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Comment. Math. Helvetici 52 (1977) 511-518 Birkhâuser Verlag, Basel

Extrême values of the Riemann zêta fonction

HUGH L. MONTGOMERY*

1. Introduction

In 1928, Titchmarsh [13] (see Titchmarsh [14; Theorem 8.12], Ramachandra
[10]) proved that for fixed <r,

)1"""e) (1)

as t tends to infinity. Previous estimâtes of this sort had only been established
assuming the Riemann Hypothesis (see Landau [6], Bohr-Landau [2], Littlewood
[8]). Recently Levinson [7] sharpened (1) by showing that

max log \C(a + it)\ > c(log 7y-71og log T (2)

for §< <t< 1, T> 10. For |< a< 1 we give a sharper lower bound than is provided
by (2), we show that |£(s)| becomes correspondingly small, and that arg £(s)
becomes correspondingly large in both signs. We write s cr+ it.

THEOREM 1. Let^<ao<l,T> T0(a0). For any real 6 there is a t0 such that
7^o-^>/3<,o<r, and

1 / 1\1/2
Re e~ie log C(so) ^^ (cr0 - -j (log ri^^Oog log T)'^ (3)

Taking ^ 0, tt, ±tt/2 in the above, we dérive the following

COROLLARY. Let a be fixed, |<cr<l. Then as t tends to infinity,

log \C(s)\ fl+(aog O'^Oog log *)-'), (4)

* Research supportée by the Sloan Foundation, the National Science Foundation, and the Institute
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512 H L MONTGOMERY

and

arg {(s) /2±((log O^Oog log t)-)- (5)

In establishing Theorem 1, we actually construct more than T(4/3)~(2cro-e/3>

numbers f0 having the required properties. This is necessitated by our method,
since we must construct more candidates for t0 than there are "bad zéros" of Ç(s).

If we assume the Riemann Hypothesis (RH) then we hâve no problems with "bad
zéros," and in place of (3) we find that if \< <r0 < 1 then there is a t0, T1/6 < t0 ^ T,
such that

Re e~ie log C(so)^ (log D^^og log 70"^. (6)

In particular, we obtain

THEOREM 2. Suppose that the Riemann Hypothesis is true. Then

|£Ô+ îr)| n(cxp (^ (log r/log log r)1/2)) (7)

and

S(t) ÛMog r/log log 01/2) (8)

as f rends ro infinity, where S(t) 1/tt arg C(k+ it).

The best known unconditional estimate corresponding to (7) is obtained by
taking a \ in (2). With regard to (8), Selberg [12] has shown unconditionally that

S(t) /2±((log r)1/3(log log r)~7/3).

Selberg [11] remarks that the Bohr-Landau approach, when fully exploited, yields
(assuming RH)

The small refinement that (8) gives of this is of interest because our estimâtes are

"likely" to be best possible. To argue that this is the case, suppose that cr is fixed,
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!<<x<l, and that RH holds. Then for T<f<2T we hâve

say. Ab the numbers p~lt hâve a random appearance, we consider

where the 0P are independent, 0 < 6P < 1, and e(0) e2me. We can prove that with
great uniformity the distribution function of F(t), for T<f<2T, is very close to
that of G(0), for eeT77^. Let us choose "at random" T points Oi,..., 8T. Then
we find that the probability that

max |G(8,)|> C(log T)waog log T)^

is less than T~A, where A becomes large with C. The rapid convergence of the
séries X 2~An leads us to conjecture that

|log f(5)|«Œ (log f)w(log log r) CT

(9)

for \< <t< 1. The situation in Theorem 2 is more délicate, but we still suggest that
for some c>0 and ail f>10,

\C(s)\ <exp (c(log f/log log r)1/2), (10)

S(0«(logf/loglog01/2 (H)

The estimate (8) was announced previously by the author [9; p. 123]; on that
occasion a connection was exhibited between the size of S(t, \) and the size of
least character non-residues. We repeat the observation that our method can be
used to show (assuming RH) that

S(t + 1/log log 0 - S(t) /2±((log r/log log t)112).

Assuming RH, Selberg (unpublished) has argued from (16) that if (log T)"1^ h <
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(loglogT)"1 then

sup (S(t+h)-S(t))>c(hlogT)in,

inf (S(t+ h)- S(t)) < -c(h log T)in.

Selberg's approach differs from ours in that he uses high moments to make his
expression large; Dirichlet's theorem does not suffice.

Over a period of years the author has been pleased to hâve many stimulating
discussions with Professor Atle Selberg concerning the subject of this paper.

2. Basic lemmas

We require a modified form of Dirichlet's theorem on simultaneous approximation,

which we dérive in a standard manner from

LEMMA 1. Let % be a convex body in Rm, symmetric about the origin. If
K then % contains at least K distinct pairs of non-zéro lattice points ±nk9

This form of Minkowski's first main theorem is due to van der Corput [4]; see
Cassels [3; Chapter III, Theorem II].

LEMMA 2. Let $u 6M be arbitrary real numbers, and suppose that
0<8<i There are at least [ÔM(R +1)] integers r such that \<r<Rand \\r6m||<8
for l<m<M.

Hère ||0|| dénotes the distance from 6 to the nearest integer, ||0|| min \0 - n\\.

