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Explicit imbedding of the (punctured) disc into C*

H. ALEXANDER

1. According to a basic result of Bishop [3] and Narasimhan [7], every
n-dimensional Stein manifold can be imbedded (via a holomorphic, proper, one-
to-one, non-singular mapping) as a closed complex submanifold of C>"*'. Forster
[4] has shown that the dimension 2n+1 can be replaced by 2n when n=2.
Applied to open Riemann surfaces (n = 1), these results yield imbeddings into C°.
It seems likely however that every open Riemann surface can be imbedded into
C°. That this is the case for the open unit disc was proved by Kasahara and
Nishino [5] by an argument that employs the well-known mapping of Fatou (and
Bieberbach). Laufer [6] observed that their idea can be adapted to imbed into C>
every planar annulus both of whose boundary components do not degenerate to a
point; i.e., after a conformal map, annuli of the form {z e C:r<|z|< 1} for r>0.
The case of the punctured disc 4 ={z € C:0<|z| <1} was left open by Laufer and
does not seem to be amenable to the technique of [5] and [6].

In this note we shall give an explicit imbedding of 4 into C>. Namely, we write
down two mapping functions, the elliptic modular function A together with a
simple rational expression of A and its derivative A’ (transplanted from the
Poincaré upper half plane to A) and then we verify that they do yield an
imbedding. The second function will have a pole at the origin. By a minor
modification, we remove this pole and get an explicit imbedding of the open unit
disc U into C*. This is of interest because of the indirectness of the Kasahara—
Nishino imbedding. Other proper holomorphic mappings of U into C?, in which
one of the components is a universal covering map of a plane domain, were
constructed in [2], but these will not generally be one-to-one.

2. We shall begin by recalling a few basic facts about the elliptic modular
function A[1]. Let IT ={reC:Im 7>0} be the Poincaré upper half plane and put
N={rell:0<Re 7<1and|7—3>1}. Let A be the conformal map of {2 onto IT
such that A(0)=1, A(1)=o and A()=0. Then, by reflection, A can Le extended
over the whole of IT and represents Il as the universal covering surface of
CN0, 1}. The group G of covering transformations is the set of linear transforma-
tions S(7)=(at+b)/(ct+d) where a and d are odd integers, b and ¢ are even
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integers and ad — bc = 1. We write 7, =1, (mod G) if and only if there exists S€ G
with S7, = 7;. Then A(7;) = A(7,) if and only if 7,=17, (mod G). Thus A°S = A for
Se G and, differentiating, we get A'°S-S'=A" for Se G. Note, for S=
(ar+b)/(ct+d)e G, that S'(r)=1/(ct+d)*>. We shall also use the functional
equation A(—1/7)=1— A(7). This can be seen by observing, via a reflection in the
imaginary axis, that 7— A(—1/7) maps 2 to the lower half plane, hence 7—1-
A(—1/7) maps £ to II and agrees with A at the vertices of (2, consequently the

two mappings are the same.

Let H={Se€ G:S(z)=2z+2n, neZ} be the subgroup of translations in G.
Consider the map E : II— A given by E(1) = ™. Then E(t,) = E(7,) if and only if
T1=7, (mod H). This allows us to identify A with the quotient space IT/H.
Observe, for S(7) = (ar+b)/(ct+d)€ G, that Se H if and only if ¢ =0 (because
¢ =0 implies ad = 1 implies a/d =1). If Se H, then S’=1 andso A'eS=A';ie., A
and A’ are both well-defined on II/H. We can now state our first result. Let
f=N[A*1-A)).

THEOREM 1. The mapping F= (A, f) defines a proper, one-to-one, non-
singular, holomorphic imbedding of II/H into C>.

Observe that F is non-singular because A'# 0 on 1. We first verify that F is
one-to-one.

LEMMA 1. (a) The functions A and A’ separate the points of IT/H. (b) F is one-
to-one on II/H.

