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Comment. Math. Helvetici 52 (1977) 611-624 Birkhduser Verlag, Basel

An extremal problem for harmonic measure

FriEDRICH HUCKEMANN

Dedicated to Professor Albert Pfluger on his Seventieth Birthday

1. Introduction

Many inequalities of conformal geometry are based, in essence, on the simple
fact that the shortest curve joining two distinct points in the plane is the straight
line segment between these points; this is so since a metric is conformal when it is
locally Euclidean, i.e. Euclidean in a suitable local uniformizer. The approach to
inequalities of this sort is twofold: either for a certain quantity an inequality is
sought, and the method of finding it consists in the device of an appropriate
conformal metric; or one asks which inequalities will flow out of a given
conformal metric. Often, conformal metrics stemming from quadratic differentials
are particularly useful, and precise inequalities are obtained in many cases. In this
connection we shall consider here problems similar in type to Milloux’s Problem
(see e.g. Nevanlinna [3], p. 72).

For three distinct points a, b, ¢ in the unit disk E we call  the family of all
continua K satisfying {a, b} = K < E —{c} and which are such that c is contained in
the doubly connected component of E— K. We write wx for the harmonic
measure of K in E, and we are interested in sharp inequalities for wg(c) under
certain side conditions on K. So we ask: for which K is wg(c) extremal in some
sense?

Natural candidates for extremality are continua which are obtained in the
following way: take a quadratic differential o on the extended plane C with the
properties: it is real on the boundary 9E of E, it has in E at most simple poles and
these at most at the points a, b, ¢, and there is a trajectory joining a and b. Then
the closure of that trajectory is a candidate.

A quadratic differential with the above properties is a “quadratic differential
with closed trajectories.” For such quadratic differentials on a general Riemann
surface R, Strebel has studied in [4], [5] the extremal properties of the moduli of
the induced characteristic ring-domains; the results obtained there will enter here
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612 FRIEDRICH HUCKEMANN

(Theorem 2), but we first will have to find conditions yielding a “quadratic
differential with closed trajectories” of a certain homotopy type (Theorem 1),
while thereafter we have to deal also with moduli of ring-domains which are the
interior of the closure of the union of two adjacent characteristic ring-domains
(Theorems 3, 4, 5).

We shall limit here the discussion to the essentials of the method in order to
exhibit its simplicity, so we leave aside for investigation at another place certain
special cases and some otherwise interesting questions as, for instance, the
problem (posed by Gaier at a colloquium 1970) to determine inf {wg(c); Ke &};
the attempt to solve that problem actually occasioned the present results, which
themselves lead to a local solution (Remark 2 at the end) by the use of some
further means, to be presented at another place when the general discussion of
Gaier’s problem is taken up.

2. Notation

For two real numbers x# y, [x, y] is the closed and (x, y) is the open interval
between them; [x, y) and (x, y] are the corresponding half-open intervals. For a set
S, S is its closure and 3$ is its boundary. For two distinct points a and b of the
unit disk E, C,, is the Poincaré-circle (the non-Euclidean straight line) through
them in E, the Poincaré-segment s,, is the closed segment of C,, between a and
b, v, is a Jordan arc from a to b along s,,.

a, b, ¢ will always be three distinct points of E, fixed up to convenient
non-Euclidean translations, such that the Poincaré-circles C,, C,, C, are
likewise distinct; d will be a fourth “variable” point of E which varies mostly on a
short Jordan arc through c.

E—-(C,UC,. UGC,.) has seven components; E,  is the component whose
closure does not meet dE; L,,(c) is the component whose closure is disjoint from
Ca- E,i is also the simply connected component of E —(s,;, U s,. U 5;,), it will be
called Poincaré-triangle; L,,(c) is the triangle opposite to the triangle E,,  at the
vertex c, it will be called also Poincaré-lobe (with vertex c).