Proof Let <£c c RM+1 be defined as follows: For e >0 let xe <€e if and only ifI^ ^ |()(o)| ô for l<m<M Thus

so that if K [8M(R +1)] and e>0 then by Lemma 1 we find that c€e contains K
distinct pairs of non-zero lattice points. Letting e tend to 0, we find that ^0 ateo

contains such points, say ±xfc, l^k^K. The condition 5<| ensures that the
leading coordinates ±Ufc0) are distinct and non-zero; we let r take on the positive
values of thèse leading coordinates.
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One can dérive Lemma 2 analytically by the method of Blanksby-
Montgomery [1; §6].

LEMMA 3. Suppose that the Dirichlet séries /(s) £ a^nTs is absolutely
convergent for a > cra. Suppose also that a > 0 and that x is real. Then for c > ara,

-i fc+ ioo /pas — p~as\2

T~. fis) (- — «~ dS l OnWn, (12)

where wn wn(a, x) max (0, a — \x — log n\).

In earlier works on this subject, identities such as (12) hâve been employed
with a large and x 0. To some extent our ability to achieve sharper results is

due to the fact that we take a « 1, and x large.

Proof. In the intégral we replace / by its defining sum; we invert the order of
summation and intégration, and then it suffices to note that

^~. f(s)(-
27TI Jc-loo \

2

e»< dt max (0, a - M),

where v x - log n.

LEMMA 4. Suppose that |<cro<l, fo^15, and that £(s)#0 for a>or0,
11 - fo| ^ 2t, where t r(f0) (log f0)2. î^ien for a>0, and real x,

(13)- f ' log f(
7T J_T

where Ax{n) A(n)/log n.

Proof. We take /(s) log £(so + s) Z Ax(n)n"So"s in Lemma 3. We move the

path of intégration in (12) to lie on the five line segments determined by the

points l-i'oo, 1-iY, -ît, it, 1 + ît, l + i'oo. Thus our intégral is the sum of five

intégrais IJ9 |/|^2, each over the corresponding segment. The left hand side of
(13) is Io, so to establish (2) we hâve only to bound /±1, I±2- From familiar
estimâtes (Titchmarsh [14; Theorem 9.6(B)] we deduce that

log £(s0 + s) « (log to) log 21a
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for s on the horizontal paths of I±i. Thus

I±i« T-2ew+2a(log t0) | Iog2/ada« eM+2"(log t0T\ (14)

On the vertical paths of J±2 we hâve log £(so + s)« 1, so that

J±2« eM+2a [ r2 df « ew+2a(log r0r2. (15)

Now (14) and (15) give (13).
Let N(a, T) dénote the number of zéros p j3 + iy of the zêta function £(s) for

which p > a-, 0 < 7 < T.

LEMMA 5. For T>10, |<a-<l,

Proo/. This is weaker than the classical estimate

T)5

of Ingham [5]; see Titchmarsh [14; Theorem 9.19] or Montgomery [9, Theorem
12.1].

3. Proof. of Theorem 1

Let a 5, and take successively x - -log x, x Q9 %- log x, where x > 1. In
the first two cases the sum in (13) is empty. For the three respective values of x
we multiply (13) by \e~ie, 1, |et0, and sum, to find that

- f log £(s0 + H)(^^)2(1 + cos (0 +1 log x) dt

|) O(x(log tor2), (16)
Ilogn/x |^l/2

provided that £(s) 5e 0 for

)2. (17)
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We shall détermine t0 and x so that

x<(logf0)2,

so that f(s) ï 0 in the région (17), and so that

517

Re l A
|logn/x|sl/2

l(n)n-°(\-

(18)

(19)

Now

2 fT /sint1^2 t« i ^ J 4 r°7sinf/2\2 J ^cos(0+flogjc))df<— I dt=l,
7T J_oo \ t /

and the first integrand is non-negative, so it then follows from (16) that there is a

tl9 |r1-f0|<2(log tof, for which

(20)

If ^Trr^olog n||<è for ail n in (19) for which Ai(n)>0 then Re n"lf°>i and

we obtain (19), since by the prime number theorem

Re e~w log £(tr0 + ih)> (k

logn/x|<l/2

Let Tx r(ar°~1/2)/3, 0n (1/2^)^ log n; we wish to hâve

l|ii0n||<è \A(n)>0,

with l<r< =[T/r!]. For such r we put to rTu so that r!<f0
to Lemma 3 with

ô è, M= II(xeU2)'-n(xe-U2)~ Clx/log x,

ci 2 sinh | 1.042 • • •. Take now

x |cr1(«To-è)(log6D(loglogT);

(21)

^ T. We appeal
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note that this value of x in (20) gives (3), and that (18) is satisfied for ail t0 rTx

Moreover, this x gives M ~|(<x0-|)log6 T, so by Lemma 3 we hâve at least
r(4-2cr0-e)/3 solutjons of (2i). For distinct to=rT1 we see that the régions (17) are
disjoint; thus by Lemma 5, £(s) vanishes at some point m (17) for at most
T3/2-<v-e values of r But !_oro+£<(4_2a.0-e)/3) so for suitable to=rT1 we
hâve (18), (19), and Ç(s)ïO in (17).
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