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Extreme values of the Riemann zeta function

Huca L. MONTGOMERY™*

1. Introduction

In 1928, Titchmarsh [13] (see Titchmarsh [14; Theorem 8.12], Ramachandra
[10]) proved that for fixed o, 3<o<1,

log [{(o+it)| = 2. ((log 1) 77 7°) (1)

as t tends to infinity. Previous estimates of this sort had only been established
assuming the Riemann Hypothesis (see Landau [6], Bohr-Landau [2], Littlewood
[8]). Recently Levinson [7] sharpened (1) by showing that

max log|{(o + it)|> c(log T)' “/loglog T )

1=t=T

for =0 <1, T=10. For ;< o <1 we give a sharper lower bound than is provided
by (2), we show that |{(s)| becomes correspondingly small, and that arg {(s)
becomes correspondingly large in both signs. We write s = o+ it.

THEOREM 1. Let $<0,<1, T> Ty(0,). For any real 8 there is a t, such that
Tl 1D/3 < to=T, and

1

1/2
Re e™* log £(s0) 2'2'16 (0'0 "5) (log T)'"*(log log T) ™. (3)

Taking 6 =0, m, £7/2 in the above, we derive the following

COROLLARY. Let o be fixed, 3<o<1. Then as t tends to infinity,

log |£(s)| = £2..((log t)'~° (log log 1)), (4)
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512 H. L. MONTGOMERY

and

arg {(s) = 2.((log ©)'°(log log £)™°). (5)

In establishing Theorem 1, we actually construct more than T/?»~?7~</

numbers t, having the required properties. This is necessitated by our method,
since we must construct more candidates for t, than there are “‘bad zeros” of £(s).
If we assume the Riemann Hypothesis (RH) then we have no problems with ‘“bad
zeros,” and in place of (3) we find that if 3<0,<1 then thereisa t,, T"*<t,<T,
such that

. 1
Re e " log £(so) _>_—2—6 (log T)'“(log log T) . (6)
In particular, we obtain

THEOREM 2. Suppose that the Riemann Hypothesis is true. Then

|£G+it)| = Q(exp (i% (log t/log log t)m)) (7)

and
S(t) = 2.((log t/log log t)''?) (8)
as t tends to infinity, where S(t)=1/m arg {G+ it).

The best known unconditional estimate corresponding to (7) is obtained by
taking o =3 in (2). With regard to (8), Selberg [12] has shown unconditionally that

S(H) = Q2.((log t)'*(log log t)").

Selberg [11] remarks that the Bohr-Landau approach, when fully exploited, yields
(assuming RH)

S(t) = 2.((log t)"*/log log t).

The small refinement that (8) gives of this is of interest because our estimates are
“likely” to be best possible. To argue that this is the case, suppose that o is fixed,
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3<o<1, and that RH holds. Then for T<t=<2T we have

log {(s)= ), p~*+0(1)

p=T

= F(1)+0(1),
say. As the numbers p~ " have a random appearance, we consider

G@©)= ), p“e(8,),

p=T

where the 6, are independent, 0= 6, <1, and e(8) = ¢>™. We can prove that with
great uniformity the distribution function of F(t), for T<t=<2T, is very close to
that of G(@), for 0 T, Let us choose “at random” T points 0, ..., 0. Then
we find that the probability that

max |G(9,)|> C(log T)'"“(loglog T)™“

1=t=T

is less than T, where A becomes large with C. The rapid convergence of the
series Y, 27" leads us to conjecture that

llog ¢(s)| <, (log 1)’ (log log 1)~ 9)

for 3< o <1. The situation in Theorem 2 is more delicate, but we still suggest that
for some ¢>0 and all t=10,

|£(s)| <exp (c(log tlog log 1)'/?), (10)
S(t)« (log t/log log )"/, (11)
The estimate (8) was announced previously by the author [9; p. 123]; on that
occasion a connection was exhibited between the size of S(t, x) and the size of

least character non-residues. We repeat the observation that our method can be
used to show (assuming RH) that

S(t+ 1/log log t)— S(¢) = 2.((log t/log log t)*/?).

Assuming RH, Selberg (unpublished) has argued from (16) that if (log T '=sh=<
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(loglog T)™" then

sup (S(t+h)—S(®)=c(hlog T)"?,

T=t<2T

inf (S(t+h)-S(t))<—c(hlog T)'.

T=<t<2T

Selberg’s approach differs from ours in that he uses high moments to make his
expression large; Dirichlet’s theorem does not suffice.

Over a period of years the author has been pleased to have many stimulating
discussions with Professor Atle Selberg concerning the subject of this paper.

2. Basic lemmas

We require a modified form of Dirichlet’s theorem on simultaneous approxi-
mation, which we derive in a standard manner from

LEMMA 1. Let € be a convex body in R™, symmetric about the origin. If
w(€)>2"K then € contains at least K distinct pairs of non-zero lattice points +u,,
l=k=K

This form of Minkowski’s first main theorem is due to van der Corput [4]; see
Cassels [3; Chapter III, Theorem II].

LEMMA 2. Let 6,,..., 6\ be arbitrary real numbers, and suppose that
0 < 8<3. There are at least [6™ (R + 1)] integers r such that 1<r=<R and ||r6,,||< &
for l=m=M.

Here |6 denotes the distance from 6 to the nearest integer, ||0]| = min |6 — n.

