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Flat manifolds with non-zero Euler characteristics

By JOHN SMILLIE

A flat structure on a smooth vector bundle ¢ can be given either by a
connection on § with zero curvature or by a reduction of the structure group of ¢
from GI(R") to GI(R") with the discrete topology. Using either definition we
see that if £ and £’ admit flat structures and f is a map then £+ ¢’ and f*¢ admit
flat structures. A flat structure on a manifold M is a flat structure on T(M). We
say a manifold is flat if it admits a flat structure.

Let M, denote the surface of genus g for g=1. Milnor (1) proves that an
oriented bundle § over M, admits a flat structure if and only if

le()[M,]| = —2x (M) (1)

where e(£) is the Euler class of £ and x(M) is the Euler characteristic of M. If M,
is a flat manifold this formula implies x(M,;)=0. According to Hirsch-Thurston
(2) it is an old conjecture that the Euler characteristic of any flat manifold is zero.
The question is raised by Milnor (1) and Kamber-Tondeur (3, p. 47). In this paper
we prove the following.

THEOREM. There are flat manifolds M>" with non-zero Euler characteristic
for all n>1.

Starting with surfaces we construct manifolds M>" by taking products and
connected sums. To prove the existence of a flat structure on T(M>") we establish
that T(M>") is isomorphic to a second bundle . { admits a flat structure because
it is the sum of pullbacks of 2-plane bundles which admit flat structures. A bundle
isomorphism allows us to transfer the flat structure from ¢ to T(M).

ALMOST TRIVIAL BUNDLES. We will call a bundle £" almost trivial if
" +e'=¢""" where " denotes the trivial bundle of dimension n.* Sums and
pullbacks of almost trivial bundles are almost trivial. If T(M) is almost trivial then
M is said to be almost parallelizable.

* If the base space of ¢" is n-dimensional then £" is almost trivial if and only if £" is stably trivial.
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PROPOSITION 2. An oriented 2-plane bundle ¢ over a surface M, is almost
trivial if e(¢€)[M,] is even.

Proof. £+¢' admits a two-frame over M, if a certain obstruction class
O0,(é+ ¢') vanishes. 0, can be identified with w,(&+¢') = w,(¢) which vanishes
when e(¢)[M,] is even. Assuming 0,=0, £+¢e'=n+¢> but wy(n)=w(£§)=0 so
n=¢'.

PROPOSITION 3. If n dimensional manifolds N and M are almost paralleliz-
able then N#M is almost parallelizable.

Proof. We can immerse N and M in R"*'. We can connect them by a tube.
Smoothing the corners we see that we have constructed an immersion of N#M in
R™"*! hence N#M is almost parallelizable.

—

LEMMA. If ¢ is an almost trivial bundle over M then there is a map g: M— S"
so that £ = g*T(S").

Proof. Choose a bundle map f:¢£+¢'— R""'. We have a non-zero section
s:M— £+¢' associated to €. Using a Gram-Schmidt procedure we may assume
that fs(x) is of unit length and perpendicular to f(&x).

fsp>fl& n n+1
§ = S"XR Set g=fs. £ is the pullback by g of the
‘[p 1# sub-bundle T(S")< " x R"*! consisting of
pairs (x, y) where y is perpendicular to x.

M—, g

PROPOSITION 4. Let m, and m; be almost trivial oriented 2n-plane bundles
over an oriented 2n-manifold. If e(n,) = e(n,) then m, and m, are isomorphic.

Proof. The lemma yields maps g such that n; = gTT(Sz"). e(m;) = 2g§"u where
ue H*>"(8*"; Z) is dual to the orientation class. The homotopy class of g : M*"—
S is determined by the cohomology class giu hence g, and g, are homotopic.
The isomorphism type of giT(S*") depends only on the homotopy type of g
hence 7m; and 7, are isomorphic.
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PROOF OF THEOREM. We construct a flat 4-manifold N with x(N)=4
and. a flat 6-manifold Q with x(Q)=28. Products of these two manifolds with
themselves give examples of flat manifolds with non-zero Euler characteristics of
any even dimension greater than 2.

Let P be a parallelizable 4-manifold such as S'xS°. Let N=
(M3 X M3)#P#- - -#P where M; is the surface of genus 3. Clearly M;X M is

6-copies
almost parallelizable. N is almost parallelizable by proposition 3. We have the
formulas

x(Mg)=2-2g
x(MP"#N*") = x(M*")+ x(N*") - 2.

We calculate that y(N)=4.

Let ¢ be the oriented bundle over M5 with e(¢)[Ms]= 2. Proposition 2 implies
that £ is almost trivial. ¢ X £ is a bundle over M; X Mj;. Let f: N— M; be a degree
one map that, for example, sends the six P summands to a point. f*£x ¢ is almost
trivial and e(f*¢ X §)[N]=4. T(N) is almost trivial and e(T(N))[N]= x(N)=4. It
follows from proposition 4 that T(N) and f*¢Xx ¢ are isomorphic. Milnor’s
formula implies that ¢ admits a flat structure hence f*¢x ¢ admits a flat structure.
Choosing an isomorphism we transfer the flat structure from f*¢x £ to T(N).

Let Q be the 6-manifold {(M;X M;)#P#---#P}xM,. We calculate that

9-copies
x(Q)=8. We have a flat bundle n={h*(¢x§)}x ¢ over Q where h is the
appropriate degree one map. e(n)[Q]=8. T(Q) and n are almost trivial and have
the same Euler class. By proposition 4 they are isomorphic hence T(Q) admits a
flat structure.
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