..., xn), ceci implique:

f 9(n"r)/2gU/)^U\...^>([/)V8 0 et r(Uf=0.
Jn

D'autre part, r([/)A (1/<p)t(^)a 0. c.q.f.d.
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La recherche des applications harmoniques de la forme (5) se ramène donc à

l'étude du problème variationnel en /: X(f) E(U) défini par l'expression (3).
Pour démontrer les points (i) et (ii) du théorème 1, nous utilisons une méthode

directe du calcul des variations. L'espace de Sobolev Ll(N, N') utilisé ci-dessous

est par exemple défini dans [9] ou [5, II].
Considérons une suite minimisante pour X dans une classe d'homotopie

donnée. Par la forme (3) de X(f), c'est un ensemble borné de L2. En vertu de [2;
(12, 15, 10)], il contient une sous-suite (/s) convergeant faiblement vers une

application feLl. De [2; (12, 15, 8)] et de l'existence d'une sous-suite

convergeant fortement dans L2 (lemme de Rellich), on déduit que X(f)^
liminf X(fs).

Pour démontrer le théorème, il reste à établir que / est de classe C°° et est
dans la même classe d'homotopie que les (/s). / réalisera alors le minimum absolu
de X dans la classe.

Démonstration de (i). Supposons N= S1 et Nf quelconque. Par le théorème de

plongement de Sobolev et le lemme de Rellich, nous avons une inclusion

compacte L\(Sl, N')*-* (?(Sl, N'). La suite (/s) contient donc une sous-suite (f^)
convergeant uniformément vers une application continue. La convergence étant

uniforme, la limite / est dans la même classe d'homotopie que les (fs).
Pour démontrer que / est Cx> il suffit d'observer que lorsque N S1, (3)

définit un problème à une dimension vérifiant les conditions (1.7.1) et (1.10.1) de

[9]. La difïérentiabilité découle alors du théorème 1.10.1 de ce même ouvrage.
c.q.f.d.

Démonstration de (ii). Supposons que N est une surface et que le deuxième

groupe d'homotopie de N' est nul. De la démonstration du théorème 8.1.11 de

[11], on déduit que les classes d'homotopie d'applications de N dans Nf sont
paramétrisées par les classes de conjugaison d'homomorphismes de 17i(N) dans

IIi(N'). On voit dès lors que la démonstration du théorème (7.1) de [7] s'applique
à ce cas: la limite / de la suite (fs) minimise X dans tout disque suffisamment petit
de N et sera dans la même classe d'homotopie que les (/s) si on peut établir
qu'elle est continue.

Il reste donc à montrer qu'une application fe L\ minimisant X dans un disque
est de classe C°°.

Pour cela, il suffit de montrer qu'elle est de classe C° (c'est-à-dire Hôlder—
continue d'exposant À). En effet, l'intégrande (3) vérifie en dimension 2 les

hypothèses du théorème 1.10.4 (iii) de [9], ce qui garantit la régularité de toute
extrémale de classe C°k.

Pour montrer que le minimum feL\ est Hôlder-continu, nous utilisons une
méthode due à C. Morrey ([8] et [9]). Par commodité de notation, nous nous
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référons à l'exposé de cette méthode du §12 de [7] et nous n'indiquons que les

modifications à apporter à cette démonstration.
Soit D un disque de rayon r de N. Nous notons B son image inverse par

l'exponentielle et pour tout h:D —» N' nous posons h h°exp:B -+ N'. Si (x, y)
et (r, 0) désignent des coordonnées euclidiennes et polaires sur B, nous posons
H(r, 6) h(x, y). Enfin, Er(h) et Xr(h) désignent les "énergies" de h dans ce

disque de rayon r, et Er(h) et Xr(h) les "énergies" de h par rapport à la métrique
euclidienne sur B.

Nous reprenons alors la démonstration de la proposition (12.2) de [7]. Soit

feL\ minimisant X dans un disque de rayon r, que l'on peut choisir tel que f\dD

soit absolument continue. On distingue deux cas.

