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Comment. Math. Helvetici §2(1977) 415-452 Birkhduser Verlag, Basel

On the projective class group of cyclic groups
of prime power order

MicHEL A. KErRVAIRE and M. PAvaMAN MURTHY

Let C, denote the cyclic group of order q and ZC, the integral group ring of
C,. If q is a prime, q =p say, D. S. Rim [18] has proved that the projective class
group Ky(ZC,) is isomorphic to Ko(Z[2]), where ¢ denotes a primitive p-th root
of unity. In turn, it is well known that Ko(Z[{]) is isomorphic to the ideal class
group of the ring Z[{] of integers in the cyclotomic field Fp, = Q({). See J. Milnor’s
book [17], §1, Corollary 1.11.

In this paper we study Ko(ZC,) for q=p"*', where p is a prime number.

For instance, we obtain in §6 the following result. Let C(F,) denote the ideal
class group of the cyclotomic field F, =Q(Z,), where ¢, is a primitive p"**-st root
of unity. If p is a semi-regular odd prime, there is an exact sequence

0— G(p—3)+8,) - Z/pZ — Ro(ZCy) > C(Fo) X C(F;) — 0.

Here, N - Z/pZ stands for the direct product of N copies of the group Z/pZ of
integers modp, and 8, is the number of Bernoulli numbers among
Bs, B, . .., B,_3 whose numerator (in reduced form) is divisible by p.

Recall that a prime p is semi-regular if it does not divide the order of the ideal
class group of the maximal real subfield Fg = Q({o+ o Y in F,.

Remark. It is an old conjecture that possibly every prime is semi-regular. This
conjecture has been verified for p=4001 and for these primes a list of the
Bernoulli numbers B,, with 2=2a = p—3 whose numerator is divisible by p can
be found in [4], pages 430, 431. As shown by the tables, the number §, oscillates
between 0 and 3 for p=4001. The first prime p for which §, is non-zero is 37.
According to the table, §, =1 for p=37, 59, 67, 101, 103, 131, 149 and §,=0
for all other primes p=151. Then, 8, =2 for p=157. Finally §, =3, the max-
imum value of 8, for p=4001, if p=491, 617, 1151, 1217, 1811, 1847, 2939
and 3833. It is known that there exist infinitely many primes with §,# 0. See [4],
Theorem 2, page 381.

Dedicated to Beno Eckmann on the occasion of his sixtieth birthday.
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416 MICHEL A. KERVAIRE AND M. PAVAMAN MURTHY

The surjective map
i : Ko(Z Gy) = Ko(Z[£0]) X Ko(Z[¢1]) = C(Fo) X C(F))

in the above exact sequence is induced by the natural inclusion
it ZCr—>ZxZ[ L)X Z[ (1]

of ZC,: into the maximal order of QC,:=Q xQ(&o) X Q({1).

For arbitrary odd prime p, we prove that Ker iy maps surjectively onto
3(p—3)-Z/pZ and hence, at any rate, the order of Ker iy is at least p/?®~%,
Thus, for a prime p =35, there exist projective modules over the group ring ZC,:
which become free over Z[{,] and Z[{:], under the natural maps ZC,:— Z[{, ],
v =0, 1, but which are not even stably free as ZC,:-modules.

For larger values of n, there still is a surjective map

ix: Ro(ZC(p"™Y)) = IJO Ro(Z[LD),

where ¢, is a primitive p”*'-st root of unity, C(p"*") denotes the cyclic group of
order p"*!, and Ko(Z[{,]) is isomorphic to the ideal class group C(F,) of the
cyclotomic field F, =Q(¢{,).

We shall see that the kernel W, of ix is an abelian p-group. Writing w,, for the
exponent of p in the order of W,, we shall find:

For p an odd prime number,

1 pn+1_1 2}
n=o - +1 ’
it 2{ p—1 (n+1)

with equality if p is a regular prime, i.e. if 6, =0 or equivalently, if p does not
divide the class number of Fy= Q({).

For p =2, which is a regular prime, the group W, is an abelian 2-group of
order 2 to the power

w,=2"—-n(n+1)/2-1.

More complete information on W, is given at the end of §1 and in §5, §6. The
bulk of the proofs is contained in §§2-4.

The projective class group Ko(ZC;s) is studied in §7. The result is in sharp
contrast with the prime power order case.
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Remark. On the occasion of a talk given by one of us at Princeton University
in the Fall 1969, where the results of this paper have been presented, we were
informed by S. Ullom that A. Frolich had already proved that W, is a p-group
and produced some lower bound for its order. (See [5], Part I.) Furthermore, the
appearance of terms like Z/2Z in Ko(Z.C;s) had also been observed by S. Ullom
in certain IZO(ZC(Zp")). (Compare Prop. 3 in [20].) Finally, comparable results
have been obtained by S. Galovich in his thesis [6].

§1. A fibre product

Let A be a ring with identity element and let I, J be two-sided ideals of A. We
shall consider fibre products which are diagrams of rings as follows

AlINT — A/

| |

Al —— AT+

J. Milnor has proved that such a diagram yields an exact sequence in K-theory
known as the Milnor-Mayer—Vietoris sequence. We only need the following
portion of it

K (A/D)x K1(A]J) = K(A/I+J) = Ko(A/INT)
— Ko(A/I) X Ko(A/T) = Ko(A/T+ ).

(See J. Milnor [17] or H. Bass [2, Chap. VII, §4].)
We shall use this sequence in the case where the ring R = A/I+J satisfies the
following hypothesis:

The free R-modules R™ and R" are isomorphic if and only if m =n.

Then, the map Ko(Z)=Z — Ky(R) is injective, and one can replace K, by
Ko = Ko/Im Ko(Z) in the above Milnor-Mayer-Vietoris sequence.

We study the following special case: Let A =Z[X] be the polynomial ring in
one variable X over the ring of integers. Take I[=(X""—1) and J=
(1+ X"+ -+ 4 XP7DPY),

One verifies easily that INJ=(X""—1). Observing that the polynomial
generating the ideal J is the cyclotomic polynomial whose roots are the primitive
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p""'-st roots of unity, we get the fibre product diagram

ZIX)(X" " —1)—2  Z[L]

; ;

ZIXY(XP —1) -5 F,[x)(x"" - 1),

where i2(X) =, j2(&:) =x and j(X) = x.

Set R, =F,[x]/(x*" —1) and write t=x—1. Then, x*" —1=¢"" mod p and so
R, =F,[t]/(t"") is a local ring with maximal ideal T = (z). It is elementary to show
that

KO(Rn) = 07

and det: K;(R,)— U(R,) is an isomorphism, where det is induced by the deter-
minant map GL(R,)— U(R,) and U(R,) denotes the group of invertible ele-
ments in R,

Since det: K;(A)— U(A) is (split) surjective for every commutative ring A
with identity element, we can replace the above sequence by

UZC(p")) X E, —> U(R,) —> Ko(ZC(p"*")) —> Ro(ZC(p"))
X KO(Z[gn]) — O'

where E, = U(Z[{,)), and C(p") is the cyclic group of order p".

Of course this is a special case of the general exact sequence involving Picard
groups considered in [2, Chap. IX, §3] and [3].

The main problem is thus to evaluate the cokernel V, of the map

j:U@C(p")) X Ey — U(Ry).

We then have the exact sequence

0—> V,, = Ko(ZC(p™™) = Ko(ZC(p")) X Ko(Z[£:]) — 0
which gives us a hold on Ko(ZC(p"*™")) by induction on n, starting with D. S.
Rim’s theorem for n=0.

In the calculation of V, a decisive role will be played by the action of the
Galois group G, = Gal (Q(£,)/Q) on the various rings involved.
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Let k:G,— U(Z/p"*'Z) be the usual canonical isomorphism defined by
s(&) =59, se G,. We write x indifferently for the generator corresponding to X
in Z[X)(X"" -1)=ZC(p"™"), ZIXI/(X"" -1)=ZC(p") and F,[X](X" —1)=
R,. If s€ G,, then k(s) is an integer mod p"*', prime to p, and so x** makes
good sense, whether we view x as generator of C(p"*"), C(p") or as an element of
R,.

