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Domain constants assodated with Schwarzian derivative

Olli Lehto

Dedicated to Professor Albert Pfîuger on his seventieth birthday

1. Définition of the constants

Let A be a simply connected domain in the extended plane with more than one
boundary point. A non-euclidean metric p(z)|dz| of A is defined by the condition
p^ldzl^l-lwl2)-1!^!, where z-»w is a conformai mapping of A onto the
unit dise D. For a function <p holomorphic in A we introduce the norm

Let / be a locally injective meromorphic function in A and S; its Schwarzian
derivative. At finite points of A which are not pôles of / we hâve Sf

(/'Vf)'-!(/"//')2, and the définition is extended to » and to the pôles of / by means
of inversion. Every function which is holomorphic in A is the Schwarzian of some

meromorphic /. The Schwarzian vanishes identically if and only if / is a Môbius
transformation. A function with a prescribed Schwarzian is determined up to a

Môbius transformation.
If g : A —» B is a conformai mapping, then

In particular,

l|Sg|U=||Sg-1||B. (2)

We associate with the domain A the foliowing three constants:

0"i= IIS/IL? where / is a conformai map of A onto a dise,

cr2 sup {\\Sf\\A | / univalent in A},

cr3 sup {a | \\Sf\\A ^ a implies / univalent in A}.
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604 OLLI LEHTO

2. Constant ax

In the définition of aly a dise means an ordinary dise or a half-plane. The
number ax is well defined and equal to 0 if and only if A itself is a dise. It is well
known that ax ^ 6, and the example A {z | 0 < arg z < kir}, 1 < k < 2, shows that

o-j can take any value of the closed interval [0, 6].
In view of (2), we could define ax also with the aid of conformai mappings of a

dise onto A. A further characterization is obtained as follows: Let / be a

conformai mapping of the unit dise D onto A and h a conformai self-mapping of
D, such that h(0) z0. Since pD(0)= 1, it follows from (1) that

\Sf(z0)\pD(z0r2=\Sf.h(0)\. (3)

Hence

o-! sup (15/(0)11 / : D -» A conformai}. (4)

In some cases, information about the boundary of A makes it possible to
improve the estimate a1^6. Suppose that the boundary of A is a K-quasicircle,
i.e. the image of a circle under a K-quasiconformal mapping of the plane.
(Quasicircles were first investigated by Pfluger [5].) Then crx <6(K2 - 1)/(K2 +1).

Another resuit of this type is that for convex domains a1^2. This follows
from known results on the coefficients of univalent functions, see e.g. [6]. We
include hère a simple proof which also gives the extremals. (Quite recently,
Nehari (J. Analyse Math. 30 (1976)) also established this resuit by using varia-
tional techniques.)

THEOREM 1. Let f be a conformai mapping of a dise onto a convex domain.
Then

|S/(z)|p(z)-2<2. (5)

Equality holds if and only if the image domain is bounded by two parallel Unes.

Proof. We may assume that / is a conformai map of the unit dise. In view of
(3), inequality (5) follows if we prove that |S/(0)|<2. Since we may replace / by
the function z -» c/(zel<p), c complex, <p real, there is no loss of generality in

assuming that S;(0)>0 and that f(0)= 1.

It is well known that /' admits a représentation

f(z) exp - pdog (1 - ze~ie) <ty(0)), (6)
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where ty is increasing and

#(9) 2.

Direct computation yields

Since Sf(0) is real and d</r(0)>O, we obtain

$(0) J cos29#(0)-èM cos0di//(0)j +|M si

<J cos20diK0)-è( I cos 0diK0)j + I si

i2ir
/pw \2 r27r

cos20#(0)-è(J cos0d<A(0)J ^1 co

Because 5^(0)^0, we hâve proved (5).
Equality holds only if

Ç27T Ç2tt
cos20 dilf(d) 2, cos 0 #(0) 0.

