Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 52 (1977)

Artikel: The Jacobi equation on naturally reductive compact Riemannian
homogeneous spaces.

Autor: Ziller, Wolfgang

DOl: https://doi.org/10.5169/seals-40021

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-40021
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 52 (1977) 573-590 Birkhéduser Verlag, Basel

The Jacobi equation on naturally reductive
compact Riemannian homogeneous spaces

WOLFGANG ZILLER*

It is known that the Jacobi equation on a globally symmetric space has
particularly simple solutions. Some results have been obtained for the Jacobi
equation on a normal homogeneous or naturally reductive space. Compare
(3151, [7], [9]. One knows that there exists a connection D on a naturally
reductive homogeneous space so that the curvature B and torsion T of D is D
parallel and D has the same geodesics, and thus also the same Jacobi fields, as the
given metric. But the Jacobi equation written down in terms of D is nicer since it
is a differential equation with constant coefficients:

D2Y - T(¢ DY)+ B(Y, ¢)¢ =0.

Rauch mentioned in [9] that there are no exponential Jacobi fields appearing if
the curvature of D is positive, but this condition is seldom satisfied. One can
express a basis of (complexified) solutions of the Jacobi equation as:

Y(t)=A(t) - e™

where A(t) is a vector valued polynomial with complex, D parallel vector fields as
coefficients and m is a complex number. In this paper we show that for a compact
naturally reductive riemannian homogeneous space:

(i) m is imaginary or 0;
(i) if m is imaginary and # 0, then A(¢) is a constant polynomial;
(iii) if m =0, then A(t)=A; - t+ A,.

The statement of (i) is a generalization of Rauch’s result since there are thus no
exponential Jacobi fields, but here we need no condition on the curvature of D.

* This work was supported by the “Sonderforschungsbereich Theoretische Mathematik (SFB 40)”
at the University of Bonn and completed at the Institute for Advanced Study with partial support from
a National Science Foundation grant.
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574 WOLFGANG ZILLER

(ii) and (iii) say that the Jacobi fields are either oscillatory or of linear polynomial
growth compared with a D parallel basis.

The proof is given by combining local information one gets from the differen-
tial equation with constant coefficients with global information one gets from the
structure of the set of Killing vector fields.

We finally give a large class of examples of metrics (the ones studied in [6])
which are naturally reductive but not normal homogeneous. In some examples
some of the eigenvalues of B, and of the sectional curvature of the metric, become
negative. But the influence of the torsion in the Jacobi equation still guarantees
that no exponential Jacobi fields exist.

This is not true anymore for a general riemannian homogeneous metric. In
fact, H. Karcher gave an example of a riemannian homogeneous metric which is
not naturally reductive and which has exponential Jacob: fields. This example is
written down in [10].

The methods used in this paper are similar to the ones in [10], but we restate
the ideas for completeness.

In 1. we give the necessary preliminaries about riemannian homogeneous
spaces. In 2. we prove the main theorem and in 3. we give examples.

1. Preliminaries

Let M = G/H be a homogeneous space. The residue class g - H is denoted by
g. If a metric on G/H is invariant under the operation of G on G/H it is called
riemannian homégeneous. Let g be the Lie algebra of left invariant vector fields
on G and | the Lie algebra of H. We can assume that G/H is reductive, i.e., there
exists a complement p of §) in g:g=h& p so that Ad(H) leaves p invariant. We
can associate to each X e g a Killing vector field X* on G/H defined by the one
parameter group expg tX acting on G/H. Then [X*, Y*]= —[X, Y]*. p can be
identified with T;(G/H) by sending Xep to X*(€). We will always make this
identification and compute Lie brackets in g. The metric on T;(G/H) thus induces
a metric on p denoted by (,). Ad(H) acting on p is identified with taking the
derivative at € of the corresponding left translation on G/H. Left translation by g
on G/H is denoted by L,. We will assume that G acts (almost) effectively on G/H
which is equivalent to saying that Ad(H) operates (almost) faithfully on p. M
being reductive implies [b, p]<p. If X, Yep then we denote by [X, Y], [X, Y],
the b and p component of [X, Y]. M is called naturally reductive (with respect
to the complement p) if:

