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Comment. Math. Helvetici 52 (1977) 11-24 Birkhéduser Verlag, Basel

Applications Harmoniques de Variétés Produits

Luc LEMAIRE*

a. Théoreme d’Existence

Soient M, g et M’, g' des variétés riemanniennes sans bord, connexes,
compactes, de classe C™ et de dimensions n et n'. A toute application Ue
C”(M, M’) on associe son énergie

E(U)=J e(U)v,

M

ol e(U) =3 |dUJ? est la densité d’énergie de U en un point. Dans des systémes de
coordonnées locales {x'} et {u*} sur M et M’, on a e(U)=3g"U;U!g}.(U) ot
Ul=oU"ax".

Par définition [3], une application U e C*(M, M’) est harmonique ssi elle est
point critique de la fonction E.

Dans des systéemes de coordonnees locales, notons I" et I'' les composantes des
connexions sur M et M’, U}=(3"U"/ax' 8x')— kU la dérivée covariante se-
conde de U*, et AU" = g"U} son laplacien. On montre [3] qu’une application U
est harmonique ssi elle vérifie les équations d’Euler-Lagrange

7(U)* =AU +¢"T(U) Ut U7 =0.

7(U) est appelée la tension de U.

Une question classique du calcul global des variations concerne l’existence
d’un représentant harmonique dans les classes d’homotopie d’applications entre
variétés compactes. Elle s’est posée lorsque J. Eells et J. Sampson ont démontré
que si la courbure sectionnelle de M’ est négative ou nulle, toute classe
d’homotopie contient un tel représentant [3]. Pour cela, ils ont établi pour toute
condition initiale Uy: M — M’ que la solution U(x, t)= U,(x) de I’équation de la

* Aspirant au Fonds National Belge de la Recherche Scicntifique. Université Libre de Bruxelles—
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12 LUC LEMAIRE

chaleur aU/at=7(U) existe pour tout t positif et quune suite U, (& — )
converge uniformément vers une application harmonique.

Sans cette condition sur la courbure de M’, des théorémes d’existence n’ont pu
étre obtenus que pour certaines classes de variétés (p. ex. [10], [7]), et un
contrexemple a montré qu’il n’y a pas toujours existence [4].

Dans le présent article, nous obtenons des théorémes d’existence (pour des
applications harmoniques ou pour la solution de I’équation de la chaleur) en
supposant que M et M’ sont des produits de variétés. Cela nous permet en
particulier d’étendre a des variétés de dimension plus grande des résultats connus
lorsque la dimension de M est 1 ou 2. Nous obtenons principalement le résultat
suivant.

Soient M=NXK et M'=N'XK' des produits différentiables de variétés
riemanniennes compactes. Nous notons ng, ~I et yR les composantes de la
métrique, de la connexion et de la courbure sur N, et nous employons des
notations similaires sur K, N’ et K'.

Choisissons sur M des systémes de coordonnées locales (x',..., x"; x"*', ...,
x")=(x';x*) tels que les r premiéres variables constituent des systémes de
coordonnées sur N, et les suivantes sur K. De méme, sur N'XK’, nous
considérons des coordonnées (u',..., u"; u™* ..., u™)=(u"; u?).

Sur M, nous définissons la métrique

=(Ng,-,-(x") 0 )
TN 0 e )kgm(x9)

ou ¢ est une fonction positive de classe C™ sur N.
Sur M’, la métrique g’ est définie par:

oo (o) o )
0 t{/(u“)K'gAa(uC)

¢ étant positive et C~ sur N'.

THEOREME 1. Supposons qu’il existe une application harmonique ¥: K — K’
de densité d’énergie constante, c’est-a-dire une application vérifiant

#HF)=0

e(%F) = constante.

(i) Soit N=1Ie cercle S'. Pour toute classe d’homotopie d’applications de S'
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dans N', il existe une application harmonique U de S' X K dans N’ x K' de la forme
U:(x; %% ..., x> () F4(x%, ..., x")

telle que f soit dans la classe d’homotopie donnée.