Proof. (a). We suppose (i) A(7)=A(7,) and (ii) A'(7;) = A'(7») and must show
that =7, (mod H). By (i), there is S€ G such that S(r;)=7;. In A'(S(7))
S'(t)=A'(r) put 7=7, and get A'(r) S'(72)=A'(r,). Using (i) we conclude
S'(r,)=1. Writing S = (ar+b)/(ct+d) we have (ct,+d)*=1; ie., cro+d==1.
Taking imaginary parts yields ¢ Im 7,=0. Hence ¢c=0 and so Se H; i.e., 71=1,
(mod H). (b) If F(r,)=F(r,), then A(r;)=A(7) and A'(r)=A%(7y) (1-A(7y))
f(11) = A%(12) (1= A(7y)) f(m2)=A'(7,). Therefore 7, =1, (mod H).

3. We shall collect a few elementary facts needed to verify that F is proper.
For 7€ ITwith 0<Re =<2, define *=2— 7, 0 <Re 7™ =< 2. By reflection of points
of € in the line Rer=1 and differentiation we get

LEMMA 2. For 0= Rer=<2, A(r)=A(r*) and A'(7) = — X'(7%).
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LEMMA 3. (“Schwarz lemma’’). For Se G and 1, 7, €ll, if St,=71,, then
!S'(Tz)' =Im T1/Im T>.

Proof. By reflection in the real axis, ST, = 7,. Hence

T— Ty
=k

S—fl 7‘1.:2.

As S is real on the real axis we get |k| = 1. Now differentiate this relation and put
T=1T,.

LEMMA 4. As 7 converges to  in (2, A'/A converges to iw. Consequently A'[\>
converges to o,

Proof. The map 7—¢™™ is a one-to-one mapping of {2 into II and the image
contains ITN{zeC:|z|<e} for some £>0. The map e (A |2)" is defined
on II, is real on the real axis, and, by reflection, extends to be an analytic func-
tion ¥ defined near z =0. By the argument principle, ¥'(0)# 0. Thus we have
(e oA"Y (z)= W(z) near z=0. Putting z=A(7), we get ™ = ¥(A(7)). For
the inverse o= ¥ ! with ¢(0)=0 and ¢'(0)=B+#0, we have o(e™)=A(1).
Differentiating, ¢'(e"™) e im = A'(7). Write o(z)= Bz8(z) with 8§(0)=1. Then
A /A) (1) = imoa'(e™)/(B-8(e™™). As 71— in £, e™—0 and so
a'(e™)— B and 8(e"™)— 1. Thus A'/A—im.

LEMMA 5. As 7 converges to 0 in 0, 7°A'/(1— ) converges to — im. Conse-
quently A'/(1—A) converges to .

Proof. Differentiating the functional equation A(r)=1-A(-7"") we get
AM(1)=—772A(=7""). Thus A (7)/(1=A(7))= - A (—=7"Y/A(—77"). Reflecting
in the imaginary axis gives A({)=A(={) and A'({)= —A'(-{). Thus, putting
t=1/7 we have

*N'(7) _ (W)
1-A(r) \A(@®/

As 7—0in Q, t— in 2 and (\'/A)(t)— i by Lemma 4.

4. We can now prove that F= (A, f) is a proper mapping of IT/H into C*. We
argue by contradiction and suppose that there is a sequence {z;}< IT with
z;—>d(II/H) and M >0 such that (i) |A(z;)|=M and (ii) |f(z;)|=<M. Since F has
period 2 we may assume that 0 <Re z; <2. By Lemma 2, {z;*} is a sequence in IT
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with z;*— a(II/H) and such that (i) and (ii) hold for z;* in place of z;. Thus it is no
loss of generality to assume that there are 7; € N IT such that 7;=z; (mod G). So
there is S; € G with S;(z;) = ;.
If z;— oo, then z; = 7, is in 2 and so f(z;)—>® by Lemma 4, contradicting (ii).
Otherwise, we have Im z;—0. Since {A(z;)} is bounded, we may pass to a
subsequence and suppose that A(z;)— a € C. We consider three cases:

Case 1. a# 0, a# 1. Then, after possibily passing to a subsequence, there is a
€ QNI such that 7,— 7 and A(7)=a. Then A'(z,)=A'(7;)- S/'(z,). But |S/(z;)| =
Im 7/Im z;— since Im 7;,—1Im 7# 0 and Im z; — 0, while A'(7;) > A'(7) # 0. Thus
A'(z;) = « which implies f(z;) — %, another contradiction.

