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On the first eigenvalue of the Laplacian
for compact submanifolds of Euclidean space

RoBerT C. REILLY*

1. Introduction

This paper was inspired by recent work of D. Bleecker and J. Weiner [3]. The
following results are typical examples of those we obtain in this paper.

THEOREM. The first eigenvalue of the Laplacian for a compact n-manifold
isometrically immersed in Euclidean space is bounded above by n times the average
value of the square of the norm of the mean curvature vector. Moreover, if the
eigenvalue achieves this bound, then the submanifold is actually a minimal
submanifold of some hypersphere in the Euclidean space. (See the case r=1 in
Theorem A.)

COROLLARY. If a compact connected n-manifold is immersed as a hyper-
surface in R""" so as to have the same constant mean curvature and same first
eigenvalue as an n-sphere of radius R, then it is immersed as an n-sphere of radius
R.

Among our results are included generalizations of Theorems I and II of [3].

2. Notation and preliminary results

Throughout this paper M denotes a smooth (that is, C”), compact, oriented
connected n-dimensional manifold without boundary and Y denotes a smooth
immersion of M into Euclidean space R"*?. We always assume that M is endowed
with the Riemannian structure induced by Y from the inner product (,) on R"*?.
We denote the volume form, volume and Laplace-Beltrami operator on M

* Research for this paper was completed while the author was on sabbatical leave from the
University of California (Irvine) and in residence at the Mathematics Institute of the University of
Warwick.
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526 R. C. REILLY

(defined relative to this Riemannian structure) by dA, A and A (respectively). We
denote the second fundamental form, which is normal-vector valued, by B, and its
matrix relative to an orthonormal frame e,, ..., e, by (b;). If u is a unit normal
vector at a point of M, we denote the (real valued) second fundamental form
(B, u) along u by B". We denote the square of the length of B, which can be
computed as Y;;(by;, b;;), by |B|>. Similarly, we set |B*|*=Y; (b, u)(b;, u). These
quantities do not depend on the choice of orthonormal frame. If p=1, we denote
the unit normal to M (determined by the orientation on M) by N; and we denote
the support function (Y, N) by P. Next we define the mean curvatures and prove
the Hsiung-Minkowski formulas for arbitrary codimension p. (We have already
done this in an earlier paper [6], but the book in which it appears does not seem
to be readily available. Our derivation of the formulas here is simpler than that in

[6])

DEFINITION. If r is an integer, 0 <r =< n, then the r-th mean curvature on M
is the quantity

n\"'1 ) .. . e
(r) o Z E(ity ooy b Jay e e s j)Bijsbii) s« - (b i, bij) if ris even,

n\"'1 : .. : .
(r> "‘.‘; Z >4 (ll, ooy 1y e ]')<bi1i1’ bi2j2> s <bir—2jr—2, bip]l}—l)bid}’ if r is odd.

Here the €’s are the usual permutation symbols, and the sums are taken over all
values of the indices from 1 to n. We set oy=1.

Note that if r is odd, then the r-th mean curvature is normal-vector valued; we
denote it by o,. For example, o, = (3; b;;)/n. In contrast, if r is even, then the r-th
mean curvature is real-valued; we denote it by o,. One can readily show, by using
the skew-symmetries of the permutation symbols, together with the Gauss curva-
ture equations, that when r is even, o, is a polynomial in the components of the
curvature tensor. For example, n(n—1)o is the scalar curvature.

When the codimension p is 1, it is convenient to define real valued mean
curvatures of odd order by the rule o, = (0o, N). We also set o_; =—P.

PROPOSITION 1. (a) If p>1 and r is an odd integer, 1 =r=n, then

J. (<Y9 0'r)"}' O'r-1) dA = 0 (1)
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(b) If p=1 and r is any integer, 0<r=<n, then
J (Y, ooN)+0,-1) dA =0. (2)
M

Proof. Essentially the same proof works for either case; since (b) is proved in
[4], we’ll do only (a).
Consider a tangent vector field X on M whose components X, . .., X, relative

to an orthonormal frame field e,, ..., e, are given by
1 . L .
X;= (r— 1! Z € ity ooy bemty 5015+ o o s Jo=15 DBisjy Bigjp)
. <bi,_2j,-21 bi,,,j,-le, e;).
(The sum is over the indices iy, . .., i,—1, i and jy, ..., j—;.) (It is easy to check that

this formula for X, like those for the mean curvatures, does not depend on the
choice of frame field.) One readily checks, using the Codazzi equations by, = by
(where the comma denotes covariant differentiation in the normal bundle) and the
skew-symmetries of the permutation symbols, that div X is a constant multiple of
the integrand in (1). Then Stokes’ theorem yields the result.

The next three propositions are well known; we state them, without proof, for
future reference.

PROPOSITION 2. (Minimum principle) If A, is the smallest positive eigen-
value of the Laplace-Beltrami operator A on M and if f:M — R is a C' function
such that [, fdA =0 then [y |grad f|? dA= A, [pf> dA; equality implies Af=
—A1f. (See [1])

PROPOSITION 3. (Averaging principle) Let SN~ ' be the unit sphere in
Euclidean space R™ and let dX denote the standard (SO(N)-invariant) volume

element on SN, normalized so that fg~-11-dX=1.