(ii) Si N est une surface et si le deuxiéeme groupe d’ homotopie de N’ est nul, alors
pour toute classe d’homotopie d’applications de N dans N', il existe une application
harmonique de N X K dans N'XK' de la forme

U:(x%, ..., 2" = (Y x2:; F2 3, ..., x")

telle que f soit dans la classe d’homotopie donnée.
(iii) Si la courbure sectionnelle de N’ est négative ou nulle, la solution de
I’équation de la chaleur
oU

n(U)=—~ (1)

existe pour tout temps t pour une condition initiale de la forme

Up=(x",...,x") = (fa(x', ..., x"); F*(x"™, ..., x™). (2)

Ce théoreme est démontré dans les paragraphes b et c.

Au paragraphe d, nous présentons quelques exemples d’applications harmo-
niques de densité d’énergie constante, et au paragraphe e nous donnons une
expression explicite des applications harmoniques obtenues lorsque N, K, N’ et K’
sont de dimension 1. Finalement, nous rappelons un théoréme de non-existence
de R. T. Smith qui contraste avec ces résultats (§f).

Une partie de cet article est extraite de la thése [6], préparée avec I’aide de
Monsieur James Eells. C’est un plaisir de lui adresser ici tous mes remerciements.

b. Applications Harmoniques

Considérons la situation du théoréme 1. L’énergie de U est donnée par:

e(U) = e(f)+%ﬁ (@)
E(U).___J J' e(U)vns - Ve

— V(K)J e(f)‘P(n——r)/2 . UN‘+E(g)j ¢(f)(p(n—r)/2—»luN" (3)
N N
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Un calcul direct en coordonnées locales donne les coefficients des connexions sur
M et M’, ce qui permet d’expliciter la tension de U en fonction de f et &:

n—"r ik a(P].afa
ax' cpa

1a¢

T(U)* = ()" + —e(F)ng™® - ——5 (f) “)

(U == ()™,
©

Comme 7(F)=0 et e(F)=C, 7(U)*=0 et 1(U)* ne dépend que des
coordonnées (x',..., x") sur N et de leurs images par f. Comme le montre le
lemme suivant, ceci raméne ’étude de I’énergie de U a un probléme variationnel
en f.

LEMME 2. Supposons toujours que 7(¥)=0 et e(¥)= C. Toute application de
M dans M’ extrémant I’énergie parmi les applications de la forme:

(x' ..., x> (. x) FA L, ) (5)

est harmonique.

Démonstration. Pour un tel point critique U et pour tout champ de vecteurs
le long de U de la forme

o

ve=0%(x",...,x"), v =0
nous avons
—(1(U), v)=D,E(U)=0

c’est-a-dire

[ ] ot 2o =0
N /K

.., x"), ceci implique:

Comme 7(U)? ne dépend pas des variables (x
J e "l (N (xY, ..., x)T(U)Pons =0 et T(U)P=0.
N

D’autre part, 7(U)* =(1/¢)r(F)* =0. c.q.f.d.
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La recherche des applications harmoniques de la forme (5) se raméne donc a
I’étude du probleme variationnel en f: 3(f) = E(U) défini par ’expression (3).

Pour démontrer les points (i) et (ii) du théoréeme 1, nous utilisons une méthode
directe du calcul des variations. L’espace de Sobolev L3(N, N') utilisé ci-dessous
est par exemple défini dans [9] ou [5, II].

Considérons une suite minimisante pour 3 dans une classe d’homotopie
donnée. Par la forme (3) de 3(f), c’est un ensemble borné de L%. En vertu de [2;
(12, 15, 10)], il contient une sous-suite (f;) convergeant faiblement vers une
application fe L?. De [2; (12, 15, 8)] et de I’existence d’une sous-suite con-
vergeant fortement dans L? (lemme de Rellich), on déduit que 3(f)<
lim inf 3(f;).

Pour démontrer le théoréme, il reste a établir que f est de classe C™ et est
dans la méme classe d’homotopie que les (f;). f réalisera alors le minimum absolu
de 3 dans la classe.