(1) Si Jo7" |F0|2 de < wfRf2/4ir, le lemme 12.6 de [7] et le fait que <p et ip soient

positives et bornées impliquent l'existence de deux nombres Ax et A2 et d'une

application h : B —? M' tels que h \dB / et

Xr(h)^Al\ \Fe\2
JdB

Comme / minimise X dans D, il vient

Er(/)<W2Er(/)<W2A3r(/)

< W2A3Xr(h)< W4A3Xr(h)^ W4A3[A1 \ \F0\2 dO + A2r2\
\ JdB I

(2) Si H'tr\Fe\2de>wfRt2/47T, il vient

Er(f) < W2A3Xr(f) < W2A3 inf (X)

Dans les deux cas, nous avons donc

|F0|2d0 + r2), où O<À<1.
Jo I

Posons 4>(r) Er(f). Il vient

-¦¦ I m iO \ *7 * — I I w 17 «>«_ >« » ^: / \ 2

c'est-à-dire 0\r) > (2A/r)$(r)- r.
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En intégrant cette inégalité de r au rayon fixé R, il vient

En vertu du lemme (12.11) de [7], l'application / est alors de classe C°.

c.q.f.d.

c. Equation de la Chaleur

Pour démontrer (iii), nous utilisons la méthode de R. Hamilton [5]. Nous

n'indiquons ici que les modifications à apporter à sa démonstration.

Démonstration de (iii). Supposons la courbure sectionnelle de N' négative ou
nulle. Nous étudions la solution de (1) pour la condition initiale (2). Comme dans

[5, §IV, 5], M' est plongée dans un espace euclidien muni d'une métrique telle

que la composée de U et du plongement vérifie également (1). Les espaces

Ll(M, M') sont définis par ce plongement [5, II].
D'après [5; §IV, 11], toute solution de (1) de classe L\ (q>n + 2) est de classe

C°°, et pour toute condition initiale, une telle solution existe dans un intervalle de

temps non vide.
Soit l/:Mx[0, eu)—» M' une solution maximale du problème (1), (2). Nous

supposons (o fini. Nous allons montrer que toutes les dérivées de U sont bornées
dans Mx [0, co). Il en découle que U peut être prolongée à [0, a>], et donc dans un
domaine [0, co + e), e >0, ce qui contredit le fait que [0, co) est maximal, o) doit
donc être infini, ce qui établit (iii).

Montrons maintenant que toutes les dérivées de U sont bornées dans Mx
[0, (o). Comme dans [5], nous écrivons les équations en termes de fibres et non en
coordonnées locales. Lorsqu'un vecteur v est présent deux fois comme argument
d'un tenseur, il y a contraction sur ces arguments. Par convention, les différentes
constantes qui apparaissent dans des inégalités au cours de la démonstration sont

représentées par la même lettre C.

La condition initiale du problème est donnée par (2). Comme la tension d'une

application de la forme (5) est tangente à N' et ne dépend pas des variables sur K,
la solution de (1) est pour tout t de cette même forme. D'autre part, sa densité

d'énergie e "vérifie ([3] et [5]):

^4e|ï\C7|(MRicci VVU, VvU) + (m'R(U)(VvU, VwU) VvU, VwU). (6)
dt
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La courbure de Ricci de M étant bornée (puisque M est compacte), nous avons

-(MRicci VVU, VVU)<C • e.

Pour estimer le dernier terme de (6), nous utilisons les formes particulières de M'
et L/. On vérifie en coordonnées locales que

Lorsque u et w sont tangents à N', nous avons donc un terme négatif ou nul.

Lorsque u et w sont tangents à Kf, le terme introduit est borné puisque & est

donnée, et lorsque v est tangent à N' et w à K', il est borné par C • e.

Au total, (6) implique

de

dt
(7)

Remarque. Lorsque M' est quelconque, (6) implique une inégalité faisant
intervenir e2, et ce terme quadratique empêche d'établir l'existence de la solution.