Jo Jo

Thèse conditions are fulfilled if and only if ij/ has a jump +1 at the points 0 and tt
and is constant on the intervais (0, tt) and (tt, 2tt). Then S^(0) 2, and it follows
from (6) that f(z) (1 - z2)"1. We conclude that the image of D is a parallel strip.

3. Constant a2

The number o-2 is 6 if A is a dise and <j2^ 12 for ail domains A, In fact, there
is a simple relation between (tx and or2:

THEOREM 2. In euery domain A,

0-2 0-! +6. (7)

Proo/. Let / be univalent in A and h : D —? A conformai. By (1).

NL il^H - Sh\\D < 6 + ||SJD 6 + a,. (8)

In order to show that the estimate \\Sf\\A ^ 6 + ax cannot be improved, let an

e>0 be given. Considering (4), we can choose h such that \Sh{0)\>al-e. The
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mapping w, defined by w(z) z + el0/z, is univalent in D, and

Sw(z) -6e'Ve-z)-2.
Set f=w° h'1. Then / is univalent in A, and

IIS/IL IISw - Sh\\D > |Sw(0) - Sh(0)| |-6e" - SH(0)|.

By choosing 0 suitably we obtain

Combined with (8), this yields (7).

4* Constant a3

In the définition of <r3, sup can be replaced by max. To prove this, let us

suppose that / is meromorphic in A with \\Sf\\A cr3. Let fn, n 1, 2,..., be
determined by the condition

Sfn rnSf,

where rn < 1 and rn -» 1 as n -» <». AH functions /n are univalent, and we can
normalize them so that they agrée with / at three fixed points of A. Then the
functions fn form a normal family, and there is a sub-sequence which converges
locally uniformly in A towards a conformai mapping of A. This limit function has

the same Schwarzian derivative as /, and it follows that / is univalent.
If A is a dise, then cr3 2. This has been known for almost thirty years: the

estimate a3 ^ 2 follows from a theorem of Nehari [4], and examples given by Hille
[3] show that cr3<2.

There is an intimate connection between the constant a3 and quasiconformal
mappings: cr3>0 if and only if the boundary of A is a quasicircle. The sufficiency
of the condition was proved by Ahlfors [1], the necessity by Gehring [2].

5. Universel Teichmiiller space

Suppose the domain A is bounded by a quasicircle. Let Q(A) be the Banach

space consisting of ail holomorphic functions of A with finite norm. We introduce
the subsets

A(A) {<p Sf | / univalent in A},
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{<p S/eA(A)|/ can be extended to a quasiconformal
mapping of the plane}.

Both sets are well defined. The set A0(A) is called the universal Teichmûller space
of A.

The sets A(A) and A0(A) are connected as follows:

A0(A) interior of A(A). (9)

This was proved by Gehring [2] in the case where A is a dise. The same reasoning
yields the resuit for an arbitrary domain A also.

THEOREM 3. If f is univalent in A and \\Sf\\A < cr3, then f can be extended to

a quasiconformal mapping of the plane.

Proof. By the remark in Section 4, the closed bail {<p g Q(A) | ||<p|U — ^3} is
contained in A(A). Hence, if HS/H"*:^, then Sf is an inner point of A(A), and
the theorem follows from (9).

In the spécial case where A is the upper half-plane H, we write briefly Q, A

and Ao, without indicating the domain H.
It is not known whether every point of A is in the closure of Ao. We need the

foliowing much weaker resuit:

LEMMA 1. On every sphère \\<p\\ r of Q, 2^r<6, there are points of
A-Ao belonging to the closure of Ao.

Proof. Let / be a conformai mapping of H onto a rectilinear quadrilatéral B
with symmetry /(-z) /(z), with vertices at the points /(0) 0, /(±1), /(°°)<0,
and with the angles an at 0, 1 < a <2, and (1 - a/2- 7])tt at f(±l), where 17 > 0 is

small. If 17 0, then /(°°) <», and two sides of B are half-lines parallel to the real
axis.

