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Relative vanishing theorems I: applications to ample divisors

ALESSANDRO SILVA

Introduction

We present in this paper various vanishing theorems connected with positivity,
and we also give one application to ample divisors to prove a generalization of
one of the main results of [11].

More precisely, in paragraph 1 we present a generalization of Kodaira’s
vanishing theorem along the lines of [2] and [3] and an Enriques—Severi-Zariski
type corollary. In an appendix, a sharpened version of the vanishing theorem of
Grauert-Riemenschneider, [3], is also given.

In paragraph 2 we give one application to showing that certain holomorphic
maps from an ample divisor extend to the ambient space.

We would like to thank D. C. Spencer for making available his notes on
Griffiths’ paper, [4].

$1

1.1. In this section we present a very general form of Kodaira’s precise
vanishing theorem. It is a combination of Grauert-Riemenschneider [3] and of
Andreotti-Vesentini [2, cf. also 8]. It has as a corollary a general form of a
theorem of Enriques—Severi-Zariski, (see Serre, [9]).

We will first recall the relevant facts about the generalized canonical sheaf of
Grauert—-Riemenschneider, [3].

1.2. Let X be a reduced and irreducible analytic space and let p: X— X be a
desingularization. Then Xx = px0(Kx) is the generalized canonical sheaf of
Grauert and Riemenschneider where Kx is the canonical bundle of X. It is easy to
show” ¥x doesn’t depend on X. One simply notes first that given a second
desingularization p’: X' — X, there exists a manifold Z and maps q and q’ such
that
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! By Hironaka’s theorem.
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commutes, and q and q’ are modifications and, second, g+0(K;)=0(Kx) and
qx0(Kz)=0(Kx). Also ®,,0(Kz)=0 for i>0. Grauert and Riemenschneider
prove this latter fact only for Kaehler X; we prove it for general X in an appendix
to this section.

1.3 DEFINITION. Let L, L=(w:L — X) be an holomorphic line bundle
on a reduced analytic space X and let p : X— S be a proper map onto a reduced
analytic space S. L is said to be semipositive (semiample, ample) relative to p if
given any point s€ S there exists a neighborhood U(s) such that there is an
Hermitian metric on L over p '(U(s)) whose curvature form is positive semi-
definite (positive semi-definite and positive definite at one point of each irreduci-
ble component of p~'(U(s)), positive definite everywhere).”

We can prove now the Kodaira’s type vanishing theorem and its Enriques-—
Severi-Zariski-Serre type corollary: ‘

1.4. PROPOSITION. Letp: X— S be a proper map from a normal irreducible
analytic space X onto a reduced analytic space S. Assume given any point s of S,
there exists a neighborhood U(s) such that p~*(U(s)) has a Kaehler desingulariz-

ation. Let L be an holomorphic line bundle on X that is semiample relative to p. Let
F be a coherent sheaf on S; then R} (X, p*FQ O(L)® ¥x) =0 for j>0.

Proof. Following [11, pg. 60] we immediately reduce to showing
%L*(X, OL)®Kx)=0 for j>0 where S is Stein and there exists a Kaehler
manifold X such that q:X—>X is a desingularization. Now one sees
RlpeareX, O(Kx ®p*L)) =0 for j>0, and R} (X, O(Kx®p*L))=0 for j>0. (In-
deed the second part follows from [11, Lemma II-A]. To prove the first, along the
same lines as the above mentioned lemma, for every s € S, replace S by an open
Stein neighborhood U of s, since the statement is local with respect to S. It
suffices to show that given a class ne H(U, O(Kx®p*L)), where U=
(p°q)” '(U), then the image of u, by restriction, in H'(V, 0(Kx®p*L)) is zero,
where V is some neighborhood of s contained in U and V=(p°q) (V). By
assumption, if U is small enough, one has an Hermitian norm | || on L such that

2If the Hermitian metric is positive definite everywhere, the definition of ample relatively to p
coincides with the one given in [6]. It will be also understood from now on that to give an Hermitian
metric on E, E being the total space of a vector bundle E = (7 : E— X) of rank r on the analytic space
X, means the following: let % ={V;} be a covering of X trivializing for E and {g;} be the transition
matrices attached to %; an hermitian metric is then a collection {h;} of rxr differentiable positive
definite matrices, h; defined in V;, that has to transform under the law h; ='g;hg; in V; NV, in the
following sense: if 9 is chosen consisting of small enough open subsets, then for every i V, can be
realized as an analytic subset of an open subset G of C". We require then that for every i there exists a
positive definite, differentiable r X r matrix h, on G, such that h; = k| V.. If r=1, the curvature form of
the metric {h;} is then —a3 log k| V..
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its curvature form induces a Kaehler metric on U. If ¢ is a plurisubharmonic
function on some V < U, the Kaehler metric obtained from the curvature form
e~ |||l is complete and the representative of  in H'(V, (Kx ® p*L|) has finite L2
norm with respect to e |||| and the associated complete Kaehler metric. One will
be done then by applying Lemma A of [10]). Now noting that g4.0(K3z ® p*L) =~
Xx ®O(L) one is done by means of the Grothendieck spectral sequence for the
composition of the two functors py and q4. Q.E.D.

