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A remark on Abel’s Theorem and the mapping of linear series

Henrik H. MARTENS

Let X and Y be closed Riemann surfaces of positive genera, andlet ¢: X —> Y
be a holomorphic map onto.

Remark. If D=) m,Q; is a positive divisor of degree n and (projective)
dimension r on X, then ¢(D)=) mi¢(Q;) is a positive divisor of degree n and
(projective) dimension = r on Y. If the complete linear series determined by D is
without fixed points, then so is that determined by ¢(D).

Proof. An arbitrary positive divisor of degree r on Y may be written as ¢(D")
where D’ is a positive divisor of degree r on X. If D is of dimension r, there is a
positive divisor D” on X such that D~ D'+ D" (linear equivalence). Connecting
the points of D and D'+ D" by curves and applying Abel’s theorem to the
pullbacks to X of the holomorphic differentials on Y, we immediately see that
d(D)~ p(D)+¢d(D") on Y. Since ¢(D’) was an arbitrary positive divisor of
degree r on Y, we conclude that ¢(D) is of dimension = r.

The preimage under ¢ of the set of points occuring in ¢(D) is a finite set of
points on X. If D determines a complete linear series without fixed points, then
we can find a positive divisor D’ on X such that D'~ D, and no point in the
preimage occurs in D’. Then, since ¢(D)~ ¢(D’) on Y, the complete linear series
determined by ¢(D) must be without fixed points.

COROLLARY 1. If X can be displayed as an n-sheeted covering of the
Riemann sphere, then so can Y. In particular, if X is hyperelliptic then Y is
hyperelliptic or elliptic.

Proof. X can be displayed as an n-sheeted covering of the Riemann Sphere if
and only if it admits a positive divisor of degree n and dimension = 1 that
determines a complete linear series without fixed points.

COROLLARY 2. If D and ¢(D) both are divisors of dimension 1, then the
branch points of the coverings of the Riemann sphere determined by D are mapped
on the branch points of the coverings determined by ¢(D') without reduction of
branching order.
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Proof. Under the stated assumption, the branch points of any cover are
precisely those that appear with multiplicity =2 in the divisors of the linear
series.

APPLICATION. We consider the case when X is hyperelliptic. Then Y is
hyperelliptic or elliptic, and in any case a display of Y as a 2-sheeted cover of the
Riemann sphere must have 2h + 2 branch points, where h is the genus of Y. If g is
the genus of X, the 2g+2 branch points of X must map on the branch points of
Y, whence 2g+2<=m(2h+2) or

g=m(h+1)-1

where m is the degree of ¢. Thus, for instance, as noted by Accola and Farkas, a
hyperelliptic surface of genus >3 cannot be a 2-sheeted covering of an elliptic
surface. Combining the above formula with the Riemann—-Hurwitz relation, we get

mh—-1)+1+3b,=g=m(h+1)-1
or
by <4(m—1)

where b, is the total branch order of ¢.

(If only Y is known to be hyperelliptic, certain restrictions are imposed on X.
Thus, if Y is of genus =3, no function of order 3 can exist on Y and hence not on
X. The above formulas can be generalized to non-hyperelliptic cases).

Each divisor of degree 2 of the hyperelliptic series on X is mapped on a
divisor of degree 2 in the image series on Y. Hence a sheet interchange on X
followed by ¢ is equivalent to ¢ followed by a sheet interchange on Y. Thus, the
function field on Y pulls back to a subfield on X invariant under the hyperelliptic
involution.

(The above argument can be carried out for complete, irreducible algebraic
curves, over a general groundfield, whose canonical images in the jacobian variety
are invariant (modulo translation) under the involution u — (—u). This yields a
geometric interpretation of a result of Tamme [Ein Satz iiber Hyperelliptische
Funktionenkdrper, J. Reine Angew. Math. 257 (1972) 217-220]. Of course, our
main remark can also be proved in the more general context).
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The result for hyperelliptic surfaces given in Corollary was mentioned by R.
D. M. Accola, Advances in the Theory of Riemann Surfaces, Ann. of Math.
Studies, No. 66, Princeton Univ. Press, Princeton N.J. 1971, pp. 7-18. A special
case of our main remark was proven by M. Newman, Math. Ann. 196 (1972)
198-217.
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