If B, C are any vectors in R", then
J (B, X)XC, X) dX = (1/N)(B, C).
SN—I

PROPOSITION 4. (Newton’s Inequality) If (a;) is a symmetric nXn real
matrix then Y ;; aiz,-z 1/n(X; ai)*; moreover, we get equality if and only if (a;) is
proportional to the identity matrix.
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3. Upper bounds for A,
All of our results flow from a simple lemma.

MAIN LEMMA. If Y:M — R"*? is an immersion for which (,; YdA =0,
then

nA =\, J [Y|? dA. (3)
M

Equality in (3) implies Y is a minimal immersion of M into a hypersphere of R" .

Proof. We restate the hypothesis as: for any unit vector XeR"'P,

Thus, for any such X, the function f=(Y, X): M — R satisfies the hypotheses of
Proposition 2, so we can assert that

j lgrad (Y, X)[* dAzAIJ (Y, X)* dA. (4)
M M

Now if e;, ..., e, is an orthonormal frame field at a point q € M, one easily checks
that, at g, |grad (Y, X)|*=Y, (e;, X)*. Thus, by Proposition 3 we have (at q)

L . lgrad (¥, X)P dx =), J

i sn+p—-l

(e, X)* dX = ). (e, €.)/(n+p) = n/(n+p).

Similarly, we have (at q) fs~-: (Y, X)* dX = |Y|*/(n + p).Then if we integrate both
sides of (4) with respect to X, switch the order of the integrations (allowable by
Fubini’s theorem) and multiply both sides by (n + p), we obtain (3). Equality in (3)
implies (by Proposition 2) that, for each X, A(Y, X)=—A(Y, X). By Takahashi’s
Theorem ([7, Thm. 3]) this implies that Y minimally immerses M into a
hypersphere.

Let us now state our main results. We continue with the notation of the
preceding section.

THEOREM A. (a) If p>1 and r is an odd integer, 1 <r=<n, then

nA JM o7 dA zAl(JM _ dA)z. 5)
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If, for some such r, we have equality in (5) and if &, does not vanish identically,
then Y immerses M minimally into some hypersphere in R"*? and o, is parallel in
the normal bundle of M in R"*"?. In particular, if r=1 and we have equality in (5),
then Y immerses M as a minimal submanifold of some hypersphere in R"*?. (We
don’t have to assume that ¢, does not vanish identically.)

(b) If p=1 and r is any integer, 0<r=<n, then

2
nAJ g dA ZM(J Or1 dA) . (6)
M M

We get equality in (6) for some r, 0=<r=<n, if and only if Y immerses M as a
hypersphere in R"*". If, in addition, n=2, Y will be an imbedding.

Proof. Since all the quantities appearing in (5) and (6) are independent of the
choice of origin, we may, without loss of generality, assume that the center of
gravity of Y is located at the origin; that is, ;s Y dA =0. (The only expression
that appears to depend on the choice of origin is fy; PdA, which shows up in (6)
when r= 0 (recall that o_; = —P). In fact, it does not depend on that choice. For if
we translate Y by a constant vector C, then the new support function is
P'=(Y+C,N)= P+(C,N). However, it is well known that for a compact hyper-
surface in R"*', {; N dA =0). With this assumption in force, we can apply the
main lemma, i.e., (3) holds.

To prove (a), first multiply both sides of (3) by the quantity fy, |o,|> dA. Then,
after using the Cauchy-§chwarz inequalities for integrals and for vectors in R"*?,
we obtain the following string of inequalities:

nAJ' |o,|2dA2)\1< |Y|2dA)(J |o,|2dA)
M M M

J

>\ (M Y| || dA)2 > Al(L Y, a,) dA)z. (7)

We get the desired inequality (5) by applying the Hsiung-Minkowski formula (1)
to the rightmost integral in (7).

If we get equality in (5), then all the inequalities in (7) must in fact be
equations. By the basic facts for Cauchy-Schwarz inequalities, this implies that
o,= C-Y for some constant C. Since, by hypothesis, &, does not vanish identi-
cally, we must have C# 0. Thus, since ¢, is normal-vector valued, Y is always
normal to M. Since d |Y|>=2(Y, dY)=0, it follows that |Y| is constant, so Y maps
M into a hypersphere of R"*?. Similarly, since dY is tangent to M and o, = CY,
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we see that o, is parallel in the normal bundle. In addition, equality in (7) implies
equality in (3) which, by the final part of the main lemma, implies that Y
minimally immerses M into a hypersphere. If r=1 then o, cannot vanish
identically, since (by (1)), (Y, o) dA=—A%F0.

The proof of (b) follows in much the same way, so we’ll omit it, except to note
that when r=0 we use the inequalities

[¥]oo=[¥] - 1=[¥]- [N|=KY,N)| = |P|.

