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The Kahn-Priddy Theorem and Equivariant
Vector Fields on Sphères

L. M. WOODWARD

Introduction

In this paper we give a new proof of the Kahn-Priddy Theorem and show how
the theorem may be used to prove results on equivariant vector fields on sphères

using a construction from [12]. Let G be a finite group and let W be a (real)
G-module. (If G acts trivially and dimR W= n we write Un in place of W). We

may assume that W is equipped with a G-invariant inner product so that the unit
sphère S(W) in W may be regarded as a G-space. The G-module W is G-free if
G acts freely on S(W). (The classification of G-free G-modules is carried out in

Chapters 5, 6 and 7 of [11]). Let FG(W) dénote the space of G-maps f:S(W)->
S{W) with the compact open topology. Then there is an inclusion u:FG(W)->
F(Un), where n dim W, defined by forgetting the G-action. If X, Y are pointed
spaces let [X, Y] dénote the set of pointed homotopy classes of pointed maps
from X to Y. Then taking the identity map in FG(W) as the base-point we prove
the following.

THEOREM A. Let Cp be the cyclic group of prime order p and let W be a

Cp-free Cp-module of dimension n. If X is a connected CW-complex with dim
n -1 then the induced map

is surjective on q-torsion for ail primes q which are coprime to p-1.

If kW dénotes the direct sum of fc copies of W then taking the join with the
identity map on S(W) gives an inclusion of F°(kW) in F°((fc + l)W) and if W is

G-free we write FG =limk FG(kW). As shown in [2], the homotopy type of FG is

independent of the choice of G-free G-module W. When G is the trivial group
we write F in place of FG. The inclusion of FG(W) in FG is an n-equivalence,
(see Theorem 1.6), so that if X is a connected finite CW-complex then the
induced homomorphism m* : [X, FCp] -» [X, F] is an epimorphism on q -torsion for
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ail primes q which are coprime to p -1. However, by a transfer argument (see [2],
Proposition 10.1), m* is an epimorphism on q -torsion for ail primes q. which are
coprime to p. Since [X, F] is a finite group we hâve the following theorem which is

équivalent to the Kahn-Priddy Theorem as stated in [7].

THEOREM B (Kahn-Priddy). Let X be a connecîed finite CW-complex. Then
the induced homomorphism

is surjective.

That Theorem B implies the Kahn-Priddy theorem as stated in [7] may be

seen as follows. Recall from [2] that Fc* is homotopy équivalent to Q(BCp~),
(where X+ dénotes the disjoint union of X with a point and Q(X+) dénotes
¦firS°°(X+)), and that the forgetful map u : F0* -» F corresponds to the transfer

map t: Q(BCp)-^ Q(S°). Then, since Q(X+)~ Q(X)x Q(S°), we hâve that

r* : ir,(Q(BQ)) x 7rt(Q(S0)) -> ^(QiS0)) (î ^ 1)

is given by

r*(a, b) Ti

where t':Q(BCp)-* Q(S°) is the restriction of r to O(BCP), and t* is surjective
by Theorem B. Hence T^i^iQiBCp))-^ ^(QiS0)) is an epimorphism on p-
primary components for i^l. An argument showing that the Kahn-Priddy
Theorem implies Theorem B is given in [2], (see Theorem 10.2).

By a similar use of the above transfer argument Theorem B can be improved
to give the following.

THEOREM C. Let X be a connected finite CW-complex and let G be a finite
group which admits a G-free G-module. Then the induced homomorphism

is surjective on p-torsion for ail primes p such that p2 does not divide the order of G.

In particular if the order of G is square-free then u* is surjective.
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Remark. If the order of G is square-free then G is cyclic, (see Theorem
7.4.15 of [11]). I do not know if u* is surjective in gênerai for G cyclic.

Now let F dénote one of the fields M, C, IH of real numbers, complex numbers
and quaternions respectively, and let d-dimRF. If On>k dénotes the Stiefel
manifold of orthonormal fc-frames in Fn, where Fn is equipped with the usual

inner product, then, as is well-known, the map pHyk : On>k -» Sdn~x, defined by
assigning to a fc-frame its first vector, is a fibration. If G is a finite group acting as

a group of linear isometries on Fn then both On,k and s*"'1 inherit the structure
of G-spaces and pn,k is a G-map. A cross-section of pHfk which is a G-map is

called a G-cross-section. (Necessary and sufficient conditions for the existence of
G-cross-sections in the real case are given in [1]). Let rntk r(pn,k) dénote the

space of cross-sections of pn,k, F^k the subspace of G-cross-sections, and v : F^k—>

Fn,k the inclusion. Using a construction of [12] we prove the following.