The formula s(x) = x*® turns G, = Gal (Q(£,)/Q) into a group of automorph-
isms of the rings ZC(p"*"), ZC(p") and R,. Moreover, the maps in the diagram

ZC(p"™") 2> Z[4,]

N

ZC(p") > R,

all commute with the action of G,.
Now, the Milnor-Mayer—Vietoris sequence associated with a fibre product is
natural with respect to maps of fibre products. The exact sequence

0— V, = KyZC(p"*")) = Ko(ZC(p")) X Ko(Z[£,]) = 0

thus becomes a sequence of G,-modules.

In particular, let ¢ € G, be complex conjugation. Because c({,) =, ={n, it
follows that on ZC(p"*"'), ZC(p") and R,, the operation of c is determined by
c(x)=x"".

If M is a multiplicative G,-module, we denote by M" the submodule of M
consisting of elements veM such that c¢(v)=v. Similarly, M =
{veM|c(v)= v~'}. Observe that if M is a finite abelian group of odd order then
M=M"xXM".

Our main result is the following.

THEOREM 1.1. Let U,=U(R,), U,={ueU, | c(u)=u}, and X, < U, be
the cyclic subgroup generated by x =1+t, where R, =F,[t)/(t""), n=1.

Forp=2, V,=V,=U,J/X, - U,.

For p an odd prime V, =V, XV, and if p is semi-regular, then

V.=UJX, - U,
and

Char (V)< S (F,-1) = S(F,-1),
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by a canonical injection, where F, =Q({,) and S(F,) is the p-primary component of
the ideal class group of F.,.

If the prime p is not known to be semi-regular, there is a surjective map of V,
onto U,/X, - U,.

An elementary calculation carried through in §2 yields the structure of
U,/X, - U,. This group looks like this:

For p=2, U,/X, - Uy is the direct product for v=1,...,n-2 of 2" 72
copies of Z/2"Z. In formula:
n—2
U/ X, Up=[]2""2 2122

v=1

For p an odd prime number, the formula reads
n—1

U X, - Ur =1 30-1%p"""" - 2Ip"Z x3(p-3) - ZIp"Z.
v=1

We also get in Lemmas 2.1 and 2.2 an explicit description of the generators.

Remark. Iwasawa and Sims [15, page 92] have proved that for p=4001, the
group S (F,-;) is given by S™(F,-1)=86, ' Z/p"Z.

On the other hand, for n =1, we shall prove in §6 by a direct calculation that
Vi=3$, Z/pZ for every semi-regular prime.
It seems natural to conjecture that perhaps
Char (V;)=S"(F,-1)=§,-Z/p"Z
for all semi-regular primes and all n=1?
If p is a regular prime, e.g. p=2, then S™(F,) =0 for all n=0 and the above
theorem determines V, = V, completely. Its order is easily computed to be p to

the power v,, where

v, =3(p"—1)—n for p odd,
and

v, =2"""-n for p=2.
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Successive application of Theorem 1.1 to ZC(p"*"), ZC(p"), ..., ZC(p?) and
Rim’s theorem gives

THEOREM 1.2. Let p be a regular prime. The inclusion of ZC(p"*") into the
maximal order Zx[]v-0Z[%] of QC(p™*") induces the exact sequence

0~ W, — RoZC(p™")~ [] Ro(z[z.] 0,

where W, is an abelian p-group with a filtration
“’n=HlDIIZD e DHnDI_In+1=0,
such that H,,/H,,,1=V,, as given by the above formulas.

The proof is immediate. If p,,:Ko(ZC(p"*"))— Ko(ZC(p™)) denotes the
homomorphism induced by the obvious projection for m=1,...,n+1, define
H,,= W, NKer (p,,). The isomorphism H,/H,,,;=V,, is induced by p,, .1 | H.,..
The map H,/H,,.; — V,. thus obtained is clearly injective. Surjectivity follows
easily from the surjectivity of Ko(ZC(p**")) = Ko(ZC(p*)) X Ko(Z[L,]).

This theorem provides, after a short computation, the order of W, as asserted
in the introduction.

The structure of W, is determined, at least in principle, in §5. For n =2 and
p=5 (n=3 for p=3), it is definitely not the direct product of V,,..., V,.

As an illustration, the following is a corollary of our methods.

THEOREM 1.3. Let p be a regular prime and C(p") denote the cyclic group of
order p". Then, the natural map on units

ii: U@ZC(p"*)— UZC(p"))

is surjective for all n.

Proof. Let ue U(ZC(p")). Denoting by x a generator of C(p"), we have
u=x'-v, where v is symmetric, i.e. invariant under the involution (x> x™").
Thus, with the notations of Theorem 1.1, j;(u)€ X, - U,,, where j; is the map in
the diagram

U@ZC(p"")—>E,

Pk

U@C(p") - U,
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By Theorem 4.1, j, is surjective on symmetric elements if p is a regular prime.
Since the diagram comes from a fibre product, it follows that i, is surjective.

Remark. In §6 we will show that j,(U(ZGC,)) < j>(E;) if p is semi-regular. It
thus follows that

i1: UZC(p*)— UZC(p))

is still surjective for p only semi-regular. However, we do not know whether
surjectivity of U(ZC(p"*"))— U(ZC(p")) holds for n=2 under the weaker
regularity hypothesis on p.

§2. The unit group of the ring R, =F,[x]/(x”" —1)

We set t=x—1€R, and observe that R, =F,[t]/(t*"). The group U(R,) of
units of R,, which consists of (truncated) polynomials in ¢ with non-vanishing
constant term, splits as a direct product

U(R,)=F,x Uy,

where U\’ is the subgroup of U(R,) consisting of the units congruent to
1 mod tR,. Set T=1tR,, the maximal ideal of R,. The subgroups UY=1+T,
i=1, filter U(R,) and the map T'— 1+ T’ given by f— 1+f induces an
isomorphism T/T"*'=U/US*" for i = 1. With a minor change of notation from
the preceding section, we set U, =UY’. Then, since t'-generates T'/T'*%, it
follows that

Any set of elements & € UR,), i=1,...,p"—1 satisfying
&=1+t mod T

is a set of generators of U,.

We repeat some notation. Let c¢: R, — R, be the F,-automorphism deter-
mined by c(x)=x"'. A unit ue U(R,) such that c(u)=u will be called a
symmetric unit. We denote by U, the subgroup of U, consisting of symmetric
units. Also, let X, be the subgroup of U, generated by x=1+1.

In the next two sections we shall prove e.g. that if p is a regular prime number,
then

F,xX,  Uy=Im{j: UZC(p")) X E, = U(R,)}.
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In this paragraph we determine the structure of
UJX, - Up,=U(R,)/F,x X, - U,.
Seta; =1+t fori=1,..., p" —1 and let v; be the class of o; in U, /X, - U,.

LEMMA 2.1. If p is an odd prime, then the elements y,;,1 with 1=i=3(p" —3)
and 2i+1 prime to p form an independent set of generators of U,/X, + U,. The
order of vy,i+1 is p™, where a; is uniquely determined by the inequalities

prTA=2i+1<prTaty,

Proof. Consider the symmetric elements s=x+x'-2=x"" and o=
1+s'eU; for i=1,...,3(p"—1). Since ay=1+t**"" and o=
1+t* mod T**', it follows by a remark above that the set {a,i,1, 0141} With
i=0,1,...,3(p" —3) generates U,. Since a;=1+t=x€ X, and ., € Uy, the set
{y2i+1} with i=0,1,...,3(p" —3) generates U,/X, - U,. Since further a(;+1),=
(azi+1)?, the subset of {y,;+i} with 2i+1 prime to p suffices to generate
UJX, - U,.

Now, asi.; is of order p% in U,, where p" *=2i+1<p" %", Hence, the
order of y,;.; divides p*.

