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Schlichte Funktionen und analytische Funktionen
von beschrinkter mittlerer Oszillation

CH. POMMERENKE

Herrn Professor A. Pfluger zum 70. Geburtstag

1. Einleitung

Sei BMOA der Banachraum der in D = {|z| < 1} analytischen Funktionen f mit
der Norm

Il = 1)+ suplila <= (1)

wobei fiir |{|<1 gesetzt ist

f(z)= f( ) f(§) (zeD), (1.2)

1+¢z

lid=5= | 15 42l=5= [ 15 00P =0 el %)

Das sind gerade die Funktionen in H', deren Randwerte zu BMO (aD)
(“beschriankte mittlere Oszillation,” [12][17]) gehoren. Fefferman und Stein [9]

haben gezeigt, daB BMOA der Dualraum von H' ist. Weiter sei VMOA (‘“‘ver-
schwindende mittlere Oszillation,” Sarason [18]) der Raum der fe BMOA mit

If 0 fir [{—1-0; 1.4
diese Bedingung ist dquivalent zu

If(z)— f(rz)|l—0 fiir r—1-0. (1.5)
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592 CH. POMMERENKE

Sei B der Banachraum der Blochfunktionen [3][15], d.h. der in D analytischen
Funktionen f mit

Ifla = 1fO)+ sup(1~[2P) (D)<=, (1.6

und sei B, der Raum der fe B mit
(1-1zP) |f(z)]=0 fir |z]—-1-0. (1.7)

Nach (1.2) und (1.3) ist (1—|¢P)If'(D]=|fHOI=If,|l, also ||flla =|fll«. Somit gilt
(neben BMOA < H? fiir p <)

BMOA c %, VMOA < &,. (1.8)

Wir werden zeigen (Satz 1), daB fiir schlichte Funktionen umgekehrt

feB>feBMOA, fe®B,=>fe VMOA

gilt. Hieraus folgt u.a. der Satz von-Baernstein, daBl log g€ BMOA ist, wenn
g(z)#0 in D schlicht ist. Die Bedingungen fe 8 und fe B, besagen, daB die in
f(D) enthaltenen Kreisscheiben beschrinkte Radien haben bzw. daB die Radien
dieser Kreisscheiben — 0 streben, wenn die Mittelpunkte — o gehen [15].

Das Hauptergebnis (Satz 3) ist die folgende Darstellung von BMOA durch die
Ableitung schlichter Funktionen: Eine Funktion gehort genau dann zu BMOA,
wenn sie die Form

f(z)=blog g'(z) (zeD)

hat, wo b eine Konstante und g eine in D schlichte Funktion ist, deren Bildgebiet
durch eine rektifizierbare Jordankurve berandet wird, die

(Bogenldnge zwischen w; und w,)=c |w,;— w,| (1.9)

erfiillt. Die Bedingung (1.9) spielt in der Theorie der konformen Abbildung eine
wichtige Rolle [10][13][19][20][21].

Herrn D. Gaier und Herrn H. M. Reimann mochte ich fiir die Gespriache
danken, die ich mit ihnen iiber diesen Themenkreis gefiihrt habe.
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2. Schlichte Blochfunktionen
Zuerst betrachten wir Funktionen, fiir welche die Anzahl n(f, w) der w-
Stellen in D einer gewissen Beschrankung unterliegt; diese Bedingung ist ins-

besondere fiir schlichte Funktionen erfullt.

SATZ 1. Sei f analytisch in D und sei

jj n(f,w)dl=A<ow (woeC) (2.1)

|lw—wo|=1

(mit dQ = du dv). Dann gilt
feBMOA & fe %, feVMOA & fe %,.

Beweis. Die eine Richtung ist trivial nach (1.8). Sei umgekehrt fe %. Nach
(1.2) und (1.6) gilt fiir {eD, 0=r<1

1+r 1+r

M,(n= maz o2 =z Ifellw log T— =3 Ifelle log T (2.2)

Da die Bedingung (2.1) translationsinvariant ist, gilt

‘” n(f, w) d=A (L eD, wyeC).

]W—Wolél

Man kann {|w|= M} durch 4[M + 1]* Kreisscheiben vom Radius 1 bedecken. Also
folgt aus (2.2) fiir alle € D

1 2
IJ If(2)]* dQ= jj n(f, w) dQ=4A[M,(r)+ 1] = const - (1 +log —I—:—r) :
|lz]<r jwi=M(r)

(2.3)
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Fir 0<R <1 ist nach einer Identitit von Hardy [16, S.126]

2

IfRe®)? d«9+% L ( H fi(2)P dn) —‘{-’ (2.4)

1
2 D —
= |

lzl<r

Speziell mit R = 1/2 ergibt sich wegen fe & aus (2.3) und (1.1) also fe BMOA.
Sei nun fe B,. Nach (2.4) und (2.3) kann man R <1 so wihlen, daB

IfI2 <M (Ry>+e  (l¢|<1)

ist. Fir fe®, gilt f,(z)>0 (|(|>1-0) lokal gleichmiBig in zeD. Also ist
M;(R)—0 fiir |{/>1-0 und daher auch ||f||,—>0. Nach (1.4) ist daher fe
VMOA.