Démonstration de (i). Supposons N =S" et N’ quelconque. Par le théoréme de
plongement de Sobolev et le lemme de Rellich, nous avons une inclusion
compacte Li(S', N')— C°(S', N'). La suite (f,) contient donc une sous-suite (f,)
convergeant uniformément vers une application continue. La convergence étant
uniforme, la limite f est dans la méme classe d’homotopie que les (f;).

Pour démontrer que f est C7, il suffit d’observer que lorsque N=S"', (3)
définit un probléme a une dimension vérifiant les conditions (1.7.1) et (1.10.1) de
[9]. La différentiabilité découle alors du théoreme 1.10.1 de ce méme ouvrage.

c.q.f.d.

Démonstration de (ii). Supposons que N est une surface et que le deuxieme
groupe d’homotopie de N’ est nul. De la démonstration du théoréme 8.1.11 de
[11], on déduit que les classes d’homotopie d’applications de N dans N’ sont
paramétrisées par les classes de conjugaison d’homomorphismes de II,(N) dans
II;(N"). On voit dés lors que la démonstration du théoreme (7.1) de [7] s’applique
a ce cas: la limite f de la suite (f;) minimise 3 dans tout disque suffisamment petit
de N et sera dans la méme classe d’homotopie que les (f;) si on peut établir
qu’elle est continue.

Il reste donc & montrer qu’une application fe LT minimisant 3 dans un disque
est de classe C”.

Pour cela, il suffit de montrer qu’elle est de classe C) (c’est-a-dire Holder—
continue d’exposant A). En effet, 'intégrande (3) vérifie en dimension 2 les
hypothéses du théoréme 1.10.4 (iii) de [9], ce qui garantit la régularité de toute
extrémale de classe C3.

Pour montrer que le minimum fe L% est Holder-continu, nous utilisons une
méthode due a C. Morrey ([8] et [9]). Par commodité de notation, nous nous
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référons a I’exposé de cette méthode du §12 de [7] et nous n’indiquons que les
modifications a apporter a cette démonstration.

Soit D un disque de rayon r de N. Nous notons B son image inverse par
I’exponentielle et pour tout h: D — N’ nous posons h =hoexp:B — N'. Si (x, y)
et (r, 0) désignent des coordonnées euclidiennes et polaires sur B, nous posons
H(r, 6)=h(x,y). Enfin, E'(h) et 3"(h) désignent les “énergies” de h dans ce
disque de rayon r, et E"(h) et 3"(h) les “énergies” de h par rapport a la métrique
euclidienne sur B.

Nous reprenons alors la démonstration de la proposition (12.2) de [7]. Soit
fe L? minimisant 3 dans un disque de rayon r, que I’on peut choisir tel que f|sp
soit absolument continue. On distingue deux cas.

(1) Si f3"|Fs|* d8 = w'R"/4 7, le lemme 12.6 de [7] et le fait que ¢ et ¢ soient
positives et bornées impliquent ’existence de deux nombres A; et A, et d’'une
application h:B — M’ tels que h|,p =f et

3(h)=A, I |Eo> d6+ A,r®.
aB

Comme f minimise 3 dans D, il vient
E'(f)= W’E'(f)= W*As3'(f)

= W2A33"(h) = W*A;3"(h) < W4A3(A1 J |Fol? d0+A2r2).
B
(2) Si f57|Es|* d0 > w'R"/4, il vient
E'(f)= W?A;3'(f)< W?A; inf (3)
2
<= W?A;inf (3)— R’ZJ- |F|? de.
Dans les deux cas, nous avons donc
2n .
E (f)<——(J’ |Fy? d6+r2), on 0<A<l.
0
Posons ®(r) = E'(f). 11 vient
27 - 1 - 2 _
rd'(r)= J (|F,]2+;5 ]15',,-.]2)r2 do zj |Fo> d0 =2A0(r)—r*
0 0

c’est-a-dire @'(r)=2A/r)d(r)—r.
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En intégrant cette inégalité de r au rayon fixé R, il vient

®(r)< @(R)(;f)ngf 2A((‘1§‘)‘(if))

(omes ) 2)

En vertu du lemme (12.11) de [7], I’application f est alors de classe Cj.
c.q.f.d.

