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Domain constants associated with Schwarzian derivative

OLL1 LedTO

Dedicated to Professor Albert Pfluger on his seventieth birthday

1. Definition of the constants

Let A be a simply connected domain in the extended plane with more than one
boundary point. A non-euclidean metric p(z)|dz| of A is defined by the condition
p(z)|dz|=(1-|w|*)~'|dw|, where z — w is a conformal mapping of A onto the
unit disc D. For a function ¢ holomorphic in A we introduce the norm

lella = sup ¢ (2) p(2)2.

Let f be a locally injective meromorphic function in A and S; its Schwarzian
derivative. At finite points of A which are not poles of f we have §;=
(f"1f") —3(f"If')?, and the definition is extended to o and to the poles of f by means
of inversion. Every function which is holomorphic in A is the Schwarzian of some
meromorphic f. The Schwarzian vanishes identically if and only if f is a Mobius
transformation. A function with a prescribed Schwarzian is determined up to a
Mobius transformation.

If g: A— B is a conformal mapping, then

15;(2) = S, (2)] pa(2) 2 =|Sp-(Dl ps(0) %, L=23(2). 1)
In particular,
ISella = 1S ¢-l- (2)

We associate with the domain A the following three constants:
o, =||S|la, where f is a conformal map of A onto a disc,
o, =sup {|Sfl| | f univalent in A},

o3 =sup{a |||S{|a =a implies f univalent in A}.
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604 OLLI LEHTO

2. Constant o,

In the definition of o, a disc means an ordinary disc or a half-plane. The
number o, is well defined and equal to O if and only if A itself is a disc. It is well
known that o; <6, and the example A ={z | 0<arg z <kw}, 1 <k =<2, shows that
o, can take any value of the closed interval [0, 6].

In view of (2), we could define o, also with the aid of conformal mappings of a
disc onto A. A further characterization is obtained ‘as follows: Let f be a
conformal mapping of the unit disc D onto A and h a conformal self-mapping of
D, such that h(0) = z,. Since pp(0)=1, it follows from (1) that

|S¢(20)| pp(20) ™ =S4 (0)]. 3)
Hence
o, =sup{|S;(0)| | f: D— A conformal}. 4)

In some cases, information about the boundary of A makes it possible to
improve the estimate o; =6. Suppose that the boundary of A is a K-quasicircle,
i.e. the image of a circle under a K-quasiconformal mapping of the plane.
(Quasicircles were first investigated by Pfluger [S].) Then o, =6(K?*—1)/(K>+1).

Another result of this type is that for convex domains o, =2. This follows
from known results on the coefficients of univalent functions, see e.g. [6]. We
include here a simple proof which also gives the extremals. (Quite recently,
Nehari (J. Analyse Math. 30 (1976)) also established this result by using varia-
tional techniques.)

THEOREM 1. Let f be a conformal mapping of a disc onto a convex domain.
Then

15,(2)] p(2) 2 =2. 5)
Equality holds if and only if the image domain is bounded by two parallel lines.

Proof. We may assume that f is a conformal map of the unit disc. In view of
(3), inequality (5) follows if we prove that |S;(0)|=2. Since we may replace f by
the function z — cf(ze'?), ¢ complex, ¢ real, there is no loss of generality in
assuming that S;(0)=0 and that f'(0)=1.

It is well known that f' admits a representation

2

f'(z)=exp (— j 1T(log (1—ze™) dtlf(o)), (6)

0
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where ¢ is increasing and

szd({/(e) =2.

Direct computation yields

S¢(0) = j e > dzp(o)—%(I

0 0

27 2w

2
e ' ddf(())) .
Since S;(0) is real and dy/(8) =0, we obtain

sf(o) = J

0

2

cos 26 dw(ﬂ)—%(j

0

2

cos 0 d¢(0))2+%(fﬂsin 0 dtlz(ﬂ))2

2

= J wcos 20 dw(e)—%(j cos 0 dz[z(o))2+ I%sin20 dy(0)
0 0

0

27 2w 27
=J cosZ6 dllt(B)—%(J cos Gd:p(f)))zsj cos’0 dy(0) <2.
0 0

0

Because S;(0)=0, we have proved (5).
Equality holds only if

27 27
j cos20 dy(6) =2, J cos 6 dy(6) = 0.