To show that the order of 7,.,; is precisely p* and moreover that
Y35 Vs, - - - » Yp»—1 With indices prime to p form an independent set of generators of
UJX, - Uy, it suffices to check that |U,/X, - U,|=II;p®, where the product
extends over i=1,2,...,3(p"—1) with 2i+1 prime to p, and |U/X, - U;|
denotes the cardinality of the set U,/X, - U;.

It is easily checked that |U,/X, - Us|=|U,|/|X.| - |Un|=p™M?®" D7 (Recall
that p is an odd prime.) On the other hand, for given a, the set of possible indices
i such that a;=a, i.e. the set {i|p" *=2i+1<p" **'} contains 3(p—1)p"~*
integers for a <n and 3(p—3) for a =n. Among these, there are 3(p—1)p" **
multiples of p except if a = n, in which case there are none. Consequently, setting
p’ =[I p*, we have

n—1
b= 2 a-p—12p" " +n-ip-3).
a=1

We leave to the reader the verification that v, =3(p" —1)—n. _
The case p =2 is somewhat more complicated. Keeping the notation o; =1+1'
and v; for the class of o; in U,/X, - U,, we have the following lemma.
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LEMMA 2.2. If p=2, the elements ys+, with i=1,2,...,2" -1 form an
independent set of generators of U,/ X, - U,. The order of y4:i11 is 2%, where a; is
uniquely determined by the inequalities

2MTh=4i+1<2m AT
Proof. Again, let s=x+x"'=x""t* and set o, =1+s". We first prove that
{asiv1, 02i+1} With i=0,1,... is a set of generators of U,. We prove this by
induction on n. Let UY denote the subgroup UY =1+ T, where T is the ideal
generated by t in F,[t)/(f*"). Also, let H, be the subgroup of U, generated by
{asiv1, 02i01}, i=0,1,....

Consider the exact sequence

1-K,»U,bU_,—>1

defining K, and where f is induced by the natural projection F,[t}/(t*")—
F,[t)/(+*"7). Thus, K, = U =1+ T*"". Clearly, every element k of K, satisfies
k*=1, and f|H,:H,— H,_, is surjective. Assuming by induction that H,_, =
U.-i, it first follows that every square in U, belongs to H,. Indeed, let ue U,.
There exists an he H, such that u = hk for some k€ K,,, and thus u®>= h*e H,.
Now, an easy calculation shows that g,;.1 = a3;+1 * @443 mod T***, It follows that

2 (4i+4)
02i+1€ A%i+1 * Aai+3Un .

Using (U,)’cH, and the easily verified fact that UY s generated by
@, Qj41, . . ., Azn_q, it follows by decreasing induction on j that UY < H, for all J-
Thus U, = U < H,, and so U, = H,. The induction argument can be rooted at
n=1 where U, = H, is trivial to verify.

Since a;€ X, and g;€ U, for all j, it follows that the set {ys, ¥, ..., y2r—3}
generates U,/ X, - U,. (For n =2 this set is empty and U,/X, - U, ={1}.)

Now, the order of a4, is 2%, where 2" = (4i+1)2% <2"*'. Thus, the order of
Yai+1 divides 2% In order to show that 4+, is precisely of order 2% and that the
set {y4i+1 | i=1,2,...,2">—1}is a set of independent generators of U,/X, - U,
it suffices to check that |U,/X, - U,|=[I: 2%, where the product extends over
i=1,2,...,2" 2—1. We have |U,|=2""", |X,|=2" and |U;|=2%"". Since
IX, N Us|=[{1, x>} =2, we have |U,/X, - Us|=2>""". On the other hand, for
a given a €1, n], the set of indices i€[1, 2"72—1] such that a; =g, i.e. the set
{ie[1,2"?=1]|2" " *=4i+1<2""**"} contains 2"7*? integers except for a =
n—1 and a=n where the set is empty. Thus, [[; 2% =2", where v,=
Yria2n e ?=2""1p,
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Remark. The above argument actually yields the structure of the group
U./X, - U, as

n—1
UJX, - Ut=[] %p-1p """ Z/p"Z x%(p—3)-Z/p"Z for p odd,

v=1
and

n—2
UJX,, Us=[12""2-2/2°Z for p=2.
v=1

We record for later use the following lemma about U, in the case p=2.

LEMMA 2.3. Suppose p=2. Denote by N the subgroup of U, for n=2
consisting of the elements of the form u - c(u), u € U,. Then,

X, Up=X, NUo:X, N,

1.2

where o1 =1+x""t".

Proof. 1t follows from the proof of the preceding lemma that the elements a;,
02i+1, i=0,1,... generate X, - U,. A straightforward calculation, using c(t) =
x"'t and s=x""t yields the formula

kil (k + l)sk+l+1.

Azi+1 * Clagk+1) =1+ 21

1=0

Now, for k>0 and only then, we can rewrite this as

— . eV
Aok 41 ° c(a2k+1) = Ok+1 H OK+v+1
v>0

for some irrelevant exponents e,. By descending induction on k > 0, starting with
or=1€ N for k large, the formula yields in succession oz-1_; €N, 0Ozn-12€
N, ...,o03€ N. Since a;€ X,, we thus have

X, -Ur=X, NU0 X, NUgIX, NU---Uoi 'X,-N.

But oi=0; - c(o1) €N, and so

X, -U,=X,-NUo X, N.
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Remark. It is easy to check that actually o, ¢ X, - N. For instance, map U,
onto U,= U(F2[t]/(t*)) by the natural projection. Then, X, - N maps into the
subgroup X, of U, generated by a;=1+t=x. On the other hand, o; maps to
l+x+x '=1+24P=0a3 a;¢ X,.

§3. Upper bounds for Im {j: U(ZC(p")) X E,, — U(R,)}

We begin the study of the map j. Recall that E, = U(Z[{,]), where ¢, is a
primitive p"*'-st root of unity, R, =F,[t])/(t*"), and if x is a choice of generator
for C(p™), j(x)=j(£) =1+t

In this section, we prove that Im j< F,x X, - U, with the notations of Section
2. The main fact is a well known lemma about units in cyclotomic fields.

KUMMER’S LEMMA. Let ucE,. Then, for some integer i, the unit Lhu s
real, i.e. c({hu)= {,u, where c is complex conjugation.

We recall the proof for convenience: Complex conjugation is an element ¢ of
the Galois group Gal (Q(Z.)/Q). Since this group is abelian, we have |s(cu/u)|=
|csu/su|=1 for all seGal(Q(Z,)/Q), where |z| is the absolute value of the
complex number z. By.an elementary theorem, this implies

culu==x{,

for some integer j. (See [9], 3.4.) If the “plus” sign holds and j = 2i, it follows that
c(¢hu) = ¢hu as desired.

If p is odd, then replacing j by j+p"*' if necessary, we may assume that j is
even, j=2i say. We claim that in this case, the ‘““minus’ sign cannot occur in the
above formula. Indeed, if c¢(u)=—{}u, then observing that c¢(u)=u mod (¢, — 1),
we would have 2u=0mod ({,—1). Since u is a unit, it would follow 2=
0 mod (£, —1) which contradicts p# 2.

If p=2, we may assume that c(u)=+¢,u after replacing —1 by > if
necessary. We claim that j is necessarily even. Consider the norm map N from
Q(Z) to Q(¢y). We have N(£,)=(—1)"""¢,, taking say &, = e*™*""". Thus

c(Nu)= N(cu)=N(Lu)==¢} - Nu.

The only possibilities for the unit Nu are 1, —1, {;, —¢{;. In each case the equation
c(Nu)==+{} - Nu implies j even.

Kummer’s lemma extends to our group rings. Let ¢ :ZC(p") — ZC(p") be the
automorphism induced by c(x)=x"", where x denotes a generator of C(p").
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LEMMA 3.1. Let ue U(ZC(p")). Then, for some integer i, one has c(x'u)=
x‘u.

