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Schlichte Funktionen und analytische Funktionen
von beschrânkter mittlerer Oszillation

Ch. Pommerenke

Herrn Professor A. Pfluger zum 70. Geburtstag

1. Einleitung

Sei BMOA der Banachraum der in D {|z|< 1} analytischen Funktionen / mit
der Norm

11/11* 1/(0)1 +sup||/J2<œ, (1.1)

wobei fur |£|<1 gesetzt ist

(zeB), (1.2)

^SM*!- (1-3)

Das sind gerade die Funktionen in H1, deren Randwerte zu BMO (dD)
("beschrânkte mittlere Oszillation," [12][17]) gehôren. Fefïerman und Stein [9]
haben gezeigt, daB BMOA der Dualraum von H1 ist. Weiter sei VMOA ("ver-
schwindende mittlere Oszillation," Sarason [18]) der Raum der fe BMOA mit

Il/Jk-O fur lÉl-1-0; (1.4)

dièse Bedingung ist àquivalent zu

||/(z)-/MU-*0 fur r^l-0. (1.5)
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592 CH. POMMERENKE

Sei 98 der Banachraum der Blochfunktionen [3][15], d.h. der in O analytischen
Funktionen / mit

II/IU l/(0)| + sup(l-|z|2) |f(z)|<», (1.6)
|z|<l

und sei â80 der Raum der fe 08 mit

(l-\z\2)\f(z)\->0 fur |z|->l-0. (1.7)

Nach (1.2) und (1.3) ist (l-|f|2)|f(f)| |/i(O)|^||/J2, also ||/|U ^ ||/||*. Somit gilt
(neben BMOAcHp fur p<°°)

0. (1.8)

Wir werden zeigen (Satz 1), daB fur schlichte Funktionen umgekehrt

fe m =*> fe BMOA, fe 380 3> fe VMOA

gilt. Hieraus folgt u.a. der Satz von Baernstein, daB log g e BMOA ist, wenn
g(z) #0 in D schlicht ist. Die Bedingungen /gÔ8 und fe9è0 besagen, daB die in
/(D) enthaltenen Kreisscheiben beschrânkte Radien haben bzw. daB die Radien
dieser Kreisscheiben —» 0 streben, wenn die Mittelpunkte -> o° gehen [15].

Das Hauptergebnis (Satz 3) ist die folgende Darstellung von BMOA durch die

Ableitung schlichter Funktionen: Eine Funktion gehôrt genau dann zu BMOA,
wenn sie die Form

/(z) Mogg'(z) (zeD)

hat, wo b eine Konstante und g eine in D schlichte Funktion ist, deren Bildgebiet
durch eine rektifizierbare Jordankurve berandet wird, die

(Bogenlànge zwischen wx und w2) c |w1-w2| (1.9)

erfûllt. Die Bedingung (1.9) spielt in der Théorie der konformen Abbildung eine

wichtige Rolle [10][13][19][20][21].
Herrn D. Gaier und Herrn H. M. Reimann môchte ich fur die Gesprâche

danken, die ich mit ihnen ûber diesen Themenkreis gefûhrt habe.
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2. Schlichte Blochfunktionen

Zuerst betrachten wir Funktionen, fur welche die Anzahl n(/, w) der w-
Stellen in D einer gewissen Beschrànkung unterliegt; dièse Bedingung ist ins-
besondere fur schlichte Funktionen erfùllt.

vSATZ 1. Sei f analytisch in D und sei

(wogC) (2.1)

(mit dù= dudv). Dann gilt

Beweis. Die eine Richtung ist trivial nach (1.8). Sei umgekehrt feSi. Nach
(1.2) und (1.6) gilt fur £eD,

(2.2)

Da die Bedingung (2.1) translationsinvariant ist, gilt

Jj n(fo w) dù^A (feD, wo€C).

Man kann {|w|^Af} durch 4[M +1]2 Kreisscheiben vom Radius 1 bedecken. Also
folgt aus (2.2) fur aile (eD

£ [| n(fc w) da^
|z|<r

(2.3)
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Fur O<R<1 ist nach einer Identitât von Hardy [16,S.126]

JJ \n(z)\2dn)*. (2.4)

|z|<r

Speziell mit R 1/2 ergibt sich wegen fe $ aus (2.3) und (1.1) also fe BMOA.
Sei nun fe&0. Nach (2.4) und (2.3) kann man R<1 so wàhlen, da6

ist. Fur fe$0 gilt fc(z)-^Q (|£|-»l-0) lokal gleichmâBig in zgD. Also ist

M((JR)-*0 fur |£|-*l-0 und daher auch ||/J2-^0. Nach (1.4) ist daher fe
VMOA.