0

These conditions are fulfilled if and only if ¢ has a jump +1 at the points 0 and =
and is constant on the intervals (0, w) and (m, 27). Then S$;(0) =2, and it follows
from (6) that f'(z) = (1—z%)~'. We conclude that the image of D is a parallel strip.

3. Constant o,

The number o, is 6 if A is a disc and o, =12 for all domains A. In fact, there
is a simple relation between o; and o,:

THEOREM 2. In every domain A,

o,=0,+6. (7

Proof. Let f be univalent in A and h : D — A conformal. By (1).

I1Sella =1Sph = Sillo =6+ |Sullp =6+ 4. (8)

In order to show that the estimate ||S;|s =<6+ o, cannot be improved, let an
£ >0 be given. Considering (4), we can choose h such that |S,(0)|> o, —¢. The
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mapping w, defined by w(z)=z+e*/z, is univalent in D, and
S.(z)=—6e®(e®—2)72

Set f=w o h™'. Then f is univalent in A, and
IStlla = IS\ = Sullo = S.. (0) = S,.(0)| = |-6€™ — S, (0)).

By choosing 6 suitably we obtain

”Sf"A =26+|S,(0)|>6+0,—¢.

Combined with (8), this yields (7).

4. Constant o,

In the definition of o3, sup can be replaced by max. To prove this, let us
suppose that f is meromorphic in A with ||S{ls =03. Let f,, n=1,2,..., be
determined by the condition

Sf" = r,,Sf,

where r, <1 and r, > 1 as n— . All functions f, are univalent, and we can
normalize them so that they agree with f at three fixed points of A. Then the
functions f, form a normal family, and there is a sub-sequence which converges
locally uniformly in A towards a conformal mapping of A. This limit function has
the same Schwarzian derivative as f, and it follows that f is univalent.

If A is a disc, then o3 =2. This has been known for almost thirty years: the
estimate o; =2 follows from a theorem of Nehari [4], and examples given by Hille
[3] show that o5 =<2.

There is an intimate connection between the constant o; and quasiconformal
mappings: o,>0 if and only if the boundary of A is a quasicircle. The sufficiency
of the condition was proved by Ahlfors [1], the necessity by Gehring [2].

5. Universal Teichmiiller space

Suppose the domain A is bounded by a quasicircle. Let Q(A) be the Banach
space consisting of all holomorphic functions of A with finite norm. We introduce
the subsets

A(A)={¢=S;|f univalent in A},
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Ay(A)={¢=S;€A(A)|f can be extended to a quasiconformal
mapping of the plane}.

Both sets are well defined. The set Ay(A) is called the universal Teichmiiller space
of A.
The sets A(A) and A,(A) are connected as follows:

Ao(A) = interior of A(A). 9)

This was proved by Gehring [2] in the case where A is a disc. The same reasoning
yields the result for an arbitrary domain A also.

THEOREM 3. If f is univalent in A and ||S¢||, < 0, then f can be extended to
a quasiconformal mapping of the plane.

Proof. By the remark in Section 4, the closed ball {¢p € Q(A) ||l¢]la <03} is
contained in A(A). Hence, if ||S;||<o3, then S; is an inner point of A(A), and
the theorem follows from (9).

In the special case where A is the upper half-plane H, we write briefly Q, A
and A,, without indicating the domain H.

It is not known whether every point of A is in the closure of A,. We need the
following much weaker result:

LEMMA 1. On every sphere |¢|=r of Q, 2=<r=<6, there are points of
A—A, belonging to the closure of A,.

Proof. Let f be a conformal mapping of H onto a rectilinear quadrilateral B
with symmetry f(—Z)= f(z), with vertices at the points f(0)=0, f(x1), f()<0,
and with the angles aw at 0, 1=« <2, and (1—a/2—n)m at f(£1), where n=0is
small. If n =0, then f() =, and two sides of B are half-lines parallel to the real

axis.