Proof. The ring ZC(p") is a subring of the maximal order Z x[[;25 Z[¢,] of
QC(p"). Denote by u,, v=0,1,...,n—1 the images of u in the various compo-
nents Z[{,] of the maximal order. Applying Kummer’s lemma in each Z[{,], we
have c({yu,) = {yu, for some collection of integers i,. It follows that cu/u is a unit
of finite order in U(ZC(p")). By Higman’s theorem [10], we must have cu/u =
+x'. Now, projecting to Z by the augmentation shows that cu/u =+x’ holds.
Projecting to the factor Z[{,_,] yields ¢,_,=¢%", for some i, and therefore
j=2imod p". We then have c(x‘u)=x"u.

LEMMA 3.2. With the notations of Section 2, we have
ImjcF,xX, U,

for all prime numbers p.

Proof. The conjugation ¢ operates on U(ZC(p")), E, and U(R,)=
U(F,[t]/(¢")). The map

j:U@ZC(p")) X E, — U(R,)
is a map of C-modules, C being the cyclic group of order 2 generated by c.
Lemma 3.2 is then immediate from Kummer’s lemma and its extension to the

group ring ZC(p").

Observe that in this section we did not need nor use any regularity hypothesis
on the prime p. Thus, we have

COROLLARY 3.3. For all primes p and all n=0, there is a surjection
V,=U(R,)/Imj— U,/X, - U,.

This is the last statement in Theorem 1.1. (Obviously U,/X, U, =
UR,)/X, - UR,)"))

Proof. It suffices to show that F,< U(R,) is contained in the image of j. This is
well known: For s any integer prime to p, {7 —1/{%" —1 is a unit in F, and,
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writing £ =¢%", we have

S—l n n
j(—-————i_l)=1+x" HoeexCTOP =g,

since x*" =1 in R,.

§4. Lower bounds for Im {j: U(ZC(p")) X E, — U(R,)}

In this section we finish up the proof of Theorem 1.1. Let ¥, =
Coker {j: E, — U(R,)}, where E, = U(Z[{,]). Observe that V, is canonically a
quotient of ¥,,.

We claim first that it suffices to prove Theorem 1.1 with ¥, in place of V,,.

Indeed, if p =2, Theorem 1.1 for ¥, says that ¥, = U,/X,, - U,, or equival-
ently j(E,)=F,x X, - U,. In this case, V, =%, follows from Lemma 3.2 which
asserts that j(UZC(p™))<F,x X, - U,.

If p is an odd prime and ve¥, maps to 1€ V,, then we can lift v to
ue U(R,) so that c(u)=u"" and uej{UZC(p")) X E,}<F,x X, - Ur. The unit u
is then necessarily contained in the subgroup X, of U(R,) generated by x. Since
j(&,) = x, we have u € j(E,), and hence v=1. Thus, V, =¥, =U,/X, : U,. Furth-
ermore, since the map ¥, — V, is also surjective, the dual map Char V, —
Char ¥, is injective and a canonical injection Char ¥, — S(F,_;) will give rise to
a canonical injection Char V, — S(F,_,) as desired.

We conjecture that ¥, =V, for all n=0 and will prove this for n=1 in
Section 6.

For convenience, we restate what we now have to prove.

THEOREM 4.1. Let ¥, =Coker{j:E, = U(R,)}, n=1. If p=2, then ¥V, =
U,./X, : U, using the notations of Section 2. If p is a semi-regular odd prime, then
V=YXV, where ¥, =U,/X, - U and Char¥;, = S(F,-,) with canonical im-
bedding, where S(F,-;) is the p-component of the ideal class group of
Q(exp (2i/p™)).

The proof will rely on the work of Iwasawa on cyclotomic fields and on class
field theory. For the reader’s convenience we give below, in an appendix to this
section, a review of the results we need from Iwasawa’s work, including their
(trivial) extension to the case p =2 which is only partly covered in Iwasawa’s
papers. (The case p=2 is irrelevant for the applications Iwasawa has in mind.
Here, of course, there is no reason to leave it out.) For the class field theory
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needed, references are [1] and [7]. See also the beautiful introduction given by S.
Lang in [16].

Recall the notation F, = Q({,), where {, is a primitive p"*'-st root of unity.

We are interested in two class fields over F, as follows.

First, define the ray (or congruence) ideal group H, = H,(F,) as the group of
those principal (fractional) ideals in F, which possess a generating element a such
that a =1 mod /z’,';", where 4, is the ideal generated by {,—1 in F,. Thus,
H,={(a)|aeF, a=1mod 4.}, where the condition a =1 mod 45 means that
the 4,-valuation of a—1 is at least p". Since F, has no real place, the additional
requirement on H, in order to be a ray group (namely p(a)>0 for all real
Q-imbeddings p: F, — R) evaporates.

Let K,/F, be the p-part of the ray class field extension associated with the ray
group H,. Thus K,/F, is an abelian extension with Galois group

Gal (Kn/Fn) = (IO(Fn)/Hn)ps

where Io(F,) stands for the group of ideals of F, which are prime to 4., and
(I(F,)/H,), is the p-primary component of Io(F,)/H,.

It is well known that no prime of F, ramifies in K,/F, except those dividing
the conductor of H, and therefore, 4, is the only possibly ramified prime in
K., /F,. See for instance [7], Flihrer—-Verzweigungs-Satz, page 136.

The other class field L, we need is the p-part of the Hilbert class field of F,. It
is also an abelian extension, with Galois group

Gal (L,/F,) = (I(F,)/P(F,)), = S(F,),

where I(F,) is the ideal group of F, and P(F,) the subgroup of principal ideals.
Thus as above, S(F,) is the p-primary component of the ideal class group of F,.
The extension L,/F, is the p-part of the class field extension associated with the
ray group P(F,).

Since H, < P(F,), we have the inclusions

EF,cL,<cKk,.

Observe now that since K,/Q and L,/Q are Galois extensions, the group
G, = Gal (F,/Q) operates on Gal (K,/F,) and its subgroup Gal (K,/L,) via the
group extension

1— Gal (K,/F,) — Gal (K,,/Q) — G, — 1.
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The key lemma which bridges class field theory with our problem is the
following.

LEMMA 4.2. There is a canonical isomorphism of G,-modules
6:Gal (K,/L,)— U(RL)/JE, =Y,

where as before, R, =F,[t]/(t"") and E, = U(Z[{,)).

Proof. Let P, denote the set of integral principal ideals of F, which are
prime to 4,. There is a surjection

J:Pint. - U(Rn)/](En)

sending the ideal (a), where a € Z[{,], to the class mod j(E,) of j(a). Since a is
prime to #, =({,—1), j(a) is indeed a unit in R,. Since a is determined by (a)
modulo E,, the map J is well defined. It is clearly surjective. Now, let P, be the
group of principal fractional ideals in F, which are prime to 4,. Define

J:PO - U(Rn)/](En)

by J(a)=J(b)/J(c), where a = b/c with b, ce Z[{,], both prime to 4,. Clearly, the
kernel of J: P,— U(R,)/j(E,) consists of the principal ideals generated by some
element a =1 mod /z‘,’,", i.e. Ker J=H,. Hence J induces an isomorphism

J: Po/H, = U(R,)/j(Ey)

(with apologies for the abuse of notation) which commutes with the action of G,.
Now, the Artin map of class field theory yields a commutative diagram

1— Gal (K,/L,)— Gal (K,/F,)— Gal (L,/F,)—> 1

- Lo R

1—> PO/Hn —> (IO/Hn)p r—— (I/P)p —_—> 19

with Yo, ¥k, Y isomorphisms.

Define 0 = Jis,.

It is well known that the Artin maps ¥, Yk, Y all commute with the action of
G, = Gal (F,/Q), as follows right away from the definitions, and thus 6 is a map of
G,.-modules and an isomorphism. The lemma is proved.
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Following Iwasawa [13], we now consider the diagram of fields as illustrated

//
\1\/
\/

F,

The tower K, o L, © F, has already been described.