FOLGERUNG 1. Sei g(z)#0 schlicht in D und fiir we g(D) sei d(w)=
dist (w, 9g(D)). Dann ist log g€ BMOA, und weiter gilt

log geVMOA@MeO (jw|— 0, x). 2.5)

wi

Die erste Behauptung ist ein Ergebnis von Baernstein [4]; ein anderer Beweis
wurde von Cima und Schober [7] gegeben. Die Relation (2.5) ist ein gemeinsames
Ergebnis mit J. M. Anderson.

Beweis. Die Funktion f =log g ist schlicht in D. Aus dem Koebeschen Verzer-
rungssatz ergibt sich [16,S.22] fir w = g(2)

dw) _
wl

(1-1zP) [g')] _4d(w)
lgz)] T Iw]

1-[zP) |f (2)] =

Wegen g(z)#0 ist d(w)=|w|, also log ge ® und daher € BMOA nach Satz 1.
Weiter strebt immer d(w)— 0, wenn w sich einem endlichen Randpunkt néhert.
Somit ist

(1=1zP) |f(2)|—0 (2] - 1-0) & i"%"l—)—ao (w|—0, ).

Nach (1.7) und Satz 1 gilt also (2.5).
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3. Exponentiation von BMOA -Funktionen
Zuerst betrachten wir einen Operator in H?.

LEMMA 1. Fiir fe BMOA, ge H? sei

h(z)= rf'(s)g(s) ds (z eD). 3.1
0

Mit einer absoluten Konstanten K gilt dann

Ikl = Kilfll llgll..- (3.2)

Beweis. Nach der Identitdt von Hardy [16,S.126] und nach (1.1) ist

2 1 2 1-¢z
2. = 12 2 o 1|12
prtg=2 [ {1 log 140, [ l3=~ [ [ logl

z-¢
D D

dQ. (3.3)

Hieraus kann man leicht folgern, daB (Fefferman und Stein [9])

1
[|1r@rossdos i

lz—¢l<2(1-[Lh

gilt. Nach dem Satz von Carleson [6][8, S.157] und nach (3.3), (3.1) ist daher

2 , 1
I =2 [ [l 10)P og 7 0= K I el

D

Der durch (3.1) definierte lineare Operator ist also beschréingt. Seine Norm ist
2 K, |Ifllg, falls f(0) =0 ist; zum Beweise setze man g(z)=(1-¢z)™" in (3.1) und
benutze (3.3).

SATZ 2. Folgende Bedingungen sind dquivalent:
(i) Es ist fe BMOA.

(i) Es gibt a eC\{0} und M, so daf} e eine dupere Funktion in H* ist und

le¥d.=M  (£|<1).
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(iii) Es ist fe B, und es gibt a € C\{0} und M, so daf u(z)=Re [af(z)](z €D) sich
als Poissonintegral seiner Randwerte darstellen ldfit und

1 J' @
— e"® |dz|=Me*®  ({eD)
1"'§| 1(Z) I
gilt, wobei I({) ={z€dD:|arg z —arg {| = w(1-|Z|)} ist.

Eine Funktion ge H? heiBt duBere Funktion, wenn g(z)# 0 und

1-|z[?
|S_IZ:210glg(s)l|dSI (z €D).

1
ogle@l =3 |

Dies gilt insbesondere, wenn log ge H' ist.
Die Aussage (i) ='(ii) stammt von John und Nirenberg [12, S.415]; hieraus
folgt u.a. (Cima und Schober [7])

feBMOA >'efe H? fiir ein p>0. (3.4)

Unser Beweis wird zeigen, daB man in (ii) immer M =2 und jedes a €C mit
la]=1/2K |/f|lx) wihlen kann, wo K die Konstante aus Lemma 1 ist. Unter
Benutzung der Zerlegung f(z) = f(rz) + (f(z) — f(rz)) (1 —r klein) folgt daraus nach
(1.5)

feVMOA = efe H? fiir jedes p <. (3.5)

Bemerkung. Diese Relation kann man auch dann nicht umkehren, wenn
|ef®]>1 ist, wie das folgende (nur angedeutete) Beispiel zeigt. Die schlichte
Funktion f bilde D auf das Gebiet

G=U({w-2"|<n}u{2"<Rew<2"*! |Im w|<3$,})
n=1
ab. Wenn 8, geniigend schnell —+0 konvergiert, so kann man

1
J exp (p max |f(z)|) dr<o fiir jedes p <o
o

zZ|=r
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zeigen, woraus man unter Benutzung von Standardmethoden fiir schlichte Funk-
tionen [16, Abschn. 5.1] e/ € H? folgern kann. Da G beliebig groBe Kreisscheiben
enthalt, ist f¢ B, also f¢ BMOA.