[)(’ ']p:p—")p

is skew symmetric for all X € p and is called normal homogeneous if there exists a
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biinvariant metric on g whose restriction to p=§* is the given metric. In
particular all [X, -]:g— g are skew symmetric, and thus a normal homogeneous
metric is also naturally reductive. We will denote the Levi-Cevita connection and
the curvature tensor of (,) by-V and R.
If M is naturally reductive, the connection V can be described as follows:
Let X™* be a Killing vector field and v e T:M. Then

_ [[X0v] if Xep
(V.X*)(&)= {%[X, v], if Xep’

The curvature tensor at € is given by:
RX, Y)Y=[Y,[Y, X);]-adY,[Y, X]],, Y, Xep.

If M is normal homogeneous it follows that the sectional curvature is:
KX, Y)=I[X, YL +3 X, YI*

so that K =0. But for a naturally reductive space one can have negative sectional
curvature too.

One knows that on a naturally reductive space there exists a metric connection
D with torsion T and curvature B so that T and B are D parallel.

D has the same geodesics as V so that

ny= DxY—%T(X, Y)
and D, T and B at € can be expressed in terms of the Lie brackets:

[X,v] if Xep

(D.X7)(&) = {[X, ol, if Xep

VEP

T(X, Y)=-[X, Y],

X, Y, Zep.

B(X,Y)Z=-[[X, Y], Z]

Notice that R(X, Y)Y =B(X, Y)Y-3T(T(X, Y), Y). Since T is skew symmetric
it follows from the symmetry of R that B(-, Y)Y :p — p is symmetric.

If M is normal homogeneous, one has in addition that B(:, Y)Y is positive
semidefinite. The geodesics in a naturally reductive space are images of one
parameter groups in G: For vep L,,_..., (€) is the geodesic through € with initial
condition v*(é).
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The derivative of Ly, at € is parallel translation along L.y, .(€) with respect
to the connection D.

Since DB =0, the curvature tensor B of D is invariant under d(Leyp,.): and
B(-, v)v commutes with d(Lexpgv)e-

Since V and D have the same geodesics, they also have the same Jacobi fields.
But the Jacobi equation with respect to D along ¢(t) = Lexpgn(€), ¢(0) = v:

D*X—T(¢, D:X)+B(X, ¢)é =0

is much simpler since T and B are D parallel.
If we write X as X(t) = d(Lexpor)z(Y(2)), then the Jacobi equation reads:

Y'-T(Y)+B(Y)=0

where T(Y)= T(v, Y)= —[v, Y],, B(Y)=B(Y,v)v=—[v,[v, Y]]
This is a differential equation in the vector space p with constant coefficients, T is
skew symmetric and B is symmetric. The solutions of this equation are obtained
by substituting Y(t)= A(t) - e™, where m is a complex number and A(t) a
complex vector valued polynomial. The real and complex parts of these solutions
then give a basis of the Jacobi fields along c.

Since the differential equation is linear with Y also Y’ is a solution. Therefore,
with Y()=(At"+ - -+ Ag)e™, also A, - e™ is a solution.

But substituting we get that A,e™ is a solution iff:

(m*’Id—mT+B)A, =0.
Therefore only the solutions of
det (m*’Id—mT+B)=0

are possible exponents for Jacobi fields.
For later purposes we remark that (A t+ Ag)e™ is a solution iff

(m?*Id—mT+B)A;=0
(m*Id—mT+ B)Ao= —(2m—T)A,.
We will be particularly interested in the case m =0 later on:

m =0 is only possible if det B=0 and X(t) = d(Lexpo):(Ao) is a Jacobi field
(X(t) is D parallel) iff B(Ao)=0.
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Furthermore, X(t) = d(Lexpow)e(A1t+ Ay) is a Jacobi field iff

B(Al) = 0
and

B(Ao)=T(Ay.
Notice that by complexifying, B becomes hermitian and T skew hermitian, so that
m?Id— mT+ B is hermitian if m is imaginary.

2. The Jacobi equation

A vector field X is called a Killing vector field if the operator Ax = VX is skew
symmetric. This is equivalent to saying that the one parameter group ¢, generated
by X consists of isometries.