FOLGERUNG 1. Sei g(z)*0 schlicht in D und fur wGg(O) sei d(w)
dist (w, dg(D)). Dann ist log g g BMOA, und weiter gilt

loggGVMOA<S>^-+0 (|w|->0,oo). (25)

Die erste Behauptung ist ein Ergebnis von Baernstein [4]; ein anderer Beweis
wurde von Cima und Schober [7] gegeben. Die Relation (2.5) ist ein gemeinsames
Ergebnis mit J. M. Anderson.

Beweis. Die Funktion / log g ist schlicht in D. Aus dem Koebeschen Verzer-
rungssatz ergibt sich [16, S.22] fur w g(z)

Wegen g(z)#0 ist d(w)^\w\, also loggeM und daher g BMOA nach Satz 1.

Weiter strebt immer d(w)—»0, wenn w sich einem endlichen Randpunkt nâhert.
Somit ist

|->0(|z|->l-0)<^ ^-+0 (M->0,oo).
I ^^ I

Nach (1.7) und Satz 1 gilt also (2.5).
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3. Exponentiation von BMOA-Funktionen

Zuerst betrachten wir einen Operator in H2.

LEMMA 1. Fur f e BMOA, geH2 sei

(3.1)

Mit einer absoluten Konstanten K gilt dann

W2ëK||/|Ug||2. (3.2)

Beweis. Nach der Identitàt von Hardy [16, S.126] und nach (1.1) ist

\\m=l \\\r\l/l21

D

dn. (3.3)

Hieraus kann man leicht folgern, da6 (Fefferman und Stein [9])

gilt. Nach dem Satz von Carleson [6][8,S.157] und nach (3.3), (3.1) ist daher

hî ll|g(z)|2 |f(z)|2 log è m-K2 m Mlm—-

Der durch (3.1) definierte lineare Operator ist also beschrânkt. Seine Norm ist

^K2||/|U, falls /(0) 0 ist; zum Beweise setze man g(z) (l-fz)"1 in (3.1) und
benutze (3.3).

SATZ 2. Folgende Bedingungen sind àquivalent:
(i) EsistfeBMOA.

(ii) Es gibt a e C\{0} und M, so dafi eaf eine âufiere Funktion in H2 ist und



596 CH. POMMERENKE

(iii) Es ist je â8, und es gibt a eC\{0} und M, so daji u(z) Re [af(z)](z eO) sich
als Poissonintegral seiner Randwerte darstellen lâjit und

gilt, wobei 1(0 {z e 60 : |arg z - arg (\ £ tt(1 - \[\)} ist

Eine Funktion geHp heiBt âuBere Funktion, wenn g(z)^0 und

l|()||d| (Z€D).

Dies gilt insbesondere, wenn log geH1 ist.

Die Aussage (i)=>'(ii) stammt von John und Nirenberg [12, S.415]; hieraus

folgt u.a. (Cima und Schober [7])

/gBMOA^^gHp fur ein p>0. (3.4)

Unser Beweis wird zeigen, daB man in (ii) immer M =2 und jedes ae£ mit
|a|^ 1/(2X11/11*) wâhlen kann^ wo K die Konstante aus Lemma 1 ist. Unter
Benutzung der Zerlegung /(z) /(rz) + (/(z)-/(rz)) (1-r klein) folgt daraus nach
(1.5)

feVMOA^>efeHp fur jedes p<oo. (3.5)

Bemerkung. Dièse Relation kann man auch dann nicht umkehren, wenn
|e/(z)|>l ist, wie das folgende (nur angedeutete) Beispiel zeigt. Die schlichte
Funktion / bilde D auf das Gebiet

G= Û({|w-2n|<n}U{2n<Rew<2n+1,|Imw|<5n})

ab. Wenn 8n genûgend schnell —»+0 konvergiert, so kann man

f1
exp (p max |/(z)|) dr<<*> fur jedes p<»

Jo |z|-r
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zeigen, woraus man unter Benutzung von Standardmethoden fur schlichte
Funktionen [16, Abschn. 5.1] efeHp folgern kann. Da G beliebig groBe Kreisscheiben
enthàlt, ist /£ 38, also /£ BMOA.