Soit 3£ | \dU/dt\2 la densité d'énergie cinétique de U. Notons H son intégrale
sur M. U étant solution de (1), % vérifie [5]

dt
v

dt M' at
(8)

Comme dU/dt est tangent à N', le raisonnement utilisé pour la fonction e montre
que (8) implique

dt

Posons:

dt
(9)

A e + l-exp(df)
6> 3£exp(-C2f).

En remplaçant e par sa valeur en fonction de A dans (7), il vient

dA

dt

De même, (9) donne

— <4©-exp(-C2f)dt

(10)

(ii)
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Posons

T ©vg H exp (-C2t).
Jm

En intégrant (11) sur M, il vient

-<-| exp(-C20

Donc T<To, c'est-à-dire

H<Hoexp(C20.

Comme dE/dt -2H,

dt

dt

(12)

Soit 8 un nombre (fixé) inférieur à <o/4. Nous montrons que diverses normes
de U sont bornées sur Mx f et Mx[r, r + ô]. La norme LJJ sur Mx r est la norme
usuelle et celle sur Mx[(,( + S] est la norme "avec poids" définie dans [5, §1, 3 et
IV, 7] et pour laquelle chaque dérivée par rapport à t a le même poids que deux
dérivées par rapport aux x\

Norme h\. En intégrant (7), il vient

Mxt

-| \VVU\2vg.
JMxt

E est décroissante, donc bornée et sa dérivée vérifie (12). Il vient donc

I \VVU\2vg£C+2H0exp(C2t).
JMxt

Nous pouvons dès lors calculer les normes L\ de U sur Mx t et Mx[f, t + 8]:

||L2(M*0= f
JMxt
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Normes L\. Par (10), A vérifie l'inégalité

dt

Nous définissons la fonction auxiliaire Xe comme étant la solution du problème
linéaire

(13)

Cette solution existe en vertu de [5; §IV, 8]. Le principe du maximum [5; §IV, 2]
appliqué à A — Ae montre que A < Ae.

En utilisant les formes duales du théorème de plongement de Sobolev et du

principe du maximum [5; §V, 9], nous obtenons, pour fc>n + 2 [5; §V, 10]

Or

Donc ||e||Lk(M[8«,e«])
Nous calculons alors la norme h\ de 17. Notons rf(U)(dU)2 la différence

t(U)-AU. Par la forme de [5; §111, 18] des inégalités de Gârding et Friedrichs

Or les F sont bornés, et

| \dU\2 e A +exp (dt) -1 < A0 -f-exp

Donc

^ C ||A0 + exp



Applications harmoniques de variétés produits 21

Comme ke est solution de (13), une application répétée de l'inégalité de Gârdmg
montre que

4-

Donc||l/k"SC-exp(Q)

Normes L£. Pour montrer que toutes les normes L\ de U sont bornées, nous
procédons par induction sur des valeurs réelles de k, chacune étant inférieure à la

précédente plus un.
Supposons que pour tout 5, il existe un C tel que ||L/"||i^ ^ C • exp (Ct), et

considérons un nombre fc<m + l. Par l'inégalité de Gârding,

w+.])SC • (i+\\r(u)(du)2\\n ;(MX[,_E,,+8J).

Par les propriétés des opérateurs différentiels polynomiaux [5; §IV, 6]

lorsque k-Km et k • q<m • s.

Cette dernière condition est vérifiée lorsque s est assez grand, et nous avons

|| U\\L« < C • exp (Ct) dès que k < m H-1.

Toutes les normes L£ de U sont donc bornées dans le domaine d'existence
[0,o>).

Par le théorème de plongement de Sobolev, toutes les dérivées (d/dt)rVsU
sont également bornées, ce qu'il fallait établir.

d. Applications Harmoniques de Densité d'Énergie Constante

Nous donnons quelques exemples d'applications ^ : K —? Kf vérifiant t(3F) 0

et e(9) C.