Proof. Let 6. < R™*' be defined as follows: For € =0 let x€ €, if and only if
x@ <1+ '(R+1), x™—0,,xP|<(1+¢£)é for 1=m <M. Thus

p(8)=(1+e)"8"2"(R+1),

so that if K=[86"(R+1)] and >0 then by Lemma 1 we find that €. contains K
distinct pairs of non-zero lattice points. Letting ¢ tend to 0, we find that €, also
contains such points, say +x,, 1=k =K. The condition § <3 ensures that the
leading coordinates +u” are distinct and non-zero; we let r take on the positive
values of these leading coordinates.
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One can derive Lemma 2 analytically by the method of Blanksby-
Montgomery [1; §6].

LEMMA 3. Suppose that the Dirichlet series f(s)=) a,n"° is absolutely con-
vergent for o> a,. Suppose also that a >0 and that x is real. Then for ¢ > o,

—1—J‘c+m'f(s)(fi_—£j>2e’“ ds = g G Wn, (12)

2 s

c—iw™

where w, = w,(a, %) = max (0, @ — |x —log n|).

In earlier works on this subject, identities such as (12) have been employed
with a large and » =0. To some extent our ability to achieve sharper results is
due to the fact that we take a =1, and » large.

Proof. In the integral we replace f by its defining sum; we invert the order of
summation and integration, and then it suffices to note that

c+1ioo as _ —as\ 2 “+oo . 2
1 j f(s)(i) e” ds =—72; J (smtat) e™ dt =max (0, a —|v|),

2 s .

c—ioo
where v = x —log n.

LEMMA 4. Suppose that 3<0,<1, t,=15, and that {(s)#0 for o> oy,
|t — to| =27, where = 1(t;) = (log t,)*>. Then for a >0, and real x,

o
S“‘t“ ) e dt=Y A (n)wan~o+ O(e™(log 1)),  (13)

% L: log {(so+ it)(

where A,(n) = A(n)/log n.

Proof. We take f(s)=1log {(so+s)=) Ay(n)n"*° in Lemma 3. We move the
path of integration in (12) to lie on the five line segments determined by the
points 1—iw, 1—ir, —ir, ir, 1+ir, 1+io. Thus our integral is the sum of five
integrals I, |j|=2, each over the corresponding segment. The left hand side of
(13) is I,, so to establish (2) we have only to bound I.,, I.,. From familiar
estimates (Titchmarsh [14; Theorem 9.6(B)] we deduce that

log £(so+ s)« (log %) log 2/0
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for s on the horizontal paths of I.,. Thus

1

L < 772e™*2%(10g 1)) J log 2/a do « e™*>*(log t,) . (14)

0

On the vertical paths of L., we have log {(so+s)« 1, so that
I« e"“”"‘j 172 dt < ™" 2*(log 1,) 2. (15)

Now (14) and (15) give (13).

Let N(o, T) denote the number of zeros p = B + iy of the zeta function {(s) for
which B=o0o, O0<y=<T.

LEMMA 5. For T=10, 3<o=<1,

N(o, )< T**°(log T)".

Proof. This is weaker than the classical estimate

N(o, T)< T**~/C % (log T)®

of Ingham [5]; see Titchmarsh [14; Theorem 9.19] or Montgomery [9, Theorem
12.1].

3. Proof. of Theorem 1

Let a =3, and take successively x = —log x, » =0, x =log x, where x=1. In
the first two cases the sum in (13) is empty. For the three respective values of x
we multiply (13) by 3e7*, 1, 3¢*, and sum, to find that

T in t/2
EI log {(s0+it)(sm !
™l t

2
) (1+cos (6+tlog x) dt

e’ Z Al(n)n_%(%— loggl) + O(x(log to) %), (16)

llog n/x|=<1/2

provided that {(s) # O for

o=0, |t—t]=2(log t,)>. 17)



Extreme values of the Riemann zeta function 517

We shall determine ¢, and x so that

x = (log )?, (18)

so that {(s)# 0 in the region (17), and so that

Re Z Al(n)n‘%(l— log ED =+ 0(1))x'""/log x. (19)
llog n/x|=1/2 2 X
Now
2 T $ 2 +oo L) 2
—J (sm t/2‘) (1+cos(6+tlog x)) dtsi I (sm t/2> dt=1,
mJ. t mTJ)ow t

and the first integrand is non-negative, so it then follows from (16) that there is a
t1, |ti— t)|=2(log t,)*, for which

Re e log { (0 + ity) = (§+ o(1))x' ~*/log x. (20)

If ||(27) "¢, log n||<% for all n in (19) for which A,(n)>0 then Re n”" =3, and
we obtain (19), since by the prime number theorem

Z Al(n)n”"“(%-

log n/x|=1/2

NETEE -

n
log ;
= (3+0(1))x'"/log x.

Let Ty=T“""Y?7 ¢,=(1/2m)T,log n; we wish to have

r6, | < (A(n)>o,

_<_%), 21)

n
1 s
og

with 1=r= =[T/T,]. For such r we put t,=rT}, so that T, <t,=T. We appeal
to Lemma 3 with

6=L M=I(xe'? - H(xe "*)~ c,x/log x,
¢;=2sinh3=1.042 - - - . Take now

x =3¢y (o0 —3)(loge T)(log log T);
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note that this value of x in (20) gives (3), and that (18) is satisfied for all t, = rT;.
Moreover, this x gives M ~3(0o,—3)logs T, so by Lemma 3 we have at least
T~220=*"3 golutions of (21). For distinct t, = rT; we see that the regions (17) are
disjoint; thus by Lemma 5, {(s) vanishes at some point in (17) for at most
T??7°0*¢ values of r. But 3— 0o+ &<(4—20,— ¢€)/3, so for suitable t,=rT; we
have (18), (19), and {(s)#0 in (17).
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