Beweis von (i) ^> (ii). Sei je BMOA und 0 < \a\ ^ 1/(2JC ||/||*).. Fur |f | < 1 setzen
wir g(z) exp [a/^z)] und erhalten in (3.1)

ah(z) aJZfc(s) exp [afc(s)] ds exp [afc(z)] - 1 g(z) - 1.

Nach (3.2) ist also wegen ||/J*^|

und daher

Beweis von (ii) => (îii). Nach (1.2) ist exp[a/€(z)]=
nach derParsevalschenFormelalso|a|2(l-|^|2)2 \f'(0\2^\\ exp afc\\l^M2fur\Ç\< 1.

Somit ist /eÔ8.
Mit der Substitution s (z + £)/(l + £z) ergibt sich aus (ii)

Fur s g J(f) ist 11 — îs\ \s - {\ ^ (tt +1)(1 -1£|). Daher folgt (iii) mit 2a statt a und
mit (tt + 1)2M2 statt M.

fîeweis uon (iii)=>(i). Wir setzen p \Ç\ und m [log 1/(1-p)]. Sei 4
(k 0,..., m + 1) definiert durch

und sei Ik 1(4). Wegen /g â8 ist nach (1.6)

^ (3.6)
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die Konstanten Ml5... hângen nur von a und / ab. Fur zelk_1 ist |z-£|=^
^21(^~\(k-i\)=z^ïlek~l(\ — p)i also nach (3.6)

K\ik.x \z-éi i-p Jik

Wegen Z(Ik) 27r(l-|fk|)^27rek(l-p) ist dies nach der Ungleichung zwischen
dem geometrischen und arithmetischen Mittel

^M4e-k log (-fr f eM(z)-u(^ \dz\) + M4ke~k ^ M5(k + l)e"k ;

die letzte Ungleichung folgt aus (iii). Eine âhnliche Abschâtzung erhàlt man fur
das Intégral ûber Io !(£)• Wegen Im+1 dD folgt somit durch Addition der
obigen Abschâtzungen

die erste Identitât ergibt sich aus der Poissonschen Integralformel.
Wenn uc den Mittelwert ûber J(£) bezeichnet, so folgt

d.h. definitionsgemâB gehôrt u(£) (^€dD) zu BMO(ôD). Nach Voraussetzung kann

Re[af(z)]= u(z)(zgD) als Poissonintegral von u(£)(£€dD) dargestellt werden.
Da auch die konjugierte Funktion zu BMO (dD) gehôrt, gilt /eBMOA.

4. Die Ableitung schlichter Funktionen

Nun soll BMOA mittels der Ableitung schlichter Funktionen charakterisiert
werden.

SATZ 3. Genau dann ist fe BMOA, wenn

(4.1)
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fur eine Konstante beC gilt, wobei g in D schlicht und C dg(D) eine rektifizierbare
Jordankurve ist, die

KC(wu w2)) ^ y \wt - w2\ (wl9 w2 g C) (4.2)

fur eine Konstante y erfûllt; hierbei ist Ciw^ w2) der (kùrzere) Bogen von C
zwischen wt und w2.

Die Bedingung (4.2) fur schlichte Funktionen wurde zuerst von Lavrent'ev
[13,Th.8] untersucht. Er zeigte u.a., daB g(O) die Smirnov-Bedingung erfùllt, d.h.
da8 log |g'| sich als Poissonintegral darstellen lâBt; dièses Ergebnis werden wir
beim Beweis benutzen. Aus Satz 3 ergibt sich eine Verschàrfung der Ergebnisse
von Lavrent'ev.

FOLGERUNG 2. Die schlichte Funktion g erfùlle die Bedingung (4.2). Dann
ist log g'eH1 und es existieren M und a>0, so dafi gilt

mes{zGdû:|logg;(z)|>A}<Me-aA (À>0). (4.3)

Dièse Abschâtzung ergibt sich unmittelbar aus Satz 3 und der entsprechenden
Abschâtzung von John und Nirenberg [12][17,S.31] fur BMO-Funktionen. Aus
(4.3) oder (3.4) folgt u.a.