1.5. COROLLARY. Let p, X, L, Y, and & be as above. If dim¢ X —dim¢c S
>1 then R (X, p*F® OL™")=0 for j=0 and 1. If X is also a manifold then
RL(X, p*FRL ) =0 for j<dim¢c X —dimc S.

Proof. Again one follows page 60 of [11] and reduces to showing that for L
semiample one has H'(X, O(L™'))=0 for appropriate j and S Stein. By Serre
duality when X is a manifold this reduces to showing that the cohomology group
with compact supports Hi(X, O(L® Kx)) =0 for j>dim¢ S. By the Leray spectral
sequence we must only show H. (S, &, (X, L&Kx))=0 for r=j—dim¢c $>0.
This is clear by (1.4).

Now in the case X is normal one reduces to showing H'(X, O(L™'))=0 for
j=0 and 1 when S a Stein space and L is semiample. Let q: X— X be the
hypothesized Kaehler desingularization of X. One has H'(X, q*L™")=0 for j=0
and 1 by the last paragraph. Now note qx0x = Ox and thus qx(¢*0(L™)=O(L™")
for a normal space X. Thus H°(X, L")~ H°(X, q*L™")=0. By the edge exact
sequence 0— H'(X, L™")— H'(X, q*L ") and the theorem is proved. Q.E.D.

1.5. It should be noted that by using the reduction to S a Stein space one can
prove a more refined vanishing theorem if one uses the profondeur of &}, (X,
L®Kx). Also in the case of normal X one can prove a more refined result if one
knows that some of the R/,(X, 0%) =0 for q : X— X a Kaehler desingularization,
e.g. if X has only rational singularities (i.e. R}, (X, Ox)=0 for j>0). The
vanishing result for X is then the same as for the manifold case. Without some
such conditions the proposition is clearly false. Let us give an example with S a
point. Let L be an ample line bundle on a product R, X R, of Riemann surfaces of
genus g >0. Let X be the projectivization of CL where C is the trivial bundle.
One has p: X— R, X R, where X is L plus a copy of R;xR; at infinity. Blow
down the copy of R; X R, at infinity to get the normal space X with q : X—Xa
desingularization. Now let E be any ample line bundle on X. Clearly gi}“(X’,
O(E ) =R. (X, Ox)®OC(E™") has a nontrivial stalk supported at the singular
point. Thus by the Leray spectral sequence and the above result for manifolds one
has H*(X, E")#0. Q.E.D.
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Appendix to §I

A.l. The following lemma allows the properties of the generalized canonical
sheaf of Grauert and Riemenschneider [3] to be developed in full generality.

A.2. LEMMA. Let p: X—Y be a proper, generically finite to one holomor-
phic map from a complex connected manifold X onto a reduced analytic space Y.
Let L be an holomorphic line bundle on X that is semi-positive relative to p. Then, if
Kx denotes the canonical bundle of X:

R LOKx)=0 for j>0.

Proof: Since the theorem is local on Y one can assume Y is Stein and L is
semi-ample. Now let p=scr be the Remmert-Stein factorization of p where
s : S— Y is a finite to one holomorphic proper map, S is normal and r: X— S is a
proper holomorphic surjection with connected fibres. Since RL(%)=0 for all
q >0 and any coherent sheaf ¥ on one immediately sees one can replace Y by S
and p by r; i.e. one can assume Y is a normal Stein space and p: X— Y is a
proper bimeromorphic morphism with connected fibers. By Hironaka’s basic
result [S, Cor. 2] one can find an analytic space X' and a proper projective
bimeromorphic surjection q:X'—Y and a holomorphic proper surjection
A : X'—> X such that peA=q. Now by shrinking Y one can assume X' is
embedded in YXCP" for some N. Now there exists a proper modification
p:Z—>YXCPY with Z a complex manifold obtained from YXCPN by a
locally finite sequence of monoidal transformations with nonsingular centers such
that there is a submanifold X”< Z with u|x-: X"— X’ a proper bimeromorphic
surjection.” By shrinking Y the sequence of monoidal transformations is finite. It
is easy to check that a monoidal transformation with smooth center of a
holomorphically convex Kaehler manifold is a holomorphically convex Kaehler
manifold. Thus Z and hence X" is a Kaehler manifold. Thus we have the
commutative diagram with ¢ =Aop:

X 2 x -y
\1‘/
X

Now L= pu*(A*L) is clearly semi-ample. Thus a direct application of [11,
Lemma II-A] and the proof of [10, Lemma A].shows ®' (Kx-®L)=0 for t>0
and v is either ¢ or po¢. Further since X" and X are manifolds and ¢ is a proper

3 This method is implicit in the discussion of [5, Cor. 3].



Relative vanishing theorems I 487

bimeromorphic surjection one has @x(Kx-®L)=Kx®L. Now one has the
Grothendieck-Leray spectral sequence

O R (RELOKx)>D>R).. . LRKx).

a+fB=v

By the last few lines this gives & (L&Kx)=0 if »>0. Q.E.D.