For a quadratic differential o on a Riemann surface R, the set A of its zeros
and poles is the singular set, o >0 determines a directional field on the regular set
R — A; a maximal solution curve (considered as set of points) of this directional
field is a trajectory of o > 0; two given trajectories are either identical or disjoint.
Any trajectory is either a closed analytic Jordan curve or may be parametrized by
a injective analytic map y:(0, 1) > 8 — A with non-vanishing derivative. If in the
latter case, y(t) tends in R to a limit for t — 0 or t — 1, that limit is necessarily in
A; if both limits exist we speak of a two-ended trajectory, and we call it T,, when
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u and v are the two (pdssibly coinciding) limits. In the case of the quadratic
differential

B (z—d)(1-dz)
(z—a)(1-az)(z-b)1-bz)(z-c)(1-¢z)

o= dz*>=oy,, zeC, (2.1)

which will be our main tool, we will write also T, (d) for T,, to indicate the
dependence on d. Given two singularities u and v of (2.1), at most one trajectory
T,.(d) of 0> 0 exists. T, is the trajectory of o, >0 which contains c, it is a Jordan
curve containing s,, = T,,(c) in its interior domain.

When a square root o'/?> of a quadratic differential o is integrated along an
arc, o2 is always taken continuously (in the topology of C); sometimes a
particular branch of o'/ is specified.

We say that o has regular trajectory structure if all trajectories o > ( are either
closed curves or two-ended trajectories. We shall first give conditions ensuring
that o, of (2.1) does have regular trajectory structure.

3. Cases of regular trajectory structure

We observe that for any d € E the directional field o; >0 is symmetric with
respect to 0E and that E is a trajectory, but it may happen that o, fails to have
regular trajectory structure (in which case some trajectories of o, >0 are dense in
a certain subdomain of E). o, (where A ={a, b, 1/a, 1/b}), however, does have
regular trajectory structure: T,,(c)=s,, —{a, b}, and all other trajectories of
o.>0 in E are closed Jordan curves separating T,,(c) from 0E; we shall find a
similar trajectory structure prevailing also for some other de E:

THEOREM 1. Let a, b, ¢ be three distinct points of the unit disk E such that the
three Poincaré-circles C,;, C,., C,. are distinct; with e positive but smaller than the
distance between c and s, let

DE={d;ld—c|§ e,Im[ a§’2=0}. (3.1)

Yab

Then for sufficiently small € >0
(a) D, is the carrier of an analytic Jordan arc lying in L, (c)U{c}UE,,. and
meeting L, (c) as well as E,,. which has at c as tangent the line bisecting the angle
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between C,. and C,;

(b) d e D, implies

(i) the quadratic differential o, has regular trajectory structure;

(ii) there is a two-ended trajectory T,,(d) < E, which has the property: for d tending
to ¢ within D,, E — T,,(d) tends to E — s, in the sense of kernel convergence;

(iii) for d# c, there exist two two-ended trajectories T,,(d) < E and T,;(d) < E with
the property: for d tending to ¢ within D, —{c}, E — T_,(d) tends to E—{c} and
E—T,(d) tends to E— T, in the sense of kernel convergence in each case.

(iv) for d#c, T,=Ty(d) is a Jordan curve containing T,,(d) in its interior
domain; T.,(d) is contained in the interior or exterior domain of T, as
deL,(c) ordeE,..

Remark. Statements similar to (ii), (iii) about kernel convergence hold also
when d tends within D, to some other point d, (with essentially the same proof as
given below for d — c); the condition: & small, however, cannot simply be
omitted (Lowien [2], Satze 1, 2).

Proof of Theorem 1. We procede in several steps; since a non-Euclidean
translation leaves the form (2.1) invariant up to a positive factor we may put the
points a, b, ¢ by a non-Euclidean translation to a convenient position.

I. Part (a) holds.! Since o, >0 on dE we may, by Cauchy’s Integral theorem,
replace in (3.1) the condition Im |, , 03*=0 by

Imj ocl?=0 and d#c, or d=c. (3.2)
Yed

Defining the integral in (3.2) as function of d continuously near ¢, the implicit
function theorem, as follows, leads to statement (a).