Ji \g'(z)\~p \dz\<*> fûrein p>0,
dD

falls (4.2) gilt (Warschawski und Schober [21]).
Das entsprechende Résultat fur Blochfunktionen ist bekannt. Genau dann ist

fe 38, wenn die Darstellung (4.1) gilt, wobei nun C aber nur die schwâchere
Bedingung

diam C(wlf w2)^P l^- w2| (wl9 w2e C) (4.4)

zu erfûllen braucht. Dièse Bedingung ("beschrânkte Schwenkung") ist gerade die

geometrische Charakterisierung der quasikonformen Kurven von Ahlfors [1][16,
Abschn. 9.4]. Es gibt nicht-rektifizierbare Kurven, die (4.4) erfûllen, sogar solche,
die nirgends eine Tangente besitzen [16, S.304].

Wenn fe 38 und |6|>||/|U ist, so ist mit (4.1)

sup(l-|z|2)
g'(z)
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Nach einem Satz von Ahlfors und Weill [2] und von Becker [5] ist daher g
schlicht und C erfûllt (4.4). Die Umkehrung folgt allein aus der Schlichtheit [15].

Der Beweis von Satz 3 beruht auf dem folgenden Hilfssatz. Fur |£|<1 sei

wieder 1(0 {zedB:\ arg z-arg (\^ tt(1 -|

LEMMA 2. Sei g schlicht in D und C dg(D) eine rektifizierbare Jordankurve.
Wenn (4.4) und

f \gr(z)\\dz\^a(l-\(\2)\gU)\ (f€D) (4.5)

gelten, so gilt (4.2) fur ein y. Wenn umgekehrt (4.2) erfùllt ist, so gilt (4.5) fur eine

Konstante a.

Beweis. (a) Sei w} g(z,), z} e dD (/ 1,2). Wir wâhlen £ e D so, daB zx und z2

die Endpunkte von I(£) sind. Aus (4.5) erhalten wir dann

\g'(z)\\dz\^a{\-\C\2)\gU)\. (4.6)

Wenn A(() die nichteuklidische Strecke zwischen £ und zx bezeichnet, so folgt
nach einem Analogon [14, S.136] des Satzes von Gehring und Hayman [11] aus

(4.4)

diam g(A(f))^ JS^ diam C(wt, w2)^K1p K- w2|

wo Kx eine absolute Konstante ist. Daher ist

Somit ergibt sich (4.2) (mit y 4K1ap) aus (4.6).
(b) Umgekehrt gelte (4.2). Seien 1, 0 1,2) die an 1(0 anschlieBenden

Teilbogen von dû der Lange l-|f|. Dann existieren [16, S.314] Jordanbôgen Ap
die £ mit einem Punkt z} g I} verbinden, so daB

0" 1, 2)

ist. Aus (4.2) mit w, f(z,) folgt daher

KC{wu W2»Sy |w,- w2\22K2y(l-\ff) |g'(«|. (4.7)
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Aus (l-|£|2)|g'(f)|-»O (|f|->l-0) kann man leicht die Existenz eines p<l
folgern, so daB g(I(Ç))^ C(wl9 w2) fur |£|>p ist. Also folgt (4.5) fur |f|>p aus
(4.7). Fur \Ç\^p ist (4.5) trivial.

Beweis von Satz 3. (a) Sei /eBMOA. Wir wâhlen be C mit \b\^2K\\f\\*y wo
K^l die Konstante aus Lemma 1 ist. Wegen |fr|>||/H* ist dann die durch (4.1)
defînierte Funktion g schlicht und erfùllt die Bedingung (4.4). Nach Satz 2 (iii)
(mit a 1/6) gilt (4.5). Aus Lemma 2 erhalten wir also die Gûltigkeit von (4.2).

(b) Umgekehrt seien (4.1) und (4.2) erfûllt. Aus der Schhchtheit von g folgt
/g 08. Weiter gilt (4.5) nach Lemma 2. Nach dem Ergebnis von Lavrent'ev ist also
die Bedingung (iii) von Satz 2 (mit a 1/b) erfûllt und es folgt /eBMOA.
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