The vector fields X* in 1. are Killing vector fields. A Killing vector field X
restricted to a geodesic ¢ is a Jacobi field since X © c(t) = d/ds;s—o¢s ° c(t) and for
each s, @, © c(t) is a geodesic. Jacobi fields which are restrictions of Killing vector
fields are called isotropic Jacobi fields.

Since in our case we have a transitive group of isometries we expect a lot of
isotropic Jacobi fields.

In fact, it is known that on a globally symmetric space all Jacobi fields which
vanish at two points are isotropic Jacobi fields [2] and all periodic Jacobi fields
along closed geodesics are isotropic [11].

But not all Jacobi fields need to be isotropic; in fact, the Jacobi fields ¢t - X
with X parallel and R(X, ¢)¢ =0 are not isotropic on a compact globally symmet-
ric space.

It is also known that on a normal homogeneous space the Jacobi fields which
vanish at two points need not be isotropic [4] and also the periodic Jacobi fields
along closed geodesics need not be isotropic [10]. From 1. it follows that an
isotropic Jacobi field Y along c(f)=exp tv, v € p coming from the Killing vector
field X*, Xeg, i.e., Y(f)= X™ o c(1), satisfies:

_fo if Xep
Y(O)_{X if Xep

_J[Xv] if Xep
VY(O)_{%[X,U], if Xep'

Let E={we T:M |(v, w)=0}. We are only interested in the Jacobi fields or-
thogonal to ¢, i.e., in Jacobi fields Y having initial condition (Y(0), VY(0)) in
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E®E.If Xe Ecpthen also [X, v],€e E:

(X, v], v)=—(X,[v, v];)=0.

Thus the Jacobi fields coming from X € p can be restricted to X € E and all Jacobi
fields with initial condition:

(Y(0), VY(0) = (X,2[X, v])),  X€E,

are isotropic. These are already half of all Jacobi fields.

To study the Jacobi fields coming from X el we examine the symmetric
endomorphism B(X)= —[v, [v, X]b].Since B(v) =0, B maps E into itself and we
let X;, A; be the eigenvectors resp. eigenvalues of B/E:B(X;) = A;X; and we set
Z;=[v, X;}y€b. Then [Z, v]=[[v, Xi];, v]= — B(Xi) = — A Xi. Therefore, if A;#0,
the Jacobi field Y; corresponding to Z;eh does not vanish identically since
VY. (0)=[Z, v]#0.

Let E=E,®DE, with E, the 0-eigenspace of B and E; the sum of the
eigenspaces with A;# 0. Then the Jacobi fields with initial condition

(Y(0),VY(0)=(0,X), XekE,,

are isotropic Jacobi fields.

If XeE,, ie., B(X)=0, we showed in 1. that the D parallel vector field
Y(t) = d(Lexpo)z(X) is a Jacobi field (which is not necessarily isotropic). The
initial conditions are:

Y(O) =Xe Eo

V,Y(0)= D,Y(0)~3T(v, Y(0)) =3[0, X],.

These Jacobi fields together with the two sets of isotropic Jacobi fields previously
mentioned would generate all Jacobi fields if they were linearly independent, but
(X, v, X1,), X € E,, could be a linear combination of (X, AX, v],), X€E,, and
(0, Z), Z€e E,, if [X, v],€ E,. But in 1. we also pointed out that

Y(t) = d(Lexme)E(tX + Z)
is a Jacobi field iff

B(X)=0 and B(Z)=T(X)=[X, v],.

Since B/E;=0 and B/E, is an isomorphism, we have in the above situation
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(X, v],€ E,) a vector Z with B(Z)=T(X)=[X, v], and thus we have a new
Jacobi field

Y(t) = d(Lexpgtv)é(tX+ Z)

with initial conditions

Y0)=Z

V,Y(0)=D,Y(0)-3T(v, Y(0)) = X +3[v, Z],.

We will now show that these Jacobi fields together with the previous ones
generate all Jacobi fields. Here the compactness of M = G/H, which has not been
used up to now, comes in in an essential way. Set E,= E,® E; with

E;={X€E, l [X,v],€ Eq}
and E;= E;. Thus E = E;® E,® E;. Define the subspaces V;< E®E by:

Vi={(X,3X, v],)| X€ E,DEs}

Vo={(0, X)| X € Ey}

Va={(X,3[v, X],) | X € E;}

Va={(X,3[v, X],)| X € E3}

Vs={(Z, X+3[v,Z],) |Xe€E,, B(Z)=T(X)=[X, v]}.