Direct computation yields

f'(z)~ z \2 + V)\z-1 + z-ir
Hence,

where

a=|(a+2Tj)(4-a-2n), b=|(a + 2î})(4-3a+2T,). (11)
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From (10) we see that

as y->0. Because pH(z) (2y)"1, ît follows that \\Sf\\H>2(a2-l). In particular,
I|S/||H -* 6 as a -» 2. On the other hand, for a 1 the domain B is convex, and by
Theorem 1, ||S/||H^2.

Suppose, for a moment, that 17 0. From (10) and (11) we deduce, since
y2 |z±l|~2^l, y2 Iz2-!]"1^!, that \\Sf\\H dépends contmuously on a Therefore,
given any r, 2^ r<6, there is a quadrilatéral B such that ||S^||H r The boundary
of B, having a cusp at 00, is not a quasicircle and so Sf e A - Ao

On the other hand, for 17 > 0 the domain B is bounded by a quasicircle, and
hence SfeA0 If we wnte / /aT), then ît is again immédiate from (10) and (11)
that for every a,

hm \\Sf - Sf J|H 0

Consequently, the Schwarzian of /a 0 is m the closure of Ao.

6. New characterizatîon of a3

Given a domain A bounded by a quasicircle, let / H —» A be conformai We let
the point <pA Sf represent A m Ao Then ||<pA|| 0"i-

The point <pA g Ao is not uniquely determmed by A, nor does a point of Ao

détermine a unique domain. We obtain a well defined bijection by identifying two
domains if they are équivalent under Mobius transformations, and two points Sf

and Sg of Ao if g~lof is a conformai self-mappmg of H For our purposes, the
choice of the représentative of A in Ao is immaterial

THEOREM 4. The constant a3 of A is equal to the distance of <pA to the set

A-Ao

Proof. Let d dénote the distance between A - Ao and the point <pA Sh, where
h is a conformai map of H onto A. Let / be meromorphic in A. From

we see that if \\Sf\\A <d, then Sfohe Ao. But then f=(f°h)° h'1 is univalent, and

consequently a3 ^ d.

On the other hand, ît follows from Theorem 3 that cr3 < d
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7. Estimâtes for a3

Theorem 4 and Lemma 1 give sharp lower estimâtes for cr3 if a1 is given.

THEOREM 5. For domains with given at and bounded by quasicircles,

mincr3 2-<71 if 0<o-!<2, (12)

inf o-3 0 if 2<cr1<6. (13)

Proof. Suppose first that al<2. Since the bail {(pe Q | ||<p||H<2} lies in Ao,

Theorem 4 yields the lower estimate cr3>2 — a1.
In order to prove that this inequality is sharp, we consider the point Sw, where

w is the restriction to H of a branch of the logarithm. Then SweA-A0 and

IISwIIh-2. Let h be determined by the condition Sh rSw, r<l, and set A
h(H), f= w o h'1. From ||SH||H<2 it follows that She Ao, and so A is bounded by
a quasicircle. Furthermore, cr1 ||Sh||H 2r, and

From SweA-A0 we conclude that Sfe A(A)-A0(A). Consequently, by Theorem
3, o-3 < 2- o-!, and (12) follows.

Since cr3 0 for a domain not bounded by a quasicircle, équation (13) follows
immediately from Theorem 4 and Lemma 1.

The following upper estimâtes complément Theorem 5.

THEOREM 6. The constant a3 satisfies the inequality

a3 < min (2, 6 - crj).

Proof. Since A is contained in the bail of radius 6, the estimate a3^6-cr1
follows immediately from Theorem 4.

In order to prove that

o-3<2 (14)

we note that every Jordan domain is Môbius équivalent to a subdomain of H
having 0 and <» as boundary points. Therefore, we may assume that A is such a

domain.
Set /(z) logz. From Sf(z) z~2/2 and pa(z)^Ph(z) it follows that

Since the boundary of /(A) is not a Jordan curve, Sfe A(A)-A0(A). Thus (14)

follows from Theorem 3.
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