Direct computation yields

%822;—(;:”)(:—1211)'

Hence,
1-a? a a b
= + + + , 1
A PR P | A P | (10)
where

a=¥a+2n)4-a-27n), b=%a+2m)4-3a+27). (11)
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From (10) we see that
4y2Si(iy) =2(a®>-1)+0(1), z=x+1y,

as y — 0. Because py(z)=(2y)7", it follows that ||Si||ly =2(a®—1). In particular,
IS¢l = 6 as @ — 2. On the other hand, for a = 1 the domain B is convex, and by
Theorem 1, ||S|ly =2.

Suppose, for a moment, that n =0. From (10) and (11) we deduce, since
y?|zx1|7?>=1,y?|z*>-1|"'=1, that ||S;|y depends continuously on «. Therefore,
given any r, 2<r=6, there is a quadrilateral B such that ||S;||; = r. The boundary
of B, having a cusp at %, is not a quasicircle and so S;e A—A,.

On the other hand, for >0 the domain B is bounded by a quasicircle, and
hence S;€A,. If we write f=f, , then it is again immediate from (10) and (11)
that for every a,

lim ||S;, —S; Jlu = 0.
n—0

Consequently, the Schwarzian of f,, is in the closure of A,.

6. New characterization of o,

Given a domain A bounded by a quasicircle, let f: H — A be conformal. We let
the point @, = S; represent A in A,. Then [¢4]= ;.

The point ¢4 €A, is not uniquely determined by A, nor does a point of A,
determine a unique domain. We obtain a well defined bijection by identifying two
domains if they are equivalent under Mébius transformations, and two points S;
and S, of A, ifg~'of is a conformal self-mapping of H. For our purposes, the
choice of the representative of A in A, is immaterial.

THEOREM 4. The constant o5 of A is equal to the distance of ¢, to the set
A_Ao.

Proof. Let d denote the distance between A — A, and the point ¢, = S;, where
h is a conformal map of H onto A. Let f be meromorphic in A. From

ISilla =118 n= Sulle

we see that if |Sil, <d, then Sy.,€A,. But then f=(f © h) o h™" is univalent, and
consequently o;=d.
On the other hand, it follows from Theorem 3 that o;=d.
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7. Estimates for o
Theorem 4 and Lemma 1 give sharp lower estimates for o5 if o, is given.

THEOREM 5. For domains with given o, and bounded by quasicircles,
min0'3=2""0'1 if OSO'1<2, (12)
inf0'3=0 if 2S0'1<6- (13)

Proof. Suppose first that o, <2. Since the ball {p € Q ||@|y <2} lies in A,,
Theorem 4 yields the lower estimate o3;=2—o,.

In order to prove that this inequality is sharp, we consider the point S,,, where
w is the restriction to H of a branch of the logarithm. Then S, €A—A, and
ISulls=2. Let h be determined by the condition S, =7rS,, r<1, and set A=
h(H), f=w o h™'. From ||S,|l <2 it follows that S, € A,, and so A is bounded by
a quasicircle. Furthermore, o, =||S,||g =2r, and

”Sf”A = ”Sf_ Sw”H =2(1-r=2-o0,.

From S, € A—A, we conclude that S; € A(A)—Ay(A). Consequently, by Theorem
3, 05=2-0,, and (12) follows.

Since o5 =0 for a domain not bounded by a quasicircle, equation (13) follows
immediately from Theorem 4 and Lemma 1.

The following upper estimates complement Theorem 5.

THEOREM 6. The constant o5 satisfies the inequality
o3 =min (2, 6 — 0y).

Proof. Since A is contained in the ball of radius 6, the estimate o;=6-0,
follows immediately from Theorem 4.
In order to prove that

gy=2 (14)

we note that every Jordan domain is Mobius equivalent to a subdomain of H
having 0 and « as boundary points. Therefore, we may assume that A is such a
domain.

Set f(z)=log z. From S;(z)= 27%/2 and pa(z)= py(2) it follows that

S;(2)] pal(z) 2= Z(i-:—l) =2. .

Since the boundary of f(A) is not a Jordan curve, S;€ A(A)—Aq(A). Thus (14)
follows from Theorem 3.
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