Beweis von (i) = (ii). Sei f e BMOA und 0<|a|=1/(2K ||flls). Fiir |{| <1 setzen
wir g(z) =exp [af,(z)] und erhalten in (3.1)

ah(z)= aj ng(s) exp [af,(s)] ds =exp[af (z)]-1=g(z)—-1.
o

Nach (3.2) ist also wegen ||f,|lx =||fll«

lg = 1ll.=|al K [Iflk llgll. == llgll.

und daher [lexp af,],, =gl =2.

Beweis von (ii) = (iii). Nach (1.2) ist exp [af(z)]=1+a(1-|{Df Dz + ...,
nach der Parsevalschen Formel also |a|*(1 - |£[*)? |f (O]* = | exp af, |3 = M fir |¢] < 1.
Somit ist fe B.

Mit der Substitution s = (z +¢)/(1+ {z) ergibt sich aus (ii)

__1__J' leaf(S)!2 |§lz |ds|§M2 ‘eaf(c)|2.

Fir s e I(Z) ist |1 - ¢s|=|s— | = (w+ 1)(1—|¢|). Daher folgt (iii) mit 2a statt a und

mit (7 +1)>M? statt M.
Beweis von (iii) = (i). Wir setzen p=|[{| und m=[log1/(1-p)]. Sei ¢

(k=0,...,m+1) definiert durch

arg {, = arg {, 1_|§kl=ek(1_P) (k=0,...,m), $n+1=0

und sei I, = I({; ). Wegen fe & ist nach (1.6)

)= w01 lal | 17 @) bz =M, tog Tl ety 3.6
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die Konstanten M,,... héngen nur von a und f ab. Fir zel _, ist |z—¢|=
M3'(1—|&-1)) = M3'e* (1 —p), also nach (3.6)

-2k

j (u(z)—u(tI))*-l—__--'(l-z-IdZI§M3 j [(u(z)— u(&))* +k]|dz|.
L\ L1 lZ gl 1 I

Wegen I(I,)=27(1—-|[)=2me*(1—p) ist dies nach der Ungleichung zwischen
dem geometrischen und arithmetischen Mittel

1
=M e ¥ log ( j ew@ul) Idzl) +Mjke = My(k+1)e™;
I(Ik) I

die letzte Ungleichung folgt aus (iii). Eine dhnliche Abschitzung erhilt man fiir
das Integral iiber I,=I({). Wegen I, .,=0dD folgt somit durch Addition der
obigen Abschitzungen

I lu(z)— u(€)|| ClzleI J (u(z)- u(§))’”| — leI_Ms,

£|2

die erste Identitdt ergibt sich aus der Poissonschen Integralformel.
Wenn u, den Mittelwert iiber I({) bezeichnet, so folgt

_1
10(09)

2
| wor-wiiezlsgs | w@-uwiazish,

d.h. definitionsgemaB gehort u({) (£ € D) zu BMO(éD). Nach Voraussetzung kann
Re[af(z)]= u(z)(zeD) als Poissonintegral von u({)({€dD) dargestellt werden.
Da auch die konjugierte Funktion zu BMO (aD) gehort, gilt fe BMOA.

4. Die Ableitung schlichter Funktionen

Nun soll BMOA mittels der Ableitung schlichter Funktionen charakterisiert
werden.

SATZ 3. Genau dann ist fe BMOA, wenn

f(z)="blog g'(z) (zeD) 4.1)
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fiir eine Konstante b € C gilt, wobei g in D schlicht und C = dg(D) eine rektifizierbare
Jordankurve ist, die

I(C(wy, wp)) Sy lwi—wy (wy, wy€ C) 4.2)

fiir eine Konstante vy erfiillt; hierbei ist C(wy, w,) der (kiirzere) Bogen von C
zwischen wy und w,.

Die Bedingung (4.2) fiir schlichte Funktionen wurde zuerst von Lavrent’ev
[13, Th.8] untersucht. Er zeigte u.a., daB g(D) die Smirnov-Bedingung erfiillt, d.h.
daB log|g’| sich als Poissonintegral darstellen 148t; dieses Ergebnis werden wir
beim Beweis benutzen. Aus Satz 3 ergibt sich eine Verschiarfung der Ergebnisse
von Lavrent’ev.