¢. Equation de la Chaleur

Pour démontrer (iii), nous utilisons la méthode de R. Hamilton [5]. Nous
n’indiquons ici que les modifications a apporter a sa démonstration.

Démonstration de (iii). Supposons la courbure sectionnelle de N’ négative ou
nulle. Nous étudions la solution de (1) pour la condition initiale (2). Comme dans
[5, §IV, 5], M' est plongée dans un espace euclidien muni d’une métrique telle
que la composée de U et du plongement vérifie également (1). Les espaces
L¥(M, M') sont définis par ce plongement [5, II].

D’apres [5; 8§81V, 11], toute solution de (1) de classe L3 (q > n+2) est de classe
C”, et pour toute condition initiale, une telle solution existe dans un intervalle de
temps non vide.

Soit U: M X[0, w) - M’ une solution maximale du probléme (1), (2). Nous
supposons w fini. Nous allons montrer que toutes les dérivées de U sont bornées
dans M X [0, w). Il en découle que U peut étre prolongée a [0, w], et donc dans un
domaine [0, w +¢), € >0, ce qui contredit le fait que [0, w) est maximal. @ doit
donc étre infini, ce qui établit (iii).

Montrons maintenant que toutes les dérivées de U sont bornées dans M X
[0, w). Comme dans [5], nous écrivons les équations en termes de fibrés et non en
coordonnées locales. Lorsqu’un vecteur v est présent deux fois comme argument
d’un tenseur, il y a contraction sur ces arguments. Par convention, les différentes
constantes qui apparaissent dans des inégalités au cours de la démonstration sont
représentées par la méme lettre C.

La condition initiale du probléme est donnée par (2). Comme la tension d’une
application de la forme (5) est tangente a N’ et ne dépend pas des variables sur K,
la solution de (1) est pour tout ¢ de cette méme forme. D’autre part, sa densité
d’énergie e vérifie ([3] et [S]):

%§= Ae —|V VU|* —{uRicci V,U, V,U) + (R(U)V,U, V,,U) V,U, V,U). (6)
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La courbure de Ricci de M étant bornée (puisque M est compacte), nous avons
—(mRicci V,U, V,U)=C-e.

Pour estimer le dernier terme de (6), nous utilisons les formes particuliéres de M’
et U. On vérifie en coordonnées locales que

M Rag=nNRpap=0.

Lorsque v et w sont tangents a N’, nous avons donc un terme négatif ou nul.
Lorsque v et w sont tangents & K', le terme introduit est borné puisque ¥ est
donnée, et lorsque v est tangent 2 N’ et w a K', il est borné par C - e.

Au total, (6) implique

%;-’sAe+cle+cl—wVU|2. )

Remarque. Lorsque M’ est quelconque, (6) implique une inégalité faisant
intervenir e, et ce terme quadratique empéche d’établir I’existence de la solution.

Soit ¥ =3 |aU/at[* 1a densité d’énergie cinétique de U. Notons H son intégrale
sur M. U étant solution de (1), X vérifie [5]

2
o ~{r ) 2Y) ®
M Jat dat

Comme 9U/dt est tangent a N’, le raisonnement utilisé pour la fonction e montre
que (8) implique

0K ‘ oU
ot

Zoan-| v
. at

H U |?
9—-54\3‘(*' vV=—| + G ©)
ot ot

Posons:

A=e+1—exp(Cit)
O =K exp (—C,t).

En remplagant e par sa valeur en fonction de A dans (7), il vient

A
%—t—sAA+C1A.—IVVU|2. (10)

De méme, (9) donne

2

i‘i)sA@—exp (-Cyt) - ' V‘;—(tj

o (11)
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Posons

T= I O®v, = H exp (—C,t).
M

En intégrant (11) sur M, il vient

oT U |2
—=- - V— =0.
o JM exp (—Cyt) o7 v, =0
Donc T=T,, c’est-a-dire
H = Hj exp (Ct).
Comme dE/dt=—-2H,
dE
——=<2H, exp (Cst). (12)

dt

Soit 8 un nombre (fixé) inférieur a w/4. Nous montrons que diverses normes
de U sont bornées sur M Xt et M X[t, t+6]. La norme L} sur M X ¢t est la norme
usuelle et celle sur M X[¢, t+ 8] est la norme ‘“avec poids” définie dans [5, §I, 3 et
IV, 7] et pour laquelle chaque dérivée par rapport a t a le méme poids que deux
dérivées par rapport aux x'.