We assume ¢=0, a>0, Imb#0. For |z|<min(a,|b|)=¢, we chose an
analytic branch

¥(z) =[ab(1- z/a)(1- az)(1-2/b)(1 - bz)] 2, 3.3)

and when |d|<g, we define (1—dz)"? by the usual power series. Putting for
0#d=|d|e* and 0=t=|d|

fa() = Y(te*) - (1—dte*®)'?, (3.4)

! Excepting the statement about the tangent, the given proof of Lemma 1 in Lowien [2] practically
contains (a); the following proof seems simpler though.



An extremal problem for harmonic measure 615
and defining for |d| < ¢, the function F by

] _A12
F(d)=Im[ei“’I ('—‘—”—t—t)/fd(t)dt], d=|d|e®#0,

F(0)=0, (3.5)

F(d) is one value of ImJ o} for d#c, and therefore by (3.2), once & is
sufficiently small, we may in (3.1) replace the condition Im §,, a;>=0 also by
F(d)=0.

Considering F as a function ¢ of x=Re d and y=Im d we infer from (3.4),
(3.5): @ is real analytic, ¢ vanishes at the origin, the first partial derivatives of ¢ at
the origin both do not vanish since Im b# 0. Thus D, has a tangent at ¢ = 0; again
by (3.4) and (3.5) this tangent is the line bisecting the angle between C,. and C,.

in L,,(c)U{c}UE,,,, yielding (a) of Theorem 1.

II. Statement (ii) in (b) holds. We assume now —a =b>0, Im c#0. Call E’
the domain obtained slitting E on the real axis from —1 to a and from b to 1;
choose & > 0 so small that the trajectory T of o, >0 having |o.|'/*-distance 8 from
[a, b] separates ¢ from [a, b] in E, call G the interior domain of the Jordan curve
T and put G'= GN E’. Mapping E’ onto a rectangle R in the w-plane so that the
four boundary elements of E’ at £1 correspond to the geometric vertices of R
and that (a, b) is mapped onto a horizontal segment, o, becomes A dw? in the
uniformizer w where A >0, thus in R the trajectories o, >0 are horizontal lines.
Since also o,/0, — 1 uniformly in G for d — ¢, we conclude: once |d—c]| is
sufficiently small, the trajectory T,(d) of o, > 0 which has the limit point a, either
leaves G’ (when traversed starting from a) first at a point &, €(b, 1), or T,(d) is the
two-ended trajectory T,,(d)< G' in which case we put £, =b; for d = ¢ in
addition, the closure of the piece of T,(d) between a and £, tends to [a, b] in the
sense of kernel convergence of the complement with respect to E; we have
further

Imj ci?#0 forany &e(b,1). (3.6)
Yo

3

So if d also satisfies the condition Im |, a3>=0, i.e. if d € D,, we have necessar-
ily & = b since (3.6) precludes &, € (b, 1) because the integral of o';/* along a Jordan
arc on a trajectory o, >0 is always real. So for d € D, and &> 0 sufficiently small

there is a two-ended trajectory T,,(d), and (ii) in (b) follows.

ITII. Statements (b): (i), (iii), first part of (iv), hold. With the domain G of step
II we choose &;>0 so small that d € D, implies the existence of a two-ended
trajectory T,,(d)< G. For d = c statements (i), (iii), (iv) are trivially true so we
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assume de D, —{c}. We take the conformal map x¥* of the doubly connected
domain E*(d)=E-T,,(d) onto R(d)={w; r<|w|<1} where r=r(d)e(0, 1), so
that xi‘(c) = ¢’ >0 and that the boundary component 3E of E*(d) corresponds to
the same boundary component of R(d), we define x¥ as the analogous nor-
malized map E*(c) = E —s,, — R(c). We lift (the transplanted) o, to the univer-
sal covering surface R(d) of R(d) which we realize as {w;logr<Re w<0}=
S(d); then the quadratic differential &, thus obtained on S(d) is positive on 4S(d)
and has after analytic continuation to C the form &, = h(w) dw? where h is an
elliptic function of order 2 with fundamental periods 2w, =-2logr>0, 2w, =
2i. We may assume that ¢”"=log ¢’ and —c"€(0, w,) are the simple poles of h in
the fundamental rectangle with center 0, then the simple zeros lie necessarily at
some point d" € (—w,, 0) and at —d" since h is elliptic and negative on 4S(d), and
we obtain with Weierstrass’ p-function for some A >0

p(w)—p(d")