We will now show that E®E = @;_; V.. The elements of V;+ V,+ V3+ V, are
linearly independent as one sees by looking at the first and second components.
But also the elements of Vs cannot be a linear combination of the others for the
following reason: The Jacobi fields with initial condition in V; and V, are
isotropic and so are the Jacobi fields with initial conditions in Vj since for X € E,:

(X, v, X1,) = (X, 1 X, v],)+ (0, [v, X],)

and the two Jacobi fields with initial condition given by the right-hand side are
both isotropic. But since isotropic Jacobi fields are restrictions of Killing vector
fields and since M is compact they are bounded in length.

The Jacobi fields with initial condition in V, are also bounded in length; in
fact, they have constant length since L.xp. are isometries.
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But the Jacobi fields with initial condition in Vs are of the form

Y(t) = d(Lexpr)é(tX + Z)

and are thus unbounded in length since M is complete. They can therefore not be
linear combinations of the others. Thus we have proved:

THEOREM 1. E®QE = ®;_, V.. On a compact naturally reductive homogene-
ous space, the Jacobi fields along c can be written as linear combinations of Jacobi
fields with initial conditions in V.

We can draw several conclusions from this.

THEOREM 2. If one solves the Jacobi equation on a compact naturally reduc-
tive riemannian homogeneous space in the form Y(t)= A(t)- e™ with A(t) a
polynomial with D parallel complex vector fields as coefficients and m a complex
number, one has:

(i) m is imaginary or 0;
(i) if m is imaginary and #0, then A(t) is a constant polynomial so that the
corresponding Jacobi fields are of the form:

Y(t)=Re A cos at—Im A sin at

Y(t) = Re A sin at+Im A cos at

with m=1i-a and A(t)= A a D parallel vector field with (m*Id —mT+ B)A =0;
(iii) if m=0, then A(t)= A, t+ A, with A, and A, D parallel (real) vector fields
are the only possible Jacobi fields where B(A;) =0 and B(A,) = T(A,).

Proof. (i) If there exists a solution Y(t)= A(t)e™ where m has a nonzero
real part, then either || Y(t)|— ® as t — » and || Y(¢)|| = 0 as t > — or || Y(¢)|| = 0
as t — o and || Y(t)|| = « as t — —. But from our description of the Jacobi fields
we see that all Jacobi fields have either bounded length or their length goes to «
as t— o and as t— —». Thus m cannot have a nonzero real part.

(i) If X(t)= A(t)e™, m#0 and imaginary and degree A(t)=1 is a solution with
A=A t"+ -+ A, (A, #0), then (nA,t+ A,_,)e™ is a solution too.

We will now show that there are no solutions of the form (A;t+ Ag)e™ with

m#0 and A; #0. From 1. we know that (A ;t+ Ag)e™ is a solution iff

(m*Id—mT+B)A,=0
(m*Id—mT+B)A,=-(2m—-T)A,.
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From this we can conclude that B(A,) # 0 since if B(A;) =0 we get T(A;) = mA,
from the first equation and

(m*Id—mT+ B)Ay= —mA,

from the second equation. Then
—m(A1, A1)=((m’Id— mT+ B)Ao, A1) =(Ao, (m*Id—mT+B)A,)=0

so that A; =0 which we assumed not to be the case. Since B(A;)# 0 it follows
that

B((Ait+ Ag)e™)=(B(Ay)t+ B(Ap)e™

is a vector field of unbounded length.

But from our description of the Jacobi fields we know that for a Jacobi field Y
the vector field B(Y) is of bounded length: This is clear for Jacobi fields Y which
are of bounded length themselves since B = B(-, ¢)¢ is bounded. (The curvature
tensor B is bounded since M is compact and ¢ has constant length.) The only
Jacobi fields of unbounded length are of the form

Y(t) = d(Lexthv)é(tX+ Z)

and since in this case B(X)=0 and since d(Lexpsmw): commutes with B we have
that

B( Y) = d(Lexthv)é(B (Z))

is of constant length.