FOLGERUNG 2. Die schlichte Funktion g erfiille die Bedingung (4.2). Dann
ist log g'e H' und es existieren M und a >0, so daf gilt

mes {z €dD: [log g'(z)|> A} < Me™** (A>0). (4.3)

Diese Abschitzung ergibt sich unmittelbar aus Satz 3 und der entsprechenden
Abschitzung von John und Nirenberg [12][17, S.31] fiir BMO-Funktionen. Aus
(4.3) oder (3.4) folgt u.a.

j |g'(2)|7? |dz| <o fiir ein p>0,
oD

falls (4.2) gilt (Warschawski und Schober [21]).

Das entsprechende Resultat fiir Blochfunktionen ist bekannt. Genau dann ist
fe B, wenn die Darstellung (4.1) gilt, wobei nun C aber nur die schwichere
Bedingung

diam C(w,, w,) =B |w,— w,| (wy, w,€C) 4.4

zu erfiillen braucht. Diese Bedingung (‘‘beschrinkte Schwenkung”) ist gerade die
geometrische Charakterisierung der quasikonformen Kurven von Ahlfors [1][16,
Abschn. 9.4]. Es gibt nicht-rektifizierbare Kurven, die (4.4) erfiillen, sogar solche,
die nirgends eine Tangente besitzen [16, S.304].

Wenn fe B und |b|>||f||s ist, so ist mit (4.1)

g8"(z)

—_——

g'(z) - sup(1-|z[*) |f'(z)| <1.

~|b] jz1<a

sup(1-|z[?)

lz|<1



600 CH. POMMERENKE

Nach einem Satz von Ahlfors und Weill [2] und von Becker [5] ist daher g
schlicht und C erfiillt (4.4). Die Umkehrung folgt allein aus der Schlichtheit [15].

Der Beweis von Satz 3 beruht auf dem folgenden Hilfssatz. Fiir |{|<1 sei
wieder I({)={z€dD:|arg z —arg ¢|= =(1—|¢))}.

LEMMA 2. Sei g schlicht in D und C = 9dg(D) eine rektifizierbare Jordankurve.
Wenn (4.4) und

jm) @) [dzl=a(-tP) @] (¢eD) “5)

gelten, so gilt (4.2) fiir ein y. Wenn umgekehrt (4.2) erfiillt ist, so gilt (4.5) fiir eine
Konstante a.

Beweis. (a) Sei w; = g(z;), z;€dD (j=1,2). Wir wahlen { €D so, daB z, und z,
die Endpunkte von I({) sind. Aus (4.5) erhalten wir dann

L(Cwy, W)= j( g ldz|S a1 12D lg O 4.6)
I1(¢

Wenn A(¢) die nichteuklidische Strecke zwischen ¢ und z; bezeichnet, so folgt
nach einem Analogon [14, S.136] des Satzes von Gehring und Hayman [11] aus
4.49)

diam g(A(¢))= K, diam C(wy, wp) =K 8 |w,—w,),
wo K, eine absolute Konstante ist. Daher ist
(1-1¢) 1g'(Q)| =4 dist (g(£), C)=4K,B [wi— w,|.
Somit ergibt sich (4.2) (mit y=4K,;apB) aus (4.6).
(b) Umgekehrt gelte (4.2). Seien I, (j=1,2) die an I({) anschlieBenden

Teilbogen von 8D der Lange 1—|¢|. Dann existieren [16, S.314] Jordanbdgen A,
die ¢ mit einem Punkt z; € I; verbinden, so da

18(0) - 8(z)|= 1A= K(-P) gDl (=1,2)
ist. Aus (4.2) mit w; = f(z;) folgt daher

HC(wy, w) =y [wi— wa| =2Kpv(1-[ZP) [8'(D)]. (4.7)
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Aus (1-[¢])|g'(©)|=0 ([£|>1-0) kann man leicht die Existenz eines p <1
folgern, so daB g(I({)) = C(w;, w,) fiir |¢|> p ist. Also folgt (4.5) fiir |£|>p aus
(4.7). Fir |{|=p ist (4.5) trivial.

Beweis von Satz 3. (a) Sei fe BMOA. Wir wihlen be C mit |b|Z 2K ||flls, wo
K =1 die Konstante aus Lemma 1 ist. Wegen |b|>||f|ls ist dann die durch (4.1)
definierte Funktion g schlicht und erfiillt die Bedingung (4.4). Nach Satz 2 (iii)
(mit a = 1/b) gilt (4.5). Aus Lemma 2 erhalten wir also die Giiltigkeit von (4.2).

(b) Umgekehrt seien (4.1) und (4.2) erfiillt. Aus der Schlichtheit von g folgt
fe B. Weiter gilt (4.5) nach Lemma 2. Nach dem Ergebnis von Lavrent’ev ist also
die Bedingung (iii) von Satz 2 (mit a = 1/b) erfiillt und es folgt fe BMOA.
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