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Strange inner product spaces

WALTER BAUR and HERBERT GROSS

Introduction

It has been a puzzling question for some time whether there exist or not
quadratic spaces of an infinite dimension k such that the orthogonals of all infinite
dimensional subspaces are of dimension less than k. In [3] it had been shown how
to construct such spaces over uncountable fields. For countably infinite or finite
fields the problem remained open. We shall give here a solution for this remaining
case under the additional proviso that the continuum hypothesis holds in the
underlying set theory.

Another question asks if each vector space supplied with a non degenerate
symmetric form contains some subspace U spanned by an orthogonal basis and
whose orthogonal U™ is the null space. (Clearly if E itself admits an orthogonal
basis no problem exists; likewise, if E has no non-zero isotropic vectors then an
application of Zorn’s lemma will provide us with a subspace U of the required
sort.) In [1] (Theorem 6) it has been shown that the answer is positive for a
certain interesting class of X;-dimensional spaces. Here we shall show how to
construct spaces which fail to have subspaces U of the required shape. The
construction rests on the additional assumption that all sets of the underlying set
theory are constructible (in the sense of Godel) which, intuitively, means that the
set theory is the smallest universe which satisfies the usual set theory axioms and
which is transitive and which contains all ordinals. More precisely, we use Jensen’s
combinatorial principle < (see e.g. [2]) which has already been used successfully
by Shelah [5] in order to solve the Whitehead problem.

The solution of the first problem bears on the existence of locally algebraic
elements in the orthogonal group of a sesquilinear space (cf. [3]); the second
question arises quite often in the proof of theorems; good examples for the point
in case are Theorem 1 in [4] and Theorems 6-8 in [1].

Terminology. Throughout the paper k is an arbitrary finite or countably
infinite commutative field and k a fixed subfield. w, is the first infinite ordinal, and
w, is the first uncountable ordinal. As usual, an ordinal « is identified with the set
of its predecessors.
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1. Extending forms

All forms @ considered here are symmetric and bilinear. If @ is defined on the
k-vectorspace E then & is the usual k-ification of @ to the space E=k®, E.

LEMMA 1. Let E be a hyperplane in the X,-dimensional k-vectorspace E, and
(Ui)i<w, a family of subspaces of E with dim U,=R,. Assume that @ is a
non degenerate form on E. Then there exists a non degenerate extension @, of ®
to E, such that for all i <w, the orthogonal complement of U, in E, is contained
in E.

Proof. Let e span a supplement of E in E; and let ({x(j), i(j)))j<., be an
enumeration of E X wo. The definition of @, proceeds in stages. Assume that we
have already defined elements @,(w, e)e k for all w in some finite dimensional
subspace W;_; < E such that @,(w, e) is linear in the first argument. The j-th step
is done as follows. Pick u € U — W,--l. There are finitely many u,,..., u,, € E and
Als..., Am € k such that u=Y, A, ®u,. Assume that the first r among the u, are a
basis of a supplementof W, _,in W,;:=W,_, +k(u,, ..., u,,). There are furthermore
finitely many x, € E such that x(j) =Y, £ ®x, for certain ¢, € k.

We can certainly assign elements of k as values to ®@(u,, e) (u=1,..., r) such
that

Y LED(u,, x,)+ 2 A, D (u,, €) #0. (1)

This procedure gives us a sequence (W, )n<., in E and defines the form &, on
part of Eq, namely W k(e) where W:= |J {W, | n < wo}. (We define @;(e, e) any
way we like, and ®,|w = ®|w). We complete the definition of @, by extending it
to all of E@k(e) in some arbitrary fashion, but such that @,|z = .

Assume now that for some non-zero A € k we had a vector z =5c'+X_ ®ee
E®k(e)=k®E, orthogonal to U.. Let j < wo be such that (x(j), i(j)) ={(1/A)X%, i).
By (1) we have a vector u e U; and ®,(u, z) # 0, contradiction.

THEOREM 1. (2% =R,) There exists a non degenerate form on a k-
vectorspace E of dimension R, such that for all infinite dimensional subspaces X of
E = k®E we have dim; X* <R,.

Proof. Pick some k-space E= @ ,<., k(e.) _and let U= (Ua,)..,oas‘;.,_q,l be an
enumeration of all X,-dimensional subspaces of E (there are (R; - card k)" =R}e =
X; of them). For all a <w; we set E, = @ g, k(eg). We can always renumber AU
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such that U, < E, for all a = w,. We define @ on E, by transfinite induction. We
start on E,, with some arbitrary non degenerate form. Assume that @ is defined
on E,. We extend @ to E,.,=E,®k(e,) by means of the lemma where now
(Ug)ws<p<a plays the role of (U;)ica,. By forming unions we extend & to E, with
v limit numbers. In this way we get a form @ on E with the desired properties.

2. Some remarkable properties of the space of Theorem 1

A vectorspace automorphism T of the k-space E is called locally algebraic if
for each x € E there is some polynomial f, € k[X] such that f,(T)x = 0; if f. does
not depend on x we call T algebraic.