Thus (Ait+ Ag)e™ cannot be a Jacobi field.
(iii) If m =0 then A(t) cannot have degree =2 since no Jacobi field has this kind
of growth.

Remarks
(1) In [10] we proved Theorem 1 for Jacobi fields along a closed geodesic without

using the compactness of M.
(2) If X(¢) is a D parallel vector field, then
X(1)=e"T¢7 - X(1)

is the V parallel vector field with X(0) = X(0) [5]. Thus the description of Jacobi
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fields in Theorem 2 can be easily interpreted in terms of a V parallel basis too.
(3) In [9] Rauch mentioned that m is O or imaginary if B is positive definite. But
notice that this condition is satisfied globally only if M is a symmetric space of
rank 1 since B >0 implies that the sectional curvature is positive, in which case M
is symmetric of rank 1 or one of the two Berger examples [1]. But for the two
Berger examples B has 0 eigenvalues [4] and [S]. Of course B>0 is possible
along a particular geodesic. Notice also that positive sectional curvature does not
imply B >0 as seems to be assumed in [9] and that C in Theorem 4 in [9] has to
be a complex vector valued polynomial and not just a vector.
(4) As J. Rawnsley pointed out to me, the proof of Theorem 2 is easier if M is
normal homogeneous. In this case one does not have to apply Theorem 1, which
uses global properties of Jacobi fields, but can derive the claims from the local
properties of the differential equation. We give a sketch of the proof here.

For M normal homogeneous one has the additional information that B is
positive semidefinite: |

B(X), X)=—([v, [v, X]b}, X) = ([v, XTp, [v, X]p) = 0.

To prove (i), if (A.t"+ -+ -+ Ag)e™ is a solution, then also A,e™ is a solution
and thus

(m*Id—mT+B)A,=0
and m*(A,, A,)—m(TA,, A,)+(BA,, A,)=0. But (A,, A,) and (BA,, A,) are
real and =0 and (TA,, A,) is purely imaginary or 0. Thus m is imaginary or 0.

To prove (ii) we show that if (A;t+ Ap)e™ is a solution and m# 0, then
A;=0. We have from 1.:

(m*Id—mT+B)A;=0
(m?ld—mT+B)Ay=—(2m—T)A,.

Since B—m? is a positive definite symmetric operator and since

(A1, (B—m*)A;)=(A;, m(-2m+T)A;)=(A,, m(m*’Id —mT+ B)A,)
={(m*Id—mT+B)A,, mAy)=0

we have A;=0.
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To prove (iii) we show that A,t>+ A;t+ A, cannot be a solution. If it were, it
would satisfy

BA2=O

2TA2 = BA1
2A2“‘ TA] + BA() =0.

Multiplying the third equation with A, we get:
0=2(Az, A2)—(TAi, A2)+(BAy, Az2)=2(A;, Az)—(TA,, Az).

Thus (TA,, Ay) is real and (A,;, TA,)= —2(A,, A,). Multiplying the second
equation with A; we get

0=2(TA,, A;)—(BA;, A))= —4&A,, A;)—(BA;, Ay)

and thus (A,, A,)=0.
(5) On a naturally reductive space B =0 is not necessarily satisfied. In fact, in 3.
we give an example where B=<0 and also some of the sectional curvatures
become negative. But the influence of the torsion T in the Jacobi equation
guarantees that no exponential Jacobi fields exist.

There are lots of naturally reductive spaces which are not normal homogene-
ous as will be shown in 3.

COROLLARY. If G=1y(M) and M=G/H is a coﬁpact normal homogene-
ous space, then a Jacobi field is isotropic iff it has initial conditions in V,® V,®
V. Thus if Vo, @ Vs# 0, there exist nonisotropic Jacobi fields.

Proof. As we mentioned before, the Jacobi fields with initial conditions in
V@D V,® V; are isotropic. If G = [o(M) the isotropic Jacobi fields have initial
conditions

(X’ %[X’ v]p) Xe p

0, 2) Z e[, v].

The first ones are contained in V; @ V,® V3, and we claim that the second ones
are contained in V, which is equivalent to saying:

[[)s U] = El-
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Since M is normal homogeneous:
B(X)=0¢>[U, X][):O@O:([U, X]in b>= _’(Xa [Ua E)])@XE[U, b]-L

and thus Eo=[v, h]* or E;=[v, b].