Let F= {Jp=0 Fn, and let K be the maximal abelian p-extension of F such that
only the prime 4 (the unique extension of #, to F) ramifies in K. The construction
of such infinite field extensions is given in [12], Section 6.

Note that K, = K, because K, - F/F is an abelian p-extension in which at most
the prime , ramifies.

The field A, is the largest abelian extension of F, contained in K. Then, A,
contains F and also the p-part of all the class fields of F, contained in K, e.g. K.

Finally we define M, still following Iwasawa. Let E = |J .0 E,., where E, is
the group of units of F, < F. Consider the Kummer extensions M,, = F(E'?™),
m=1,2,.... By an obvious broadening of Kummer theory (as presented in [1],
Chap. VI, Theorem 4) to these infinite field extensions, 4 is the only prime of F
which has a chance to ramify in M,,/F. Since M, /F is an abelian p-extension, it
follows that M,, < K for all m. Set M = {J uz0 M.

All extensions in sight in the diagram (including those over Q) are Galois and
thus the various Galois groups, e.g. Gal (K,/L,), Gal (K/F), etc. are all modules
over G, = Gal (F,/Q) via the group extension

1— Gal (K/F,) — Gal (K/Q)— G, — 1.

It will be convenient to view K as a subfield of the complex numbers and to
denote complex conjugation uniformly by ¢ on every intermediate Galois exten-
sion of Q.

Recall that we want to calculate Gal (K,/L,) with the action on it of complex
conjugation. (Lemma 4.2.)
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We gather informations on the Galois groups of interest to us in the diagram.

LEMMA 4.3. Gal (M/F)=Gal  (M/F), i.e. for every se Gal (M/F), we have
csc =51

The proof is elementary. Let w be the group of roots of unity in F. By
(elementary) Kummer theory, we have for each m a canonical isomorphism

x :Gal (M,,/F)— Hom (E : F?"/F*", u).

It suffices to show that cs,.c ' =s,, for all m, where s,, is the projection of s
into Gal (M,,/F). We write s for s, again. Then, by definition of x

Xcsc"‘(u) = CSC—I(U)/U’

where vP" =u, ucE- FP?" and ve M,

By Kummer’s lemma, we may assume that ue E*. (Compare §3.) Indeed,
u€ E" holds up to multiplication by some root of unity which in F" is a p™-th
power. If p is odd, v can then obviously be chosen real. If p=2, u can even be
taken positive since in that case —1 is a 2™-th power in F'. In all cases we may
thus assume that c(v) = v.

But then, we have

Xese-(u) = csc ™ (v)/v = c(sv/v) = (sv/v) 7",
since suf/v is a root of unity. Hence,

Xese- (1) = x5 (u™) = x5 (1) = x5-+(u).

This holds for every u€ E - F?"/F®" and since x is an isomorphism, it follows
that csc'=s"".

As to the extension K/M, we have a theorem of Iwasawa describing its Galois
group. Let

S =lim {S(F,)},

the limit being taken with respect to the obvious maps S(F,)— S(F,+) induced
by the inclusions F, — F, ..

The relationship between S and the extension K/M is given by the following
theorem.
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THEOREM OF IWASAWA. There is a canonical isomorphism of Gal (F/Q)-
modules

x : S — Char Gal (K/M).

Here, Char Gal (K/M) means the group of continuous homomorphisms
Hom (Gal (K/M), n), where u, the group of roots of unity in F, is equipped with
the discrete topology. The action of Gal (F/Q) on Char Gal (K/M) is given by

(sx)(a)=s(x(s™" - o)),

where se Gal (F/Q), ceGal(K/M) and s™'- o is given by the operations of
Gal (F/Q) on Gal (K/M) via the group extension

1 — Gal (K/F) — Gal (K/Q) — Gal (F/Q)— 1.

Caution: Iwasawa uses the action (sy)(o) = x(s™' - o). Then, of course, x is no
longer a Gal (F/Q)-map. We prefer the above formulation because we wish to
keep track of the Gal (F/Q)-module structure and Gal (F/Q) operates naturally on
w. Observe that complex conjugation ¢ can be viewed as an element in Gal (F/Q).

Finally, we shall need to know that Gal (K/F) surjects by restriction onto
Gal (K,/F,). By elementary Galois theory, this is equivalent to proving:

LEMMA 44. K, NF=F,.

Proof. Since [F,+;: F,]=p, a prime, and every subfield of F strictly larger than
F, contains F,.,, the assertion is equivalent to showing that F, . is not contained
in K,.

To prove this, we view K,/F, and F,.,/F, as class field extensions.

We have readily constructed K, as class field over F, associated with the ray

group
H,={(a)e P(F,)| a=1mod #’}.
As is well known, F;,H is class field over F, associated with the ray group
H={a€eI(F,)| Na=1mod p"*?}.

(Recall that F,,, is obtained from F, by adjunction of the p"**-nd roots of unity.
The norm is from F, to Q. See [7], Satz 131.)
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Class field theory asserts that K,, contains F, ., if and only if the ray group of
K., namely H,, is contained in the ray group of F,.;. Thus, in order to prove
F,.1 ¢« K,, it suffices to exhibit an element a € F, such that a =1 mod /;ﬁ", but
IN(a)|# 1 mod p"*>. We then have (a)e H, and (a)¢€ H.

If p is an odd prime, take a=1+p. Then, the congruence a=1mod 45
results from (p) = /zﬁ"(‘"” in I(F,). On the other hand, since a € Q, we have

"(p—1 n " -1 r
N@=+pr =1+ p-1p+ 3, (7 7Yy

r=2

It is easily verified that for r=2 and p an odd prime, we have

"(p—1
(p (pr ))przomod pn+2'

Therefore,
IN(a)|=N(a)=1-p""" mod p"*?,

and the lemma is proved for p odd.
If p=2 and n=1, take a=1+2i€eF,. (Here, i ={, is a primitive 4-th root of
unity.) Then, a = 1 mod 42, since (2) = 42 . Further,

- 2n—1 .
N(1+2i) = (1+2? =1+2"“1-22+Z( )22'=1+2"“mod2" 2

r=2 r

and the lemma follows for p=2 also, at least for n=1.

We do not need the lemma for p=2 and n =0. It is however still true. In that
case take a =3 in the above argument.

We now proceed to prove Theorem 4.1.

Let first p =2. Then, by Weber’s theorem, the class number of F, is odd, i.e.
S(F,)=0 for all n. (See e.g. [11], Theorem IIl.) Hence, Iwasawa’s theorem in that
case implies K= M. By Lemma 4.3 it follows that Gal (K/F) = Gal™ (K/F), where
as earlier Gal™ (K/F)={o € Gal (K/F)|coc™'=0"'}. Since the restriction map
Gal (K/F) — Gal (K,/F,) is surjective and clearly commutes with the action of
complex conjugation, we also have Gal(K,/F,)=Gal (K,/F,). Now,
Gal (L,/F,)=S(F,)=0. Thus L,=F, in this case, and Gal(K,/L,)=
Gal™ (K,/L,). Using Lemma 4.2, this can be reworded

Vu=V7.
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Going back to the notations in §2, we now show that this implies ¥, =
UJX, - U,.

Indeed, ¥, = %", means that for every unit u € U(R,), there exists a unit e € E,
such that c(u)=j(e) - u™', ie. u-c(u)=j(e)ej(E,). With the notation N=
{u - c(u), ue U(R,)} of §2, this means that N < j(E,). On the other hand, X, <
i(E.) since x=j({,), and so X, Ncj(E,). But, by Lemma 2.3, we had
X, Upr=X,"NUa;X, N, where o;=1+x+x"". Since X, Ncj(E,), the
statement ¥, = U,/ X, - U,, or equivalently j(E,) =F,x X, - U, will follow if we
verify that o, €j(E,). This is immediate:

or=x'(1+x+x*) =" (G- DI - D}

Next, let p be an odd prime.