; 3.7
pom—pecy V€€ (3.7)

h(w)=—-A

Since h is thus symmetric with respect to the real axis and is positive between c¢”
and d”"we get by projection for the trajectories of o, >0 on R(d): o, has regular
trajectory structure, and with x3(d)=d’ =exp d”e(r, 1), there is a two-ended
trajectory T.4 =(c’,d') and also a two-ended trajectory T,, whose closure
separates the two components of dR(d). Thus in (b) we obtain statement (i); we
obtain of statement (iii) the existence of T,,(d)<E and T, (d)<E, and of
statement (iv) the fact that T, = T,;(d) is a Jordan curve containing T,,(d) in its
interior domain. We note in particular:

(', dy=xi(Ta(d), Ty a=xa(Ts(d)). 3.8)

By the normalization of x¥, (ii) in (b) now implies for d tending to ¢ within
D, —{c}:x’ tends to x¥ uniformly in compact subsets of E*(c) = E —s,,, and the
remaining statement in (iii) follows from (3.8).

IV. The remainder of (iv) in (b) holds. In addition to the domain G of step II
we choose a disk about ¢ whose closure does not meet G, and we let £,>0 be so
small that d € D, —{c} implies the existence of a two-ended trajectory T,,(d)= G
and of a two-ended trajectory T_;(d) contained in the chosen disk. A computa-
tional argument is available to prove the remainder of statement (iv). We take
de D, —{c} and using the notation of step III, we call E;(d) the (doubly
connected) component of E*(d)— T, which has T, (d) on the boundary and E,(d)
the other (doubly connected) component.
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All that remains to show is

ceE,(d) when delL,(c) (3.9.1)
ce E,(d) when deE,.. (3.9.2)

We distinguish in the usual way the two shores of T_,(d), s.; and we call I'", y~
the curve running once along the two shores of T,,(d), s.; in the negative sense,
i.e. in such a way that E—T,,(d), E — s, lies on the right. In each of the domains
E*(d)—T.4(d), E*(d)—s., an analytic branch of o} can be defined, and choos-
ing in each case that branch which is positive on the positively oriented unit circle

dE we obtain

J 0-3/2=J o’ (3.10)
/e v~

Use of the explicit expression (3.7) yields

ceE{d)& "< d"@[ o?<0, (3.11.1)
r
ceE,(d) d'< c"@J ai?>0, (3.11.2)

and a simple computation gives for d sufficiently close to ¢ (whether or not
deD,)

Re o0}?<0 ony if deL,(c), (3.12.1)
ReoY*>0 ony if deE,,.. (3.12.2)

Combining (3.10), (3.11), (3.12) we obtain (3.9), completing the proof of
Theorem 1.
4. Extremal decomposition of the unit disk

If a, b, ¢ are three distinct points of E and if K is a continuum in the class &
(see Section 1) then there is a continuous branch k(z) for zeK of

arg [(z — ¢)/(1—¢z)] since K does not separate ¢ and dE; the variation

V(K) = k(b)—k(a) 4.1)
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of k on K from a to b is independent of the branch chosen, and for two continua
K, K'e 8 the corresponding variations V(K), V(K') differ by an integral multiple
of 27. If a, b, c are as in Theorem 1, V(K) obviously never is an integral multiple
of o so it is natural to single out the continua for which 0 <|V(K)|<m, K =s,,
being one of them.

We take now a, b, ¢ as in Theorem 1; there exists then € >0 such that the
assertions (a) and (b) of Theorem 1 hold and that d e D, implies V(T,,(d)) =
V(s,) (recalling T,,(c) = s,,). Such £ >0 will be called sufficiently small, and we
assume henceforth d € D = D, with sufficiently small . We put

K*(d) = T,(d),
K¥(d)=T(d)UTyu(d) for d#c, (4.2)

K¥(c)=T. (=trajectory of o,>0 containing c).