Norme L3. En intégrant (7), il vient

—4—E(U)=I vagsj (Ae+ Cre+Cy— |V VU,
dt at Mxt

=C,E(U)+ C—J‘ |V VUP v,

! M xt

E est décroissante, donc bornée et sa dérivée vérifie (12). Il vient donc
J |V VU|? v, < C+2H,exp (Cat).
Mxt

Nous pouvons dés lors calculer les normes L3 de U sur M Xt et M X[t, t+8]:

1UZ 300 = J-

M

(|UP+|VUP+|V VU)vg < C - exp (Ct).
t

aU |?
“ U“i%(Mx[r, t+8]) = J(I U|2 + ‘ VUI2+ |V VU|2 + ; )Ug dt=C- exp (Ct)
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Normes L3. Par (10), A vérifie I'inégalité
A

—=<AA+ C;A.

dt

Nous définissons la fonction auxiliaire Ay comme étant la solution du probléme
linéaire

a_)‘_2=A)\O+C1)\,, sur M X[6-—38, 6+ 8]
" (13)

Ae=A sur MX60-6.

Cette solution existe en vertu de [5; §1V, 8]. Le principe du maximum [5; §IV, 2]
appliqué a A — A, montre que A =< A,.

En utilisant les formes duales du théoré¢me de plongement de Sobolev et du
principe du maximum [5; §V, 9], nous obtenons, pour k=n+2 [5; §V, 10]

A6l mxro-s5.6+5D= C * [[Ae|lL:rrxo-s5).

Or

A6l vxo—s) = | AllL 1 raxo—5)

=<|lellL:rxe-5)

=E(U)e-s=C.
Donc “/\e”LZk(Mx[e—a,Ms])S C.
Nous calculons alors la norme L% de U. Notons I''(U)(dU)? la différence
7(U)—AU. Par la forme de [5; §III, 18] des inégalités de Gérding et Friedrichs
||U“L;(M><[e,e+81)—<— c-Q1 +||P(U)(dU)2||L?,(Mx[e—a/2,s+s]))-
Or les I'" sont bornés, et
2|dUPP=e=A+exp (Cit)—1=<rg+exp (Cit)—1.
Donc

IC7(U)(AU)?||2=< C ||Ae +exp (C1t) — 1|,

= Czs: (z) [Alles - (exp (Cit)— 1)~
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Comme A, est solution de (13), une application répétée de I'inégalité de Garding
montre que

[ AellLsmxto—sr2,.0+5p= C(1+|A6lL+, Mxto-s.0+57) =< C.

Donc ||U||z=<C - exp (C¥).

Normes L{. Pour montrer que toutes les normes L} de U sont bornées, nous
procédons par induction sur des valeurs réelles de k, chacune étant inférieure a la
précédente plus un.

Supposons que pour tout s, il existe un C tel que ||U|:, = C - exp (Ct), et
considérons un nombre k <m+ 1. Par I'inégalité de Garding,

| Ullczvsieersn = C « (L + T (UNAUY||Ls Lmxi—e.crsp)-

Par les propriétés des opérateurs différentiels polynomiaux [5; §IV, 6]

Ir'(U)(dUy®

| )

L,=C-(1+||U

lorsque k—1<metk-q<m-s.
Cette derniere condition est vérifiée lorsque s est assez grand, et nous avons

19

=C-exp(Ct) désque k<m+1.

Toutes les normes L? de U sont donc bornées dans le domaine d’existence
[0, ®).

Par le théoréme de plongement de Sobolev, toutes les dérivées (d8/at)" V' U
sont également bornées, ce qu’il fallait établir.

d. Applications Harmoniques de Densité d’Energie Constante

Nous donnons quelques exemples d’applications ¥: K — K' vérifiant 7(¥)=0
et e(F)=C.