In Theorem 1 we may let k be the algebraic closure of some countable field k.
This will permit us to reproduce the proof of Theorem 2 in [3] and we obtain

THEOREM 2. If (E, ®) is as in Theorem 1 then the set 4 of all locally
algebraic isometries is a group. o coincides with the set of all algebraic isometries on
E; furthermore & is generated by —1 and the symmetries about non degenerate

hyperplanes of E. In particular, s is a normal subgroup of the orthogonal group of
E.

We may choose k to be a finite field; all maximal totally isotropic subspaces of
the space E of Theorem 1 are then of dimension X,. One may arrange for some
such subspaces X to have X = X" and for certain others to satisfy dim X*/X =1
so that the orthogonal group will not be transitive on the set of maximal totally
isotropic subspaces even though they are all of dimension X,. Incidentally, none of
them will admit a Witt decomposition.

We also remark that if k is an ordered field and the form in Lemma 1 is
positive definite, then it is easy to arrange for @; in the lemma to be positive
definite as well. Hence we obtain

THEOREM 3. If in Theorem 1 we let k be ordered then @ may be required to
be positive definite. For such a space the set L,={X < E | X"+ X = E} of splitting
subspaces, ordered by inclusion, is a lattice (in fact, a modular lattice).

It is not easy to find examples different from real complex and quaternion
Hilbertspace where the set L, is a lattice.
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3. A space which admits no dense orthogonal family

A subset C of w, is called closed iff the supremum of any countable subset of C
is again in C.

LEMMA 2. Let (E, @) be of dimension R, and let (E,),<., be an increasing
sequence of countable subspaces of E such that E = y<w, E« and E, = U g<a Eg
if a is limit. If U is a subspace spanned by a basis (u,)y<., and with U" = (0) then
the set A(U):={a | a a limit ordinal and UNE, = ®, g, k(u,) and (UN E,)" N
E, =(0)} is both closed and cofinal in w,.

Indeed, closedness is obvious, and to show cofinality let B <w; be given.
Define a sequence (B)icw, bY Bo=B and B, =min{B|B>B, &
UN Ep, € ®uer, k() & (UNEg)* NEp, = (0)}. Thena =sup {B1 ] i <wobe A(U).

A subset of w; is stationary iff it intersects every closed cofinal subset A of w;.
If our set theory satisfies the axiom of constructibility (“V=L") then the
following combinatorial principle of Jensen holds (see p. 48 in [2]).

(©) There is a family (X, ), <., with the following properties: (i) X, < a, (ii) for
all X c w, the set {a | XN a = X,} is stationary in ;.

THEOREM 4. (V=L). There exists a non degenerate k-space (E,®) of
dimension R, such that every subspace U spanned by an orthogonal basis has
U* #(0).

Proof. 1. Construction of (E, ®). Let E=®,, k(e,)Dk(e;) and for each
a <w; let E, be the sum of the planes k(eg)® k(eg) with B <a. Since card E =R,
we may and often shall identify E with the set w;; we may do this in such a
fashion that the subsets E, satisfy

a is a limit number— E, = a.

When identifying E and w;. then some of the sets X, in the family of (¢) may
happen to correspond to linear subspaces of E!

Assume now that on E, a non degenerate symmetric form @ has already been
defined. The extension to E,.; is done as follows. First we extend @ to the space
E.®k(e.) according to Lemma 1 with the set {Xp|B<a & X is a linear
subspace of E, of dimension X,} playing the role of the family (U;):<.,. Secondly,
we extend this new form to all of E,.; by setting ®(E,, e.)={0}, ®(es, e,)=1,
d(e,, e.)=0. Since we can take care of limit ordinals simply by taking unions
starting out with some arbitrary non degenerate form on E, we get a non
degenerate form @ on all of E.
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II. Consider then a subspace U spanned by an orthogonal basis and with
U*=(0). If dim U=X, then U< E_ for some a and ¢, L E_, hence U*# (0). If
dim U =X, then let (u,),<., be an orthogonal basis. Choose a in the intersection
of the set A(U) of Lemma 2 and the stationary set of (&) with X = U. This means
X, =UNa=UNE,=®, g k(u,) and (UNE,)" N E, =(0). Since for every
B=a X, is one of the subspaces taken into consideration when extending the
form at step B+1 we see that X, NE; is totally isotropic and increasing for
B > a. Hence X is totally isotropic, and, since X, is an orthogonal summand of
U, we conclude U*= X #(0).

BIBLIOGRAPHY

[1] BAn1, W.: Linear topologies and sesquilinear forms, to appear in Communications in Algebra.

[2] DevLIN, K. J.: Aspects of constructibility. Lecture Notes in Mathematics, vol. 354, Springer, Berlin
1973.

[3] Gross, H. and OGg, E.: Quadratic spaces with few isometries, Comment. Math. Helv. 48 (1973)
511-519.

[4] KELLER, H. A.: On the lattice of all closed subspaces of a hermitean space, Rev. Soc. Mat. Chile
vol. 2.

[5] SHELAH, S.: Infinite abelian groups, Whitehead problem and some constructions, Israel Journal of
Math. 18 (1974) 243-256.

Universitit Ziirich

Received December 24, 1976.






	Strange inner product spaces.