By Theorem 1(b)(iv), K&(d) separates 0E and K*(d); E —(K¥(d)U K*(d)) con-
sists of two components, each doubly connected, we denote by E¥(d) the one
which has K*(d) as one boundary component, and by E5(d) the other which has
dE as one boundary component.

We denote further by

11,(d) the o[>~ length of K*(d),

L(d) the |o,]"?~ length of OE,

h,(d) the |o,|'*— distance of the boundary components of E¥(d),
h,(d) the |o,|">~ distance of the boundary components of EX(d).

Then we obtain immediately for the moduli M¥(d) of E¥(d) and M¥(d) of E¥(d)
the expression

h.(d)
L(d)’

hy(d)
L(d)

[The modulus of a doubly connected domain, whose boundary components are
continua, is (1/27) logr, r>1, when the domain is conformally equivalent to the
annulus {z;1<|z|<r}.] We compare now the moduli (4.4) with the moduli
obtained when E is decomposed by certain other continua.

We call the continuum K admissible if K€ ® and if V(K)= V(s,;); we call the
pair (K, K;) an admissible pair of continua if K is an admissible continuum and if
K, is a continuum satisfying c € K,< E— K and separating K from dE. We notice
that (K*(d), K¥(d)) is an admissible pair for each d € D. For an admissible pair

(4.4)

Mi(d)= M3(d) =
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(K, Kp), E-(KUK,) has exactly two doubly connected components; E(K, K,)
will be the one whose boundary meets K, E,(K, K;) the one whose boundary
contains dE; we let M (K, K,) and M,(K, K,) denote the moduli of E,(K, K,) and
E,(K, K,), and we call these the moduli produced by the pair (K, K,).

THEOREM 2. Let (K, K,) be a pair of admissible continua, and let M, =
M, (K, K,), M, = M,(K, K,) be the moduli produced by (K, K,); let further d € D.
Then

1H(d)M, + 5(d)M, = 13(d)MT(d) + 13(d) M3 (d); (4.5)

equality holds in (4.5) if and only if K = K*(d) as well as K,= K¥(d).

Proof. The ‘“homotopy-condition” V(K)= V(s,,)= V(K*(d)) together with
the fact that K, contains ¢ and separates K from oE ensures that any Jordan
curve in E;(K, K,), (i =1, 2), separating the boundary components of E;(K, K)
has a |o,|"*-length of at least [;(d), and a standard argument of extremal length
gives the assertion (see e.g. Strebel [4] section 6).

5. Extremal continua for harmonic measure

We will consider the following problem: Let K be an admissible continuum so
that the modulus M(K) of the doubly connected component E(K) of E—K
equals a given number; denote by wg(c) the value of the harmonic measure wg of
K in E at c; what are then sharp estimates for wg(c)? For this, we shall need a
further theorem about the decomposition of an annulus R by trajectories of a
quadratic differential which is positive on dR and which is regular in R up to at
most a simple pole and a simple zero on a radius of R.

Let R={w;r<|w|<1} with 0<r<1, let r<x<1 and r<y<l1, and let
foy:R— € be a meromorphic function with the following properties:

for x#y, f., is up to a simple pole at x and a simple zero at y regular and
non-vanishing, for x =y, f., is regular and non-vanishing;

w?f,,(w) has negative boundary values on dR. (5.2)

f., is then determined up to a positive factor [w?f,,(w) being a negative constant],
and the quadratic differential

Gy = fry (W) dW? (5.3)
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has regular trajectory structure. For x# y there is a two-ended trajectory T, (the
open interval between x and y) and a two-ended trajectory T,, (T,, separates the
boundary components of R). We put

for x#y, ny=ﬁu_1:,,

5.4

forx=y, K, ={w;|w|=x}. (54)

R —-K,, has then two components, both are doubly connected; we denote by

R, (x,y) the one having B={w;|w|=r} on the boundary and by M,(x, y) its

modulus, and by R,(x, y) the one having dE on the boundary and by M,(x, y) its
modulus. The inequality M (x, y)+ M,(x, y)=(1/27) log (1/r) is well known.