We first dispose of the statement ¥, =U,/X, - U,. By §3, we know that
E, =(¢,) * E,. Therefore, ¥, surjects onto U,/X, * U,. Since U,/X, * U, is equal
to its subgroup of antisymmetric elements, i.e. U,/X, - U, =(U,/X, - U,)", we
have a surjection

v, — UJX, - U,.

If ve?, maps to 1€ U,/X, - Uy, then v is represented by a unit x'u € U, with
u both symmetric and antisymmetric. Since p is odd, it follows that u =1 and thus
v=1. (X, =j(E,).)

This proves ¥, =U,/X, : U,.

It remains to evaluate ¥',. Assume now that p is semi-regular, i.e. S(F5)=0.
Iwasawa has proved in [11] that this implies S(F,) =0 for all n =0, where S(F)
is the p-primary component of the ideal class group of Fr =Q({, +¢»"). Further-
more, it is well known that the inclusion F, — F, induces an isomorphism
S(F;)=S*(F,). (See Statement 4.5 in the appendix below.) Therefore for all n,
S(F,)=S (F,),and S=S".

Since p is odd, Gal(K/F) splits as Gal" (K/F)xGal™ (K/F) and hence,
{Char Gal (K/M)}” = Char Gal® (K/M). Thus, Iwasawa’s theorem becomes

S = S™ = Char Gal* (K/M) = Char Gal* (K/F).

The last isomorphism because Gal (M/F)=Gal™ (M/F) by Lemma 4.3.
Since Gal® (L,/F,)=S*(F,)=0, it follows that Gal® (K,/F,)=Gal" (K,/L,),
and Lemma 4.4 provides a surjection Gal® (K/F)— Gal” (K,/L,)=%",.
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We thus get a canonical injection
Char ¥, = Char Gal” (K,,/L,) — Char Gal" (K/F)=S",

and it remains to show that this subgroup is contained in S™(F,,).

According to Iwasawa [13], Theorem 15, page 553, S™(F,-;) injects into
S™=1lim_, S7(F,) and is precisely the fixed point set in S~ under the action of
I'._1=Gal (F/F,_;) < Gal (F/Q).

This will imply Char Gal® (K,/L,)< S (F,_,). Indeed, the action of I,_; on
Gal (K,/L,) factors through the action of the quotient Gal(F,/F,_,)< G, =
Gal (F,/Q) of I',,_;. We see now that this action is trivial. If s € Gal (F,/F,_,) is the
generator such that s({,) = {,""", we have s(x)=x""""=x in R, =F,[x])/(x""—1)
and therefore Gal (F,/F,-,) operates trivially on U(R,)/j(E,) =%, = Gal (K,/L,).
The action is a fortiori trivial on Gal" (K,/L,). Now, every character
x :Gal" (K,/L,)— u, where u is the group of roots of unity in F, takes its values
in the subgroup generated by {,_;. This, because u?" =1 for all ue U(R,) such
that u =1 mod tR,, and so the order of every element in Gal (K,/L,) divides p".
Since Gal (F,/F,-;) operates trivially on ¢{,_;, it follows that Gal (F,/F,-;), and
hence Gal(F/F,_;), operates trivially on Char Gal® (K,/L,). Therefore

Char Gal* (K,/L,) < S (F,._y).

Appendix to §4. Résumé of some of Iwasawa’s work

Beside the isomorphism
x : S =lim S(F,) — Char Gal (K/M),

we have used the following results of Iwasawa taken from [11] and [13].

(4.5) S(F:)— S*(F,) is an isomorphism for all n = 0;

(4.6) S(F3)=0, resp. S(Fp)=0, implies S(F,)=0, resp. S(F,)=0, for all
n=0;

(4.7) The natural map S (F,-;)— S™(F,) is an injection and the fixed point
set of Gal (F/F,_,) on S” =lim_, S7(F,) is precisely S™(F,_1).

The notations which agree with those of Iwasawa are carried over from the
preceding sections.

Here are some indications of proofs.

First, the map x : S — Char Gal (K/M) is defined as follows. Let z be an ideal
in F, representing some element A € S. For some integer m we have 2" " =(a),
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a € F,. We may assume that F, contains the p™*'-st roots of unity, replacing if
necessary 2 and a by their images under an inclusion F, — F,, where n'=
max {m, n}. Consider the Kummer extension F,(a), where a?"" =a. Since for
every prime ¢ in F, the g-completion of 2 is principal, it follows that a is a
p™*'-st power in the g-completion of F,, up to a g-adic unit. Hence, by Kummer
theory, it follows that no other prime than £, ramifies in F,(a)/F,. (Compare [1],
Theorem 4, page 22.) Therefore, F(a) < K. Set

xa(o)=ocala € pm

for all o € Gal (K/M), where u,, is the group of p™*'-st roots of unity in F.
It is immediate to verify that x is a well defined homomorphism y:S—
Char Gal (K/M). Also, with s € Gal (F/Q),

Xsa(0) = o(sa)/sa = s(s 'osaja) = sxya(s 'os)=(s - xa)(o).

Thus y is a homomorphism of Gal (F/Q)-modules.

Suppose xa is the trivial character. For some choice of « such that 2" = (a),
ac€F, n=m, and o = a, this implies a € M. We may assume that a € M,, .4,
the Kummer field generated by the p™*'-st roots of units E of F. Since
a®""=aeF, it follows from elementary Kummer theory that a?” " €E - F?"",
and so, increasing n again if necessary, we can assume a=u - ¢ with ueE,,
ceF,. Then, 2" =(c)’"" and « = (c) is principal, i.e. A =1. Thus, x is injective.

In order to prove surjectivity, let ¢ : Gal (K/M)— u be a continuous character.
Since Gal (K/F) is abelian, there is an extension = : Gal (K/F) — u with image u,,
for some m. Let & be the fixed field of Ker 5. Then, @/F is finite cyclic and &
breaks up into

Gal (K/F) —%> Gal (&/F)—= p,,.

Viewing 5':Gal (®/F) — u,, € @ as a cocycle and applying Hilbert Theorem 90,
we find an element a € ¢ such that 5'(¢') = o’a/a for all ¢'e Gal (®/F). Hence,
E(o)= Yo(a)/a for all o0 € Gal(K/F). By a familiar argument, it follows that
a”" " e F. (Observe that 5(c)’""'=1.) We have a?" =acF, for some n=m.
Moreover, since {,— 1€ F, is invariant by Gal ($/F), we may assume that « is
prime to f, = ({, —1). Since further at most 4, ramifies in F,(a)/F,, because only
#» ramifies in @/F,, and since Gal (F,(a)/F,) clearly leaves the ideal (a) fixed, it
follows that (a) is the extension to F,(a) of an ideal « in F,. Now, 2°"" = (a), and
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denoting by A the class of 2 in S, we have
Xa(0)=oa/a=Yo(a)la=E(0)=¢(0)

for all o € Gal (K/M). Thus, x4 = ¢ and x is surjective.
LEMMA 4.5. The inclusion F, — F, induces an isomorphism
S(F,)— S™(F,).

The proof is quite elementary. For p =2, both sides are zero by Weber’s
theorem and there is nothing to prove. Suppose now that p is an odd prime and
let « be some ideal in F, such that " =(a) and iz =(a), where ac F., acF,
and i is the injection of the ideal groups. Then, «°=(a - @) because they have
equal extensions in F,. Since 2" is also principal and 2 is prime to p™, it follows
that ¢ itself is principal. This proves that S(F,)— S(F,) is injective.