Remark. The relationship between the description of the Jacobi fields in
Theorem 2 and in Theorem 1 seems complicated.

Clearly the Jacobi fields in (iii) are contained in V3@ V,@® Vs, but it is not
clear which Jacobi fields in (ii) are contained in V; € V,, and are thus isotropic,
and which ones are linear combinations of isotropic Jacobi fields and Jacobi fields
with initial condition in V3@ V,@ V.

Such a relationship would also give a description of the Jacobi fields vanishing
at two points where one could see which ones are isotropic and which ones are
not. One could then examine conjectures like: All naturally reductive spaces with
the property that all Jacobi fields vanishing at two points are isotropic are locally
symmetric.

3. Examples

We will now study a general class of homogeneous metrics which is naturally
reductive but not normal homogeneous.

If g is a G invariant metric on M = G/H we will say that g is G-naturally
reductive if there exists some Ad(H) invariant splitting g=15 @ p with respect to
which g is naturally reductive. If g is G-naturally reductive with respect to one
splitting, it is in general not G-naturally reductive with respect to another
splitting, but the spitting does not have to be unique either.

Similarly we say that g is G-normal homogeneous if there exists a biinvariant
metric on g whose restriction to p=b~ is g

Let G, < G, < Io(M) be two subgroups which act transitively on M. Notice that
G-naturally reductive (resp. normal homogeneous) does not necessarily imply
G,-naturally reductive (resp. normal homogeneous) nor vice versa. For normal
homogeneous metrics we will demonstrate this in a simple example. Therefore we
will always mention the group G with respect to which the metric is or is not
naturally reductive resp. normal homogeneous.

Let M = G/H be a compact homogeneous space with a normal homogeneous
metric g and an Ad(H) invariant splitting g=5€ p. Assume that p=p, D p,
(orthogonal splitting) and [b, p,]=0, [p,, .1 < p,.
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Then we define a variation g, of the normal homogeneous metric g on G/H
by:

g =g Xpri+s - glpaXp  s>0.

Let K be the connected subgroup of G with Lie algebra p,. Then if H is
connected, the right translation on G/H with elements of K are well defined since
[h, p.]=0 and are thus isometries of M, which differ from the left translations if
the center of G is empty.

We will assume from now on that the center of g is empty (which is equivalent
to saying that G is semisimple, since G is compact) and that H is connected. We
therefore have G X K as a subgroup of the isometry group (at least locally). We
will show that the metrics g, on G/H are all G X K-naturally reductive.

Note that we could also define our spaces as follows: In the above situation
H X K is locally a subgroup of G and conversely if H X K is locally a subgroup of
G, then G/H satisfies the above properties with p, = f. Thus our class of metrics
coincides with the ones studied in [6]. But notice that in [6] the author studied the
question whether g, is naturally reductive or not only with respect to a fixed
splitting g = b p and thus obtains that only g, = g is naturally reductive.

Let G=GXK where (g k) operates by left translation with g and right
translation with k™' on G/H. The isotropy group is then H= H X K with imbed-
ding (h, k) — (hk, k).

Thus

§g=hDp Dp. Dt
and

=hD{0,X, X)epDp.Pt| Xep, =1}

As an Ad(H) invariant complement p we can choose p=p;, @D p, where p,=
{(0, aX, bX)ep; D p, Dt | X € p, =1}, and we normalize a—b = 1.

The isomorphism between G/H and G/H on Lie algebra level sends p; to p;
as id and (0, aX, bX) to aX—bX = X €p,, so that the above metric g, looks as
follows on p:

gs/pl X p1 as before’ 8s (pla ﬁZ) = Oa

and on P, g((0,aX, bX), (0,aY,bY))=s-g(X,Y). For g to be naturally
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reductive we need. e.g., for X, Ye p;, Z€ p,:
g(((X,0,0),(Y,0,0)],(0,aZ, bZ))= ~ g(((X, 0,0),(0, aZ, bZ)], (Y, 0, 0)).