THEOREM D. Let G be a finite group acting freely as a group of linear
isometries on Fn, let W dénote the corresponding G-module and suppose

Pn,k '. On,k -> S**""1 admits a G-cross-section. Then there is a commutative diagram

[X,Fn,k]->[XAP(Fk),F(IRdn)],

where P(Fk) is the projective space associated to Fk. If X is a connected

CW-complex the horizontal maps are injections if dimX<r and surjections if
dimX^r, where r= d(n-2k+2)-2.

Using Theorems C and D together with the tables of homotopy groups of
Stiefel manifolds from [10] we easily deduce the following theorem.

THEOREM E. Let G be a finite group acting freely as a group of linear
isometries on Fn. Suppose that pHfk : On,k -> s**1*"1 admits a G-cross-section, and in
the real case suppose that n>2k. Then every cross-section is homotopic to a G-
cross-section in each of the following cases:

(a) if G is of square-free order;

(b) i/|G|*0(mod4), and fc 2, 3, 5 or 6 whenF U, ork 2 whenF=C;
(c) if |G| + 0 (modq2), where q 2, 3, and fc 4 when F R, or fc 2 when

F=IH.
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Remarks.
1. The condition n>2k in the real case is always satisfied if pnk admits a

cross-section provided n#2, 4, 8 or 16. (See [5]).
2. The main results of this paper hâve been obtained independently by similar

methods by M. C. Crabb (Doctoral thesis, Oxford 1976) and by J. C. Becker (to
appear). Similar results in the real case when G C2 hâve been proved by
différent methods by Milgram and Zvengrowski in [8].

1. The Kahn-Priddy Theorem

If X, Y are G-spaces we write MapG (X, Y) for the space of G-maps from X
to Y. If A is a G-subspace of a G-space X then the inclusion of A in X is a

G-cofibration if there is a retraction r:XxI—»XxOUAxI which is a G-map.
The following results are then easily verified.

LEMMA 1.1. Let A be a G-subspace of a G-space X and suppose the

inclusion j:A-* X is a G-cofibration. Then if Y is a G-space the map

f : MapG (X, Y) -* MapG (A, Y)

defined by restriction to A is a Hurewicz fibration.

If X is a G-space let XG dénote the subspace of fixed points. Then as an
immédiate corollary of Lemma 1.1 we hâve:

LEMMA 1.2. If X, Y are G-spaces and the inclusion of XG in X is a
G-cofibration then the map

p : MapG (X, Y) -> Map (XG YG)

given by restriction to fixed points is a Hurewicz fibration.

The arguments of [9] can be extended to prove the following.

LEMMA 1.3. If G is a discrète group and X, Y are G-spaces, where X is

compact and Y is a simplicial complex on which G acts simplicially, then the space
MapG (X, Y) has the homotopy type of a CW-complex.

Now suppose that G is a finite group and that W is a G-module. As in the
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introduction let FG(W) dénote the space of G-maps /: S(W) -» S(W) and if V is

a G-submodule of W let F^W) dénote the subspace of maps whose restriction
to S(V) is the identity. Then according to Lemma 1.2 we hâve a Hurewicz
fibration

with fibre over the identity map the space F^o^W). Furthermore W may be

expressed as a direct sum of G-modules WG © W where W'G {0}. Taking the

join with the identity map on S(W'), (and using the fact that S(W) S(WG)*
S(W))9 gives a cross-section of a : F(WG) -+ FG(W) of p.

THEOREM 1.4. The map a:F(WG)xF(GwO)(W)^FG(W) defined by

a(f> /')= °"(/) ' /' is a homotopy équivalence.

Proof. According to Lemma 1.3, (and an extension of the argument in the case
of F(V)(W)), the spaces FG(W), F^o^W) and F(WG) each hâve the homotopy

type of a CW-complex. The resuit now follows from the fact that if FA E -^> B is

a fibration with cross-section 5, where F, E, B each hâve the homotopy type of a

CW-complex and E is an H-space, then the map a:BxF-+E defined by
«(ft?/) s(fc) • i(f) is a homotopy équivalence.

If G is a finite group of order m let UG dénote the regular représentation of
G. Then (RG)G=IR and hence [RG (R©M, where M is a G-module with
MG ={0}, so that nUG Un ®R[RG IRn © nM and (nUG)G =Un. Furthermore if
W is a G-module of dimension n then W is a direct summand of nUG since every
irreducible G-module is a direct summand of UG.