Clearly, the image is contained in S*(F,). Let & be a representative of an
element in S™(F,). We may assume that & = B°*" for some B € S*(F,). We have
B =R - (B) for some BeF,. From B=B=%RB-(B)=B - (B - B) we conclude that

B - B =v is a unit of F;,. Raising to the (p+ 1)-st power and setting « = 8°*' and
(1/2)(p+1)

u=v , we have a - @=u - ii. Therefore, A= (a)=sf - (a - u""). Since
au™' - qu =1, Hilbert’s Theorem 90 gives us an element y € F,, so that au™'=
v+ ¥ ', and then & - (y) =& - (). Thus every element of S™(F,) has a representa-

tive of such that o = . We may further assume that & is prime to 4, = ({,—1)=
7n. But then, since no prime other than 4, ramifies in F,/F,, it follows that & is
the extension in F, of some ideal in F,. Therefore, S(F,)— S™(F,) is surjective
and the lemma is proved.

A nice and simple proof of (4.6) is given in Iwasawa’s note [11]. There is no
point in repeating it here.

COROLLARY. If p is a semi-regular prime, i.e. S(F3)=0, then S(F,)=
S™(F,) for all n=0.

LEMMA 4.7. The map S (F,-,) — S™(F,) is injective and S™(F,_,) is precisely
the fixed point set in S~ of the Galois group Gal (F/F,_,).

Proof. We may assume p odd. Let temporarily G = Gal (F,/F,_,). Facts from
Galois cohomology (Theorems 11 and 13 of [13]):

H?*(G, C(F,))=H*(G, E,),

H'(G, C(F,))=Ker {C(F,-;) = C(F,)}=Ker {S(F,_;) > S(F,)}.
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These isomorphisms are proved using class field theory. For the proofs we
refer the reader to [13], pages 550 and 551. The last equality follows by an
argument similar to the one used in the proof of Lemma 4.5.

The groups on the left, as well as on the right, are modules over the cyclic
group of order 2 operating by complex conjugation ¢ on the coefficients C(F,_;),
C(F,), E,. Moreover, the isomorphisms commute with the action of c¢. Thus
H*(G, C(F,))” makes sense.

Since E,_;=pn_1* E,_; and the elements of w,-, are norms from E,, it
follows that H*(G, C(F,))” = H*(G, E,)” = (E._1/NE,)” =0, where N is the norm
from F, to F,_;.

Since C(F,) is finite, the Herbrand quotient

|H*(G, C(F))I/[H'(G, C(F,)|=1.

The usual argument for proving this yields

|[H'(G, C(F,))"|=|H*G, C(F,))|=1

in the present situation. Hence, Ker {S™(F,_;) = S (F,)}=0.

Observe that in the situation where p is assumed to be semi-regular,
H*(G, E,)=E,_,/NE,, is of order prime to p because NE, contains the subgroup
E¥_, of circular units in E,_, whose index in E, equals the class number of Fj.
(See [8], §11, Satz 3.) Therefore, in this case, H'(G, C(F,)) is a p-group of order
prime to p, i.e. H'(G, C(F,))=0. But we do not need this.

It is clear that S™(F,-;) is fixed under Gal (F/F,_,). Conversely, in order to
prove that every element of S~ fixed under Gal (F/F,_;) belongs to S™(F,-,) it
suffices to prove that if 2 is an ideal in F,, whose class is fixed under
Gal (F,,/F,.-1), then < is an extension of an ideal in F,,_;, m =n. We have then,
sa=a - (as) and the map

a:Gal (F,,/F,,_,)— F,/E,

sending s to a, is a 1-cocycle. Since H'(Gal (F,,/F,.-1), Fm/En) injects into
H?*(Gal (F,/Fn-1), En) by the cohomology exact sequence and Hilbert’s Theorem
90, H*Gal(F,/F,,_1), E,,)"=0 implies H'(Gal (Fa/Fp-1), Fm/En) =0. It is
easily verified that the cohomology class of a is antisymmetric under the action of
complex conjugation, as a consequence of the fact that the class of « is. It follows
that there exists c € F,,/E,, such that a, = ¢/sc for all se Gal (F,/F,,_1). Hence,
s(a - (¢))=a - (c). Since 2 (c) also represents the class of 2, we may as well
assume that s(z) = 2. As 2 may be further assumed to be prime to 4., this implies
that « is the extension to F,, of an ideal of F,,_;.
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§5. Structure of W, for regular primes

Let again C(p"*") denote a cyclic group of order p"*' with generator x. We
identify QC(p"*') with the product of fields Qe x[[;-0Q({,)e, under the
isomorphism sending x to e+Y._o {.e,, where {, =exp (2wi/p”*"), and where
l=e+eg+ - +e, is the decomposition of 1 as a sum of primitive orthogonal
idempotents in QC(p"*").

The subring ZC(p"*") is contained in the maximal order &, =Ze x[[}-0 A,e,
of QC(p"*"), where A, =Z[{,].

Recall that W, denotes the kernel of the homomorphism

I : Ko(z C(P"“)) - Ko(-ﬂn)

induced by the inclusion i :ZC(p"*") — «,.

Theorem 1.2 of Section 1 which is an immediate consequence of Theorem 1.1
enables us to calculate the order of W, for regular primes as advertised in the
introduction. In this section we discuss the structure of the group.

Let to= {o—1. We regard t, as an element in all the A, as {, = {%". Denote by
<n the ideal

en=p " ' ZexptoAceoX -+ Xp " VtoALe, X * + ¢ X tgAyen.

It is easily verified that .,<ZC(p""')c=s, More precisely, if
i:ZC(p"*")— o, denotes the inclusion given by i(x)=e+Yr_, {,e,, we have the
formulas

p"le= l{n Q+x"+-.-- +x(p_1)p»)},

v=0
and

P tolie, = i{x"(x" -1) H 1+x"+- -+ x(P"l)P“)}’

A=v+1

which are easily verified, looking at the right hand side componentwise. These
identities show that a Z-base of ¢, is contained in ZC(p"*").
Thus, there is a fibre product

ZC(p™*") — 4,

J |

ZC(p"" ) e —> Anlen
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which in turn yields an exact sequence

U@ZC(p" ™) en) X U(stn) —=> Ut/ en) —22> Ko(ZC(p"*))

— HO Ro(Z[L,]) — 0.

We have used here that ZC(p"*")/¢, and #,/c, are semi-local rings.

Hence, W, = Coker J,.

Recall that there is an involution on ZC(p"" ") determined by x — x~~ and
also on &, resp. o,/c, given by complex conjugation in each A,. We denote by
A, the subgroup of U(s4,/c,) consisting of symmetric elements (i.e. elements left
fixed by the involution). Let &, < U(«,/¢c,) stand for the subgroup consisting of
the units of the form e+Y"_, {e,.

n+1 1

THEOREM 5.1. Let p be a regular odd prime. Then, the map @, : U(H,/c,) —
Ko(ZC(p™*")) of the above exact sequence induces an isomorphism

Im &, =W, = U(,/c,)/| Z U3 T, (UZC(Pp™ ") cn)).

Note that s,/c, and S,=ZC(p""")/c, are finite rings and their generators
t,e, = (L —1)e,, viz. t=x—1 are nilpotent. Thus, the calculation of the groups of
units U(,/c,), U, and J,(S,) however complicated, is elementary, i.e. does not
require the knowledge of a basis in U(«,).

Proof. We have to'show that
Ker ¢n = %n : Gu: ' Jn(sn)’

where S, =ZC(p"")/cn.
It is clear by Kummer’s lemma that

Ker (pn = Jn{U(Sn) X U(dn)}c %n ' ou: : Jn(sn)

(Compare Section 3.)
Obviously, Z, = J,U(A,).
Thus, the only non-trivial statement is

Uy <ImJ,.

We prove this by induction on n, using the regularity of p and of course the
results in Section 4.
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First, there is a projection of the fibre product

ZC(pn+1)_‘_> dn

l l

S, —> A, en

to its analogue for n—1. This projection yields a commutative cube

ZC(p"™) > A
/
Sn - A,fey
{ i}
ZC(p™) > Sy
/
s, " R

where the projection «, — #,_; merely forgets the last component in A,.
This diagram provides a map = of exact sequences

[

U(Sn)XU(dn) _j—“—) U(dn/cn) — Wn —

- FF

U(Sn-—l) U(edy,-1) Lo, U(An-1/cn-1) ety Wioi—0

Since U(,) = U(4,-1) X U(A,), and m, | U(s4,) simply drops the last compo-
nent, it follows that m, is surjective. On U(S,-;) the surjectivity of m, is evident
since an element of S,_; =ZC(p")/cn-1 is a unit if and only if as a polynomial in
t=x—1, its constant term is prime to p. For p odd, it follows that , is surjective
on symmetric elements.