The left-hand side is equal to
gs(([X9 Y]l)l’[X’ Y]p2’ 0)’ (0’ aZ’ bz))

= gs((o’ _b[X’ Y]pzs _b[Xa Y]Pz)
HIX, Y], alX, Y1, bLX, Y1,), (0, aZ, bZ))
=s*-g(X,Y],,2)

and the right-hand side is equal to

-&((alX, Z],, alX, Z],, 0), (Y, 0,0)) = —ag([X, Z],, Y).

p2?

Using the fact that g is naturally reductive we get the condition a =s” and one
can easily check that a = s is also sufficient for g, to be naturally reductive.

Thus each g, has exactly one complement P, with respect to which it is
naturally reductive. We will now examine which metrics are G X K normal
homogeneous. For that purpose let us assume that G is simple. (Thus only g, =g
is G-normal homogeneous.) Let us first restrict ourselves to K being simple too.
Then the biinvariant metrics on G X K are of the form

(, Mgxg+d*, )t xt

where (, ) is a biinvariant metricon g. p= 5* is then equal to
P=p1Dp2

with p, ={(0, d*X, X)ep,Dp,PI| X € p,=I}. Thus s>=a =d>/(d*+1), and we
see that g is G X K-normal homogeneous iff s<1 (notice that g; =g is not
G X K-normal homogeneous). If K were not simple, then the metric on Xt
would be a multiple of (,) on each simple factor of f. Then p, is still contained in
b but p, would not consist of (0,d>X, X) anymore, unless the metric is a
multiple of (,)/txt and thus p; and p, would not be orthogonal anymore, and
the metric is not of the form g, But we do need G simple since if G = K; X K,
f1 =p1, 2=p2, and H< K, we have G/H=(K1/H)><K2 and all metrics g, are G
and G X K,-normal homogeneous. We summarize:

THEOREM 3. Let M= G/H be a compact normal homogeneous space with
g=bh®D p and assume that G is semisimple, H connected and that p=p, D p, with
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[B, p2]=0, [p2, p2]<p,. Then the metric g =glpiXpi+s” - gp2Xp, is GxK-
naturally reductive, where K is the connected subgroup of G with ¥=p,.

If G is simple g, s# 1, is not G-normal homogeneous and g, is G X K-normal
homogeneous iff s <1.

Remark. One can compute the sectional curvature of g, in terms of the
sectional curvature of g and show that it is not nonnegative anymore if G is
simple and s is large enough >1. These metrics are then not normal homogeneous
with respect to any transitive subgroup G < Io(M).

We will now give some specific examples.
(1) The Berger spheres: S*"*'=SU(n+1)/SU(n). Since SU(n+1) contains the
subgroup S(U(n)x U(1)) which is a product SU(n)X S*, the conditions of the
above theorem are satisfied. For s <1, g, is known as the Berger sphere [1], [3]
and for s >1, g is a naturally reductive metric which is not SU(n + 1) X S'-normal
homogeneous. We will now compute T, B, and R for this example. Let G =
SU(n+1)x 8" and H=S(U(n)x U(1))=SU(n) x S'. We will use the notation in
[3].

Let A, =i(E;—Eu), By=Ey—E,; Cy=iE;+E;) and §;=
(1/a;) ¥i=1 lAy1+1, a;=(j(j+1)/2)">. For the biinvariant metric (X, Y)= —3 trace
XY, p=b" has as an orthonormal basis:

A=S,, e.=B, .1, fi=C.n+1, r=1,2,...,n.

One easily shows that [h, A]=0 so that

= «en fr>>7 p2= R- A

where the brackets ((, )) mean that these vectors are a basis of p,. Let D be a basis
of the Lie algebra of S'. Then, according to the above, the metric g, is naturally
reductive with respect to the decomposition a=bDp, ps=
{s*A+(s*—1)D, e, f.)) where we will abbreviate

d, = (s*A +(s*-1)D)/||s*A + (s>~ 1)D|, = % (s*A +(s*-1)D).