Remarquons d'abord que si K K', l'application identique vérifie ces conditions,

ce qui fournit une famille d'exemples simples. Les immersions rieman-
niennes harmoniques (c'est-à-dire minimales [3; §1, 2, D]) en fournissent d'autres.

Les propositions suivantes découlent de [10, exemples 1.3 et 3.3] et de calculs

directs:
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PROPOSITION 3. Soit P:RS xRf -* Rp une multiplication orthogonale, c'est-
à-dire une application bilinéaire telle que \P(x, y)| |x| |y|. P induit une application
de Ss~1xSt~~1 dans Sp~\ harmonique et de densité d'énergie constante égale à

PROPOSITION 4 (Construction de Hopf). Soit P:R*xRs->Rp une
multiplication orthogonale, et Q:RS xRs —> Rp+1 l'application définie par

Q(x,y) (\x\2-\y\\2P(x,y)).

Q induit une application 9:S2s~x —> Sp, harmonique et de densité d'énergie
constante égale à 2 s.

Remarque. Si P est le produit des complexes, des quaternions ou des octaves
de Cayley, cette construction mène aux fibrations de Hopf.

e. Expression Explicite en Dimension Deux

Dans la situation du théorème 1, supposons que dimM dim M' 2 et

qu'aucune des variétés N, K, Nf et K' n'est réduite à un point. M et M' sont alors
des tores.

Les applications harmoniques entre surfaces étant préservées par un
difféomorphisme conforme de M [3; §1, 4, B], nous pouvons supposer que
M NxK est le tore plat R/aZxR/Z, muni de coordonnées euclidiennes
(jc1, x2). Sans perte de généralité, M' N'xK' peut être représenté par le tore
R/a'ZxR/Z, muni dans des coordonnées (m1, m2) de la métrique

o

L'application 9 : K -> K' du théorème 1 est alors de la forme 9(x2) ®**2 + b,

où 2>* € Z. D'autre part, les classes d'homotopie d'applications de JV dans N' sont
paramétrisées par le degré 2).

En utilisant la méthode de [1; §5], on voit aisément que pour toute application
harmonique U d'une surface plate dans une variété, la fonction définie en
coordonnées euclidiennes par
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est holomorphe. Si M est un tore, une telle fonction est constante par le théorème
de Liouville. La première composante des applications harmoniques de la forme

U{x\x2) (f(x1);2)*x2 + b) (14)

vérifie donc l'équation

Si /' ne s'annule pas, ou entre deux zéros de /', les applications harmoniques
de la forme (14) sont données par la relation

où le nombre c dépend de l'application considérée.
Pour chaque classe d'homotopie de / nous pouvons décrire ces applications

harmoniques:
Si 2) t* 0, /' ne s'annule pas. / est donnée par (15) et enroule N3f fois autour de

N\
Si 2) 0 et 25*7*0, U peut être une géodésique ou (pour certains a et $)

osciller entre deux zéros de /' en vérifiant (15) dans l'intervalle. Si 2) 2)* 0, U
est constante.

f. Suspensions

Dans le théorème l(i), posons N N'=S\ JK K' S""1 et 9 identité. On

peut considérer la construction de l'application harmonique U comme une
variante d'une suspension de l'identité sur S""1 (M et M' étant homéomorphes à

Sn~1xS1 au lieu de Sn). Le résultat suivant [10, th. 9.3] montre que le théorème
d'existence l(i) n'a pas d'analogue dans le cas d'une suspension proprement dite.

THÉORÈME 5. Soit En(b) {(x, y) e Rn x R | b2 \x\2 + y2 b2} un ellipsoïde de

révolution. Si n^3 et si b est suffisamment grand, il n'existe pas d'application
harmonique de degré 1 de Sn En(l) dans En(b) de la forme

(x • cos 6, sin 6) -* (x - cos h(6), b • sin h(0))
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