Thus, given a symmetric unit u € U(sf,/¢,), in order to show that u € Im J, we
may assume using induction on n that = (u)=1. (For p=2, this argument
definitely breaks down. We do not know whether or not Theorem 5.1 survives in
that particular case.)

Now, using the decomposition

U(stofcn) = U@Ip"'Z) x [1 UAJP"1A.),
v=0
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we can write u in components U =0 - uUp* Uy * * - * U, with ve U(Z/p"”Z) and
u, € U(A,/p" "tA,). The induction hypothesis m;(u)=1 means that v=
1mod p"Z and u,=1mod p" " 't,A, for v=0,1,...,n—1.

It is clear that each u,, v=0,...,n—1 is symmetric.

We need the following lemma:

LEMMA 5.2. We have
U, Upy + « « 5 Up—1 € U+(An/t0An) : Jn(U(Sn))’
where U™(A,/tyA,) denotes the subgroup of symmetric units in U(A,/thA,).

Observing that A,/tpA, is precisely the ring R, =F,[t])/(f*") of Section 4
(under the correspondence t < {,—1), we know from Section 4 that

U+(An/t0An) < ]U(An) < Jn U(dn)

if p is a regular prime.
Therefore, Lemma 5.2 will imply that v-uo- - -+ - u,—1ImJ, and since
u, € U (A /toA,) < J,U(s4,,), this yields u, € Im J, and Theorem 5.1 follows.

Proof of Lemma 5.2. We give the argument for u,, v=0,...,n+—1. The
argument for v is similar and left to the reader.

Write u, =1+p" " 'toa and choose a lift z€ S, =ZC(p"*")/c,, of a arbitrar-
ily. (The composition ZC(p"*') = Z x[[s-0 A, = A, is surjective for each ».) Set

n—1

w=1+(x""—-1) H (A+x" 4+ +x@PY . 5

A=p+1

regarded as an element of U(S,).

We look at the components of J,(w) in U(dfcn) =
U@/p""'Z)xTx=0 U(AMP" *toA,). It is clear that all components of J,(w) are 1
except the one in U(A,/p" "tA,) which equals u, and a possibly non-trivial
component w, in the last factor w, € U(A,/tgAn).

Therefore,

u,= W;l mod ]nU(Sn)a

with w, € U(A,/toAn). ‘

It remains to secure a symmetric w,. Let p" be the order of u. Then,
u, = (u,cu,) "V since p is odd, and so, replacing w by (w - cw) /2@ jf
necessary, we get a symmetric w,.
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This completes the proof of Lemma 5.2 and thus of Theorem 5.1.
A more explicit description of W, appears in S. Galovich’s paper [6].

§6. Direct method for n =1
For n =1, the cokernel of the map
J:U@ZC,)x E;— U(F,[x]/(x* — 1))

can be calculated for p a semi-regular prime without appeal to class field theory.

Recall that E; denotes the group of units in Z[{;], where ¢, is a primitive

p”*'-st root of unity and j is the restriction to units of the map of rings sending a

generator of C, to x and {; to x.
THEOREM 6.1. If p is a semi-regular odd prime, there is an exact sequence
0— (3(p—3)+8,) - Z/pZ — Ko(ZC,2) > Ko(Z[{o]) x Ko(Z[£:]) — 0,

where 8, is the number of Bernoulli numbers among B,, B.,...,B,-3 whose
numerator is divisible by p.

Using the Milnor-Mayer—Vietoris sequence of Section 1, the theorem is
equivalent to

Coker j=(3(p—3)+38,) - Z/pZ.

We prove this in two steps. Step 1. j(U(ZGC,))<j(E,;). Thus Cokerj=
Coker j | E;; Step 2. Coker{j: E;— U(Ry)}=@G(p—3)+8,) - Z/pZ, where R,=

F,[x)/(x? —1).
Step 1. Set t=x—1. Thus, R; =F,[t])/(t*). Consider the commutative diagram

U@zc,) ~1s U(R1)

l I

E, — U®F,[t)(*Y),

where Eo= U(Z[{]). The left vertical map sends a generator of C, to {,. The
map jo sends {p to 1+t It is well defined since {, is a root of the polynomial
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1+X+---+X?" and in F,[X], we have

X7 -1 _(X—1)

1+ X+ -+ X' = =
X-1 X-1

=(X—-1)""".

Finally 6 is the obvious map reducing mod (t° ™).
Observe first that the kernel of 6 is generated by the unit 1+¢*~' which
belongs to j(E;). In fact,

HEP =D/ =D} =j(A+ L+ + D) =1+x+ - +xP
=1+(1+x+ - +xP N=1+Gx-1)"'=1+¢""

Therefore, it suffices to prove
jo(Eo) < 6j(E;).

Let E¥ be the subgroup of circular units in E,, i.e. the subgroup of E,
generated by ¢, and the units of the form ({5~ 1)/({o— 1), where s is prime to p.
We use the classical result in the theory of cyclotomic fields:

The index [Eo: EY] equals the class number hg of the maximal real subfield

QLo+ oY) of Q&)

A proof is given in Borevich-Shafarevich [4], Theorem 2, Chap. 5, Sec. 5,
page 362.

Thus our hypothesis, p a semi-regular prime, implies that [E,: E¢] is prime to
p-

The group U(F,[t]/(t?™")) splits as a direct product F,x U,, where U, is the
subgroup of unipotent units, congruent 1 mod (t). The factor F, is contained in
0j(E,). For s prime to p, ({o—1)/({o— 1) is a unit in Z[{,], with e.g. {, = ¢§, and

O {(Ls— 1D/ ({o—1)}=0j(1+ Lo+ -+ =1+xP+ - +xP V=g

Thus, we only have to worry about the unipotent component of jo(Eo). But,
U, is clearly a p-group. Since the index [E,: E¢] is prime to p, it follows that the
unipotent components of jo(E,) and jO(EZ,") are equal. It thus suffices to prove that
jo(E¥) < 0j(E,). Trivial magic does this. Namely,

jol(Zo=D/(G—D}=1+x+ - +x* "= 6j{({5 - D/(& - 1}

Step 2. We now come to the proof of

Coker {j: E;— U(R)}=G(p—3)+6,) - Z/pZ.
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Again, since the kernel of 6 is generated by 1+¢°"' which belongs to the
image of j, as we have just seen, the assertion is equivalent to

Coker 0j=(G(p—3)+38,) - Z/pZ.

Also, F,<Im 6j, so we concentrate on the unipotent component of 6j(E,).

Let ET be the subgroup of E; generated by the circular units +¢; and
(£ —1)/({1—1) with s prime to p. Again, the index [E,:ET] is finite and equal to
the class number hi of the maximal real subfield Q({;+ (1Y) of Q(L1). (See [8],
Satz 3, page 24.

Remark. Actually, the result we use is a slight variation of what we have
quoted. But it is easily seen that these are equivalent.

On the other hand, hy prime to p implies h, prime to p for all n=0 by
Iwasawa [11]. It follows that the unipotent components of 6j(E;) and 6j(ET) are
equal.

An easy calculation shows that the unipotent component of 6j(ET) is gener-
ated by u; = 6j({;) and the units

u, = 0j{(£1— (Lo —D/(& = 1)({o— D},

for r=2,...,p-2.
We introduce the map

log: Uy— T,
where T is the ideal of ¢ in F,[t]/(+*""), and

1
p—2

log(1+f)=f-3f>+---+ 2, feT

Actually, log is an isomorphism. U, is a multiplicative vector space over