Let /:S((Rn)^ S(Rn) be a map. Then the m-fold join

is a £m-map where the symmetric group Xm acts by permuting the factors in the

join. Hence if G is a finite group of order m then, regarding G as a subgroup of
Xm via the Cayley homomorphism, the above construction defines a map

j:F(Mn)-*FG(nUG).

Let r:FG(nUG)-+F^n^nUG) be the map defined by taking an inverse to the

homotopy équivalence a of Theorem 1.4 and composing with right projection,
and let

l:FGin)(nMG)-*F(mnn)
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be the map obtained by forgetting the G-action. Then we hâve a composite map

Let

jim-1):F(Rn)-*F(mRn)

be defined by /(m"1)/ /*l*... *l. Then y*"1"1' is homotopic to the map

Aim'1):F(Rn)^F(mRn)

defined by considering Un as the diagonal in mUn Unx • • • xUn and taking
à(m~1)f f* 1S(ax), where A± is the orthogonal complément of A in mUn. Further-
more if

j';F(nn)-»F(mnn)

is defined by /'/=1 */*•••*/ then the maps F(Un) -* F(mUn) given by /^
O'*"1"1*/) ' 0'7) and /|-^(4(m"1)/)-(rf) are each homotopic to the diagonal map

Recall that if X is a connected CW-complex then [X, FG( W)] admits a natural

group structure and in particular if dim X< n then [X, F(IRn)] is an abelian group.

THEOREM 1.5. Let X be a connected CW-complex and let t*,
;5T"1):[X,F(IRn)]->[X,F(mlRn)] be the homomorphisms induced by the maps
t,;0""1* defined above. Then r*([/]) (m-l)jtl-1)([/]), for each [/]e[X,F(Rn)].

Proo/. If F(Rn)(i) dénotes the identity component of F(Un) then the maps

A,, AA : F(Rn)(1) x F(mRn)(1) -> F(Rn)(1) x F(mRn)(1)

defined by A;(/, g) (/;(/(m'1)/) • g) and AA(/, g) (/, (^(m-1}/) • g) are homotopy
équivalences, and A7~A^ since j^"1^^^"1^ Since each of the maps

A^l, /'), AA(1, 0 : F(!Rn)(1) -^ F(en)(1) x F(mRn)(1)

is homotopic to the map /»->(/,/*•••*/) it follows that
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and hence /'- t :F(Un)n)-* F(mUn)(1). But now if j\m~1}:F(Un)-+ F(mUn) is

defined by ji(tn~i)f= i * • • • */* • ••*!, (with / occurring in the i-th place), then

yon-i^of-n and j'f=(f"-"f). (f£-l)f).Jhe resuit follows.
If V, W are G-modules let E(V):FG(W)^> F(GV)(V© W), EV:FG(W)-+

FG(V© W) be the maps defined by taking the join with the identity on S(V).

THEOREM 1.6. Let V, W be G-modules where W is G-free of dimension n,

Then:

(i) £(V):FG(W)->F(Gv)(Ve W) is an n-équivalence;
(ii) // V is G-free then Ev:FG(W) -> FG(V© W) is an n-équivalence.

Proof. (i) Let D(V) be the unit dise in V and define Maps(v)(I>(V), S(V©
W)) to be the space of maps /:D(V)-> S(V© W) such that f\S(V) is the
natural inclusion a of S(V) in S(V© W). Then Maps(v) (D(V), S(Vffi W)) is a

G-space and the map E(v) factors as

MapG (S(W), S(W)) -!** MapG (S(W), Maps(V) (D(V), S( V© W)))

MapG(V) (S(V0 W), S(V© W)),

where i : S( W) -> Maps(V) (D( V), S( V© W)) is the G-map defined by

i(w)(»,t) (»,t,w) DeS(V), tel9 weS(W),

and h is the map defined by

t,w) f(w)(v,t) veS(V), tel w

Then h is a homomorphism so we need only show that i# is an n-équivalence.
Now i is a G-map which is a (2n-l)-equivalence and for any subgroup H of G
with H*{1} we hâve S(W)H <f> and Map^(v)(D(V), S(V© W)) </>. The resuit
now follows from §5 of Chapter II of [3].