Remarquons d’abord que si K= K’, "application identique vérifie ces condi-
tions, ce qui fournit une famille d’exemples simples. Les immersions rieman-
niennes harmoniques (c’est-a-dire minimales [3; §1, 2, D]) en fournissent d’autres.

Les propositions suivantes découlent de [10, exemples 1.3 et 3.3] et de calculs
directs:
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PROPOSITION 3. Soit P:R* xR’ — RP une multiplication orthogonale, c’est-
a-dire une application bilinéaire telle que |P(x, y)|=|x||y|. P induit une application
de $°"'x 8" dans SP', harmonique et de densité d’énergie constante égale a
AG-D+-1)]

PROPOSITION 4 (Construction de Hopf). Soit P:R*x R’ — R? une multi-
plication orthogonale, et Q :R°* XR* — R?*! I’application définie par

Q(x, y) = (x> =|yl, 2P(x, y)).

Q induit une application ¥:8*7' — SP?, harmonique et de densité d’énergie con-
stante égale a 2s.

Remarque. Si P est le produit des complexes, des quaternions ou des octaves
de Cayley, cette construction meéne aux fibrations de Hopf.

e. Expression Explicite en Dimension Deux

Dans la situation du théoréme 1, supposons que dim M =dim M'=2 et
qu’aucune des variétés N, K, N’ et K' n’est réduite a un point. M et M’ sont alors
des tores.

Les applications harmoniques entre surfaces étant préservées par un
difféomorphisme conforme de M [3; 8I, 4, B], nous pouvons supposer que
M=NXK est le tore plat R/aZXR/Z, muni de coordonnées euclidiennes
(x', x?). Sans perte de généralité, M'= N'x K’ peut étre représenté par le tore
R/a'ZxR/Z, muni dans des coordonnées (u', u”) de la métrique

,_(1 0)
870 vy

L’application %: K — K’ du théoréme 1 est alors de la forme F(x*) = @*x>+ b,
ou @* € Z. D’autre part, les classes d’homotopie d’applications de N dans N’ sont
paramétrisées par le degré 9.

En utilisant 1a méthode de [1; §5], on voit aisément que pour toute application
harmonique U d’une surface plate dans une variété, la fonction définie en
coordonnées euclidiennes par

g UiUt - g4, U2U% - 2ig} UTU%
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est holomorphe. Si M est un tore, une telle fonction est constante par le théoréme
de Liouville. La premie¢re composante des applications harmoniques de la forme

U(x", x*) = (f(x"); @*x*+ b) (14)
vérifie donc I’équation
2= ¥y (f) +c.

Si f' ne s’annule pas, ou entre deux zéros de f’, les applications harmoniques
de la forme (14) sont données par la relation

f dv 1 i
Jf 2@ YT~ (13)

0

ou le nombre ¢ dépend de I’application considérée.

Pour chaque classe d’homotopie de f nous pouvons décrire ces applications
harmoniques:

Si @ #0, f' ne s’annule pas. f est donnée par (15) et enroule N & fois autour de
NI

Si @=0 et 9*#0, U peut étre une géodésique ou (pour certains a et )
osciller entre deux zéros de f' en vérifiant (15) dans I'intervalle. Si @ =%*=0, U
est constante.

f. Suspensions

Dans le théoréme 1(i), posons N=N'=8' K=K'=8"""! et F=identité. On
peut considérer la construction de l’application harmonique U comme une
variante d’une suspension de I’identité sur $"~' (M et M’ étant homéomorphes a
S"'x §' au lieu de S™). Le résultat suivant [10, th. 9.3] montre que le théoréme
d’existence 1(i) n’a pas d’analogue dans le cas d’une suspension proprement dite.

THEOREME 5. Soit E"(b)={(%, y)eR" xR | b? |2+ y” = b?} un ellipsoide de
révolution. Si n=3 et si b est suffisamment grand, il n’existe pas d’application
harmonique de degré 1 de S™ = E"(1) dans E"(b) de la forme

(x - cos 6, sin 8) = (X - cos h(8), b - sin h(0))

ou xe S"'cR"
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