THEOREM 3. Let h:S={(x,y); r<x<1,r<y<1}— R? be defined by

h(x’ Y) = (Ml(xv ),)9 Mz(x, Y))a (x, Y)E S, (55)
and let
A={m,, my);m=0,m,=0, m;+ my=m} (5.6)

where m = (1/2m) log (1/r). Then

(i) h has a continuous extension to the closure S of S;
(ii) denoting the extension again by h, h(S)=A;
(iii) the restriction of h to each of the triangles

S*=8N{(x,y);xzy}, S =8Sn{(x y);x=y}

is a homeomorphism onto A, sense-preserving on S* and sense-reversing on
S;

(iv) for fixed x€(r,1), h :[r,1]—> A given by h,(y)=h(x,y) for ye[r, 1], is a
Jordan arc with strictly decreasing slope, running from h.(r) on the vertical side
of the triangle A to h,(1) on the horizontal side of A and touching the slanted
side of A at h (x)=((1/2=) log (x/r), (1/27) log (1/x)) with slope —1.

Proof. Theorems 1 and 2 of [1], stated for decompositions of a rectangle, give

immediately the present Theorem 3 by mapping the rectangle through exponenti-
ation onto a half-annulus and going then to the full annulus by reflection.

THEOREM 4. Let a, b, ¢ be as in Theorem 1; let D = D, for sufficiently small
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€>0; let deD—{c} and let K be an admissible continuum with M(K)=
M(K*(d)); let o and w* be the harmonic measures of K and K*(d) in E. Then

w(c)Zw*(c) when deL,/(c),

7
w(c)=w*(c) when deE,, (5.7)

and equality holds in (5.7) if and only if K= K*(d).

Proof. Let first d € L,,(c). Denote by x, x* the functions mapping E(K),
E(K*(d)) conformally onto the annulus R(d) ={w; r<|w|<1}, 0<r=r(d)<1, in
such a way that the boundary component dE of E(K), E(K*(d)) is invariant and
that x(c)=xe(r, 1), x*(c)=x*e(r, 1). Since then

o(c)=(log x)/(logr),  w*(c)=(logx*)/(logr),
we have to show x =x™ and that equality holds only for K = K*(d). Let therefore
K# K*(d). If K, is a continuum in E — K separating the boundary components
and containing ¢, (K, K,) is an admissible pair of continua, and we obtain for the
produced moduli M;, M, from Theorem 2 the strict inequality

[H(d)M, + 5(d)M, < I}(d)MT(d) + 15(d) M3 (d). (5.8)

Putting y* = x*(d) we obtain x* <y*<1 (Theorem 1, (b), (iv)), and we have in
the notation (5.5)

Mi(d)=M,(x* y¥),  M3(d)=My(x* y").
Choosing K, = x"'(K,,), r<y<1, we have likewise
M,=M(x,y), M,=M,(x,y),
and (5.8) becomes

2(d)M,(x, y)+ B(d)M,(x, y) < I}(d)M,(x*, y*) + 5(d)My(x*, y*¥),
r<y<1l. (5.9

Now x# x* follows from (5.9) for y = y*. By Theorem 3, using the notation of
Theorem 3 with m = M(K) = M(K*(d)), the straight line

L ={(m,, my); B(d)m, + 3(d)m, = 3(d)M;(x*, y*) + [3(d) Ma(x*, y*)}
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meets h..([x*, 1]) at just one point P*=(M,(x*, y*), M,(x*, y*)), and L inter-
cepts the side s ={(m,, m,); m;+ m,=M(K), m; =0, m,=0} of A at some point
(€5, M(K) — £%) with (1/27) log (x*/r) = ¢* < £ < M,(x*, y*), by Theorem 3(iv).
h.+([x*,1]) is a curve in A joining the point (£*, M(K)—£*)e s to a point of the
my-axis and h,([x, 1]) is a curve in A joining the point (£, M(K)—§&)es to a point
of the mj-axis, where &= (1/2m)log(x/r). These two curves are disjoint by
Theorem 3(iii) since x# x*; and since h ([x, 1]) stays below L by (5.9). &< ¢*
follows, implying x <x* as contended, proving the first line of (5.7), and with
strict inequality unless K = K*(d).