(ii) The map cr#:MapG (S(V©W), S(V©W))-+MapG (S(V), S(V©W))
induced by the inclusion er: S(V)~» S(V© W) is a Hurewicz fibration by Lemma
1.1 with fibre over or the space Map(G(v» (S(V© W), S(V© W)) of maps whose
restriction to S(V) is or. Now any G-map /:SrxS(V)-> S(V© W) such that

/| 20xS(V) o-, (where z0 is the base-point of Sr), is G-homotopic to a map /'



5 L M WOODWARD

such that f'(x9v) cr(v) if r^n-1, again by §5 of Chapter II of [3]. Hence
7Tr(Mapf(V)(S(V© W), S(V© W))) 0 if r^n-l and the resuit follows from
the homotopy exact séquence of the fibration o-#.

Proof of Theorem A. Let Cp be the cyclic group of prime order p and let W be

a Cp-free Cp-module of dimension n. Then n(RCp=Rnffi W© W for some
Cp -module W and W is Cp-free since every irreducible Cp -module is either
Cp-free or trivial. Let X be a connected CW-complex of dimension ^n-1 and
consider the foliowing commutative diagram:

h
(E(p_1)R«)*

[X, F(iT)] ^*> [X, F& (nRQ,)]-^ [X,

The vertical maps are ail isomorphisms by Theorem 1.6 and on identifying
[X, F(Un)] with [X, F(pKn)] the map !*(r/)* corresponds to multiplication by p-1
by Lemma 1.5. The resuit follows.

2. Equivariant Vector Fields on Sphères

Let W be a G-module over the field F with dimF W= n, let Ok(W) be the
Stiefel manifold of orthonormal k-frames in W and let Ek(W)
Maps(F) (S(Fk), S(W)) where S(F) is the topological group of éléments of F of
unit modulus. Then there is a commutative triangle of G-maps

(2.1)

S(W)

where i is the inclusion defined by considering an orthonormal fc-frame in Fn as a

linear isometry of Fk into F", and q is a Hurewicz fibration given by évaluation on
(1, 0,..., 0) in S(Fk). Let F(p), F(q) dénote the spaces of cross-sections of p, q;
FG(p), FG(q) the subspaces of G-cross-sections. If H dénotes the Hopf line
bundle over the projective space P(Fk) and L dénotes the trivial line bundle then
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there is a homeomorphism (cf. [12] Lemma 1.2)

<t>G :Map° (S(W), £k(W))-> MapG(Fk) (S(L ® W), S(H® W))

under which G-cross-sections correspond to G-fibre homotopy équivalences
which are the identity on the parts of the bundles over PiF1). Suppose p, and
hence q, admits a G-cross-section s. Then s defines a G-fibre homotopy équivalence

<f>G(s) and hence a homotopy équivalence

<£G(s)#:MapG(F-)(S(L® W),S(L<g> W))-»MapP(F<c)(S(L® W),S(H<8) W)).

But since S(L ® W) P(Fk) x S( W), on taking adjoints we hâve a homeomorph-
ism between MapG(F*) (S(L ® W), S(L® W)) and Map (P(Fk), FG(W)). Putting
thèse équivalences together gives a homotopy équivalence between FG(q) and the

space of base-point preserving maps Map ((P(Fk), PiF1)), (FG(W), 1)). The
construction is natural with respect to G and hence we deduce that there is a

commutative diagram

FG(p) -^* rG(q) +=- Map ((P(Fk)9 P(FX)), (FG( W\ 1))

(2.2)

where v, w are the natural inclusions.

Proof of Theorem D. Suppose W is a G-free G-module. Then from diagram
(2.1) we obtain the following diagram of quotient spaces

Ok(W)IG >Ek(W)/G

S(W)/G

and FG(p), FG(q) are homeomorphic to T(p), F(q) respectively. The map i is a

(2d(tt-fc + l)-3)-equivalence by Theorem 6.5 of [4], and hence so is î. Thus it
follows from Theorem 3.2 of [6] that i#:rG(p)-* r°(q) is a (d(n-2fc + 2)-2)-
equivalence. Theorem D now follows immediately.

Proof of Theorem E. (a): This follows immediately from Theorems C and D

together with the fact that if pM,k admits a cross-section then n>2(k-l) + 2/d in
the complex and quaternionic cases, (see [5]).
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(b) and (c): In thèse cases it suffices to note that rn,k is homotopy équivalent to
Map (Sdn~\ On_i,fc_i) and the only torsion occurring in 7rdn_i(On_i,k_i) is 2-
torsion in the cases in (b) and 2-torsion and 3-torsion in the cases in (c).
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