COROLLARY 1. If p=1 and Y imbeds M as the boundary of the domain
D <R, then nA*=\(n+1)>V?>, where V is the (n+ 1)-dimensional volume of
D. Moreover, we get equality if and only if D is a ball.

Proof. Apply (b) of Theorem A in the case r=0, after observing that, by
Stokes’ theorem, |y PdA|=[p (n+1)dV=(n+1)V.

COROLLARY 2. If, in the preceding Corollary, we further assume that n =1,
then we obtain the classical isoperimetric inequality in the plane: if A is the length of
the boundary of a domain D in R> and V is the area of D, then A*>=47V, with
equality if and only if the domain is a disc.

Proof. Use the inequality provided by Corollary 1 when n =1 and recall that
for a closed curve of length A the first eigenvalue can be computed explicitly:
A=(2mA)

Remark. Our proof of Theorem A is nothing but a simple modification and
generalization of the well known proof of Corollary 2 due to A. Hurwitz (1902).
(For a discussion of Hurwitz’ proof, see [2, esp. pp. 43-45].)

THEOREM B. Using the notation of Section 2, we have the following
inequality:

J IB]> dA = A, A. (8)
M

Moreover, we have equality if and only if Y immerses M as a hypersphere in some
(n+1)-dimensional linear subspace of R"*?.

Proof. By Newton’s inequality (Proposition 4) one sees that if w is any unit
normal vector (at a given point of M) then |B"|* = n(o;, u)’, with equality if and
only if B" is proportional to the identity (i.e., if and only if “M is umbilic in the
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normal direction u”). If we integrate this inequality over all such unit normals u,
Proposition 3 implies |B|°=n |o,|°, with equality if and only if each B" is
proportional to the identity. Thus, if we integrate over M we get

J |B|2dA2J nlo,* dA 9)
M M

which, together with (5) (in the case r=1) implies (8). Moreover, if we have
equality in (8), we must also have it in (9), and thus, by the preceding remarks, Y
must be umbilic in all normal directions and at all points. It is well known that this
implies that Y maps M into a hypersphere of some (n+ 1)-dimensional linear
subspace of R""P.

THEOREM C. If o, is never 0, then
J |IB*[>dA =1, A (10)
M

where u=0,/|o4| is the unit normal field in the direction of o;. Moreover, if we
have equality in (10) then Y immerses M as a minimal submanifold of some
hypersphere in R"*?.

Proof. Apply Theorem A and Proposition 4.

Remarks. Theorem B is the same as Theorem I of [3]; however, because of
the availability of Theorem A, our proof of the second part of Theorem B is easier
than that in [3]. Theorem C is a strengthening of Theorem II of [3]; Bleecker and
Weiner require the additional hypothesis that o, be parallel in the normal bundle.
The following result generalizes their proof of Theorem II in [3].

THEOREM D. Suppose that for some odd r, 1=<r=n, &, is parallel in the
normal bundle and is nonzero. Let uw=a,/|o,| be the unit normal field in the
direction of o,. Then we have the following inequality:

J |IB*]> dA =\, A. (11)
M

Proof. The Hsiung—Minkowski formula (1) holds, independently of the choice
n+p

of origin. Thus if we replace Y by Y+ X in (1), where X is any unit vector in R"™7,
we still have a valid formula. It follows that for all such X, (v (X, o,) dA =0.
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Thus we may apply Proposition 2 to the function f= (X, @,), which we can also
write as f=(X", @,), where X" is the normal component of X. Then one readily
checks (using covariant differentiation in the normal bundle on X" and o,) that,
because o, is parallel,

lgrad f2 = |a, ] 2 (X, e:XX, e, )bibl,.

ijk

(We have introduced the orthonormal frame field e;,...,e, for these calcula-
tions.) Thus Proposition 2 implies that

J;J o |* (Z (X, e; XX, e)bj; ‘,:j) dA =), L X, u)?|o,|? dA. (12)

ijk

Theorem D follows by integrating both sides of (12) with respect to X over the
unit sphere S"*?~', applying Proposition 3 and cancelling the appropriate con-
stant factors.

Remark. Professor Weiner informs me that he can prove a result stronger
than Theorem D for any nonzero parallel normal section.
Our final application of the main lemma is quite unlike the preceding ones.

THEOREM E. Suppose that Z: M — S"*? is a minimal immersion of M into
the unit sphere S"*?. For any vector Ce S™"*? let L¢:S™"? ~{C}— R""? be stereog-
raphic projection via the pole C. Suppose that Ce S"'?P ~Z(M) and that the
composite immersion Y =LcoZ:M — R"*? has the property that, in terms of the
metric induced on M by Y, [, YdA =0. Then A,, the first eigenvalue of the
Laplacian induced by Y on M, satisfies the inequality A, <n. Moreover, A, = n if
and only if X maps M into the totally geodesic equator of S"*? perpendicular to C.

Proof. The main lemma says that nA = A, [, [Y|* dA. However, by Theorem 1
of our paper [5], the hypotheses of Theorem E imply that [ |Y|* dA = A, with
equality if and only if X maps M into the equator perpendicular to C.

The desired result now follows easily.
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