Thus d,, e, f,,r=1,...,n,is a g, orthonormal basis of p,. We will .now determine
B,=B(:,v)v and T, = T(v, ). Since Ad(H) maps any v, ||v|; =1 into a vector

v, = COS ad, +sin ae;,

we can restrict ourselves to v = v,.
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Then E = (&; =sin ad; —cos aey, €a, ..., €, f1,..., f.). The Lie brackets [p, p]
are easily determined to be:

+1 +1
[de, e]=s - = o [dof]=—sT— ¢,
le, fi]=C.. if r#t
n+1
[en fr]= Cr,r_ Cn+1,n+1 =§— (1 s ) : (A + D)
+1—'s,_1+ls,+ SRR R S
a,_1q (8 2 Qp-1
and thus
n+1
T(el)-—s fl, T,(fi)=s o 3!
+1 +1
T,(e)=s n cosa - f; T,(f)= —s " cos ae;, i=2
a, ap
1
B,(é,)=0, Bv(fl)z{ 2(n )’ }sm a-f
B,(e)=sin*ae,  B,(f)=sin’a - f, i=2.

Thus for s*>>2n/(n + 1) one eigenvalue of B, becomes negative. If n =1 (M= S>)
one even has B, <0. Since R, =B, —3T> we have

Re)=s" g

+1 ,(n+1)? .,
P JRCTE A NRISSE. B I
R, (&)= {sin2 a+s? (nt+1) cos® a}e,-
R,(f)= {sin2 o +s? (n4-;i) cos’ a}ﬂ.

Thus for s>>8n/(3(n + 1)) some of the sectional curvature becomes negative, and
we can conclude that such a g, is not G-normal homogeneous for any transitive
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G < IH(M). The minimum and maximum sectional curvatures are:

,n+1 _a2ht1 2_ 2n
S PR 4—3s n for s =1
and
n+1 n+1 2n
4__3 2 Z 22
S 2n’ S 2n for s n+1

so that the pinching is equal to

s’(n+1) e 2 2n

8n—3s2(n-i-1)l S n+1

8n—3s*(n+1
n-3sntl) o 2. 2n
s(n+1) n+1

Thus g, with s>=2n/(n+1) is the standard metric on $***'. It is the only metric
gs, s> 1, which is G-normal homogeneous with respect to some G. This is clear
for n =1 since the only transitive groups G are S>, S>X S* and SO(4). Note that
the standard metric on S® is S>-normal homogeneous and SO(4)-normal
homogeneous but not §>x S*'-normal homogeneous. We can conclude that if g, is
the metric on $***! which is obtained from the standard metric by multiplying
with > in the direction of A* then g, is isometric to g, with s*>=>(2n/(n+1)).
Notice that A* is the vector field on $***'< C"*' obtained by multiplying the
base point with i. Thus g, is naturally reductive and has some negative sectional
curvature for t*>% and g, with t*=<(n+1)/2n is normal homogeneous, whereas g,
with (n+1)/2n <t*<1 or t*>1 is not normal homogeneous.

Looking at the computations in [3], one sees that the metrics g, s <1, (resp.
8, t<(n+1)/2n) are isometric to the Berger metrics where sin a = s. One can also
compare the metrics g, with the metrics on the distance spheres in complex
projective space [12]. Comparing minimum and maximum sectional curvature one
can see that the metric on the distance sphere of radius r is isometric to the metric
g, multiplied with a factor 4 sin® (r/2) and where cos® (r/2) =s*(n+1)/2n=¢>.
Only the distance spheres with r =2 arc cos ((n+1)/2n)"’? are thus isometric to the
Berger spheres (up to a factor) and the other distance spheres are not normal
homogeneous. (This fact was also known to J. E. D’Atri.) One can solve the
Jacobi equation for g, explicitly, just like in [3]. One gets the same result as
obtained there after substituting sin @ =s. This example shows that all the
Jacobi-fields described in Theorem 2 actually do occur.
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(2) In [8] some of the sectional curvatures of the metric g, on SO(n+2)/SO(n)
(K = SO(2)) were computed and at least for s>>3% some of them become negative.
(3) In [6] one finds a list of the spaces G/H satisfying the conditions of Theorem
3 under the additional hypothesis that G/H X K is a simply connected irreducible
globally symmetric space, but there are lots of other spaces.

Remark. The following generalization of the metric g, is also naturally reduc-
tive: If K is not simple, let I=1, D1, D--- DI, where {, is the center of f and
t;,...,I, are simple. Then g*=g,, +hy +tign,+ - - - +1t;gs, with h arbitrary on
fo, is easily shown to be G X K-naturally reductive.
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