In a similar way, (5.7) is proved for d € E,,,.

Remark 1. The case d = c is left out in Theorem 4 since, as is well known,
K € & implies M(K) = M(s,,) with strict inequality unless K = s,, = K*(c).

COROLLARY 1. If d, and d, are distinct points of D lying either both in
L., (c) or both in E,,, then M(K*(d,)) # M(K*(d,)).

Proof. It is immediate that K*(d,) and K*(d,) are distinct continua, whence

M(K*(d,)) = M(K*(d,)) is incompatible with Theorem 4.

COROLLARY 2. Let 6:[-1,1]— D be a Jordan arc with carrier D so that
8(-1)e L, (c), 8(0)=c, 8(1)e E,,.. Then n(t)= M(K*(8(t))) is continuous, . is
strictly increasing on [—1, 0] and strictly decreasing on [0, 1].

Proof. There is (Theorem 1) a parametrization 8 of D as a Jordan arc in the
indicated way. The continuity of u = M(K*°§) is then obvious, and the stated
monotony follows from Corollary 1 since 0<|tf|<1 implies K*(8(t)) # K*(8(0)) =
s., whence (Remark 1) u(t) <M(s,,) = p(0).

Putting t; = pu(—1)—un(0)<0 and t,=pu(0)—w(1)>0 we obtain at once by
reparametrization, observing 8(t)e L,,(c) or 8(t)e E,,. as t<0 or t>0.

COROLLARY 3. There is a parametrization §*:[t,, t,]— D of D as a Jordan
arc such that

8*()e L (c) for t,=t<0,
€ Eabc for o<t= tz,

and that u* = M(K*°8*) satisfies

p*(t) = M(s,) - |t], LSSt
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THEOREM 5. Let K be an admissible continuum and let 0 < M(s,,)— M(K)=
min (=t,, t,). There is then a unique number t¥€[t,,0] and a unique number
t¥e[0, t,] so that

M(K) = M(K*(8*(t])) = M(K*(8*(13)); (5.10)

if further w, w*, w¥ are the harmonic measures of K, K¥=K*(8*t¥), K¥=
K*(8*(t¥)), the inequality

o¥ ()= w(c)=w¥(c) (5.11)

is valid; the first inequality is strict unless K = K¥, the second inequality is strict
unless K = K¥.

Proof. In (5.10), &= M(s,,)— M(K) and t¥= — ¢} are uniquely determined by
Corollary 3, further 6*(f})e L,,(c) and 8*(£)eE,, ; the remaining statements
foltow from Theorem 4.

Incidently, Theorem 5 gives w¥(c) < w¥(c).

Remark 2. Denoting by w, the harmonic measure of K*(6*(¢t)) in E for
te[t,, t,], one might ask in general for the dependence of w,(c) on t. Actually,
w,(c) is in t strictly increasing [to be shown at another place] as might be
expected: a simple pole of a quadratic differential pushes away the trajectories
while a zero attracts the trajectories. If d € L,,(c) N D, the action of the pole ¢ on
T,,(d) becomes the more pronounced the more d moves along D away from c, so
,(c) will decrease as t decreases from 0; for d € E,,. N D the situation is reversed
making w,(c) increase as t increases from 0. If K is an admissible continuum, if
for some t°€{0, min (—¢,, t,)) the inequality M(s,,) — M(K)=t, is valid and if w is
the harmonic measure of K in E we have therefore

w_,(c)=w(c)=o,(c), (5.12)

and (5.12) has the interpretation: among all such continua K, K*(8*(—1,)) is the
continuum conformally farthest away from ¢ and K*(6*(t,)) is the conformally
nearest.
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