Case 2. a=0. Then 7,— in . We have (A'/A)(z;)=(A"/A)(%;)- S;'(z;). By
Lemma 4, (A'/A)(7)—>im. Also |S'(z;)|= (Im 7/Im z;)—>c. Thus (A'/A)(z;)—>
which implies f(z;)— .

Case 3. a=1. Then 7,—0. From A'(z;))=A'(7;)- S'(z;) we get

l A'(z) ~| A(m) lIm'r,-
1-Az)| 11-A()| Imz
TN ()| |Im 7 1
T 1=A(7) . T . 7 Im z; |

By Lemma 5, the first factor on the right converges to . Since 0 is a cusp of (2, it
is easy to check that the second factor converges to 1 as 7,—0. We conclude
that (A'/(1—A))(z;)—> o, in contradiction to (ii). This completes the proof of
Theorem 1.

5. Finally we alter our mapping in order to get an imbedding of the open unit
disc U. Because A and A' are H-automorphic, G=(A, A’'/(A(1—A)) gives a
well-defined mapping of II/H into C>. Note that G =(A, Af) while F=(A, f). An
obvious modification of the proof of Lemma 4(b) shows that G is one-to-one on
IT/H. From z = ¢'™, we get a well-defined one-to-one holomorphic map G:4—
C? given by G(z)= G(log z/iw). Write G = (g1, g2).

LEMMA 6. G extends to be analytic at the origin with G (0) = (0, im).

Proof. We restrict € IIto 0 <Re 7<2 and observe that this region maps onto
A via z=¢". Put Q*={r*:7e}. By Lemma 2, (A'/A)= —(A/A)(7*). Since
t*—in  as 7= in 2*, we conclude from Lemma 4 that (A\'/X)(7)— — (iw) =
im as T— in 2*. Hence (A'/A)(7)— im as 7— in QJ 2% Now as z=¢"™—0
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in 4, 1o in QUO* and so g1(z)=A(r)=>0 and g(2)=
(A'(7)/A(7))- (1/(1 = A(7)))—im- 1, Thus g; and g, have removable singularities at
z=0.

Henceforth we shall consider G as a mapping on U.

THEOREM 2. G is a proper, one-to-one, non-singular, holomorphic mapping
of U into C*.

LEMMA 7. G separates the points of U.

Proof. Suppose, for z, and z, in U, that (i) g.(z,)= g:(z,) and (i) g,(z;)=
g,(z,). Observe that if g;(z) =0 for z € U then, since A# 0 on II, we have z =0.
Thus if g;(z,)=0, then gi(z,)=0 and z;,=0, z,=0. If g,(z1) # O,ythen g1(z)#0
and so z; and z, are in A. Since we have already observed that G separates the
points of A, we conclude that z; = z, in either case.

LEMMA 8. G is non-singular on U.

Proof. We show that g;#0 on U. We have, for z#0, gl(z)=4)\(10g z/mi).
Hence gi(z)=(wiz) 'A'(log z/mi) and so g{#0 on A. Putting z=¢"" we have
g1(z) = (ime™ ) 'A'(7) = ¢’(z) in the notation of the proof of Lemma 4. As z—0,
g1(z)—o’(0) # 0.

Finally we show that G is proper. Returning to the half plane, it is enough
(because of Lemma 2) to show: If {z}<II, 0=Re z;<1, and Im z;—>0, then
G(z;)— . Arguing by contradiction, as before, we may suppose (a) A(z;))>a€C
and (b) [\'(z)/(A(z)(1 - A(2,)))| = M.

We reconsider the proof of the properness of F with its three cases. If a# 0, 1,
we saw that A'(z;))—>, if a =0, we had A'(z)/A(z;))—> and if a=1, we got
A'(z;)/(1 = A(z;))—> . In every case there is a contradiction to (b). This completes
the proof of Theorem 2.

As a final remark we observe that if V= F(I/H) and W= G(U) are the two
image submanifolds in C?, then the inclusion map A< U induces a map V- W
which is the restriction to V of the Cremona transformation (z, w) |— (z, zw) of

C2
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