$II

2.1. In this section we prove generalizations of a number of results of
Sommese [11]. Let us recall that a divisor A in the complex analytic space®X is
ample if the line bundle [A] defined by A is ample.

We use the Andreotti-Frankel version [1] of Lefschetz theorem:

2.2. LEFSCHETZ THEOREM: Let A be an ample divisor of a connected
projective variety X. If X — A is a manifold, then:

H(A,Z)~H(X,Z) for i<dimcA
and 0— H'(X,Z)— H'(A, Z) and the cokernel has no torsion for i = dim¢ A.

The following lemma is a generalization of (11, Lemma I-B].

2.3. LEMMA. Let A be a Cartier divisor in an analytic space X and let F be a
locally free sheaf on X. If H' (A, F|sQO([A]2"))=0 for all N>0 and if H (X,
FRQO[AT™))=0 for M>»0, then H(X, FQO([AT™))=0 for all M>0.

Proof. Consider:
0> FRO[AT ™ )—>FRO([AT)—> F|a®O(A]L")—0
The hypotheses translates into:
H(X, FQO([AT™ ))—HI(X, FRO([A]™)—0
for all M >0, and the first group is zero for M>»0. Q.E.D.
2.4. PROPOSITION: Let p : A— Y be an holomorphic surjection of a compact

normal connected analytic space onto a projective variety. Assume that A is a
Cartier divisor in a reduced analytic space X and that [A)|a is ample. Assume

* Every complex analytic space throughout this section is supposed reduced.
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Pic (X)—Pic (A)—0. Then if dim¢ A =2+dimc¢ Y, p extends to an holomorphic
map of a neighborhood U of A. If in addition X is compact, [A] is ample, and
X—A is a manifold, then p extends holomorphically to X.

Proof. Following the proof of [11, Proposition III] one shows there is a line
bundle & in X such that the map ¢ associated to H°(A, £|4) is p composed with
an embedding of Y into some CP". To get extension of p one first shows H’(X,
£)— H*(A, £|a)—0 and that the map associated to H(X, £) has image ¢ and
is holomorphic.

Note that if one shows H(U, ¥|v)— H°(A, £|4)— 0 for some neighborhood
U of A, then one gets the desired result for compact X. This is because X — A is
Stein and any holomorphic section of £ on U— A extends to X — A by Hartog’s
theorem. The rest follows from the proof of {11, Proposition III].

So we have reduced to the case of a neighborhood U of A. By (1.5), [4], and
(2.3) one has H(U, £)— H°(A, £|4)—0 for some U. Thus the map ¢ : A—
CP" extends to an map ¢ : U—CP" for some U. We must merely show ¢
(U)=¢(A). Assume otherwise, then given a point x of ¢(A), one can.find a
neighborhood V of x and a holomorphic function f in V zero on VN ¢$(A) but
not on VN ¢(U). f must give rise to some nontrivial section of ([Al|s-1(vneay)
for some r. But this has no sections by (1.5). Q.E.D.

2.5. It is an immediate consequence of (2.2) that Pic (X)—Pic(A) has a
cokernel without torsion when dim¢ A =2 and A is a manifold that is an ample
divisor in a projective manifold X. This allows to extend some of the results of
[11]. §V had the blanket assumption that dim¢ X = 3; this can now be changed to
dim¢e X =2. One has:

2.6. Let o be a contiguity class generated by the given manifold X. If X is such
that H' (X, [qlx) =0 for 0<i< dim¢ X and all q, then for each Y € o one has
H(X, [q]ly)=0 for 0<i<dime Y and all q. Also the Corollary {11, p. 72]
becomes: If n=2, then CP" can only be an ample divisor in CP""', and a
nonsingular quadric, 2", can only be an ample divisorin CP"** or 2"*". (The proof of
this corollary can be simplified by the use of a result of Kobayashi and Ochiai [7].)

2.7. The following question has been asked in [11], p. 62: Let A be a
projective manifold such that the cotangent bundle of A is the direct sum of two
nontrivial sub-bundles. If A is an ample divisor in some projective manifold, then
must A be CP' X CP'? The.answer is no, in general, and the claim that it was true
if A were two dimensional and very ample is false.

Indeed let R be any Riemann surface of genus g. Let L be a very ample line
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bundle of degree >g—1. Then L@L has a trivial sub-bundle C and an ample

quotient bundle F of degree >2g—2. Thus F is very ample. Consider the

sequence obtained by direct summing copies of F,
0-C—->LOLOFOFBF:---—F®D--:—0

n copies n+1 copies

Then the projectivization of the dual of the last vector bundle is an ample divisor.
It is clearly biholomorphic to R XCP" and one can check it is very ample.

(Takao Fujita in a personal communication has informed A. J. Sommese
that he also has shown R XCP" can be an ample divisor, he has also made some
progress on the blowing down problem in appendix I, of [11], and he has
produced a fiber bundle that is an ample divisor and does not have CP" as a
fiber.)

Added in Proof. A particular case of (1.4) has been proved by G. R.
Kempf, Inv. Math. 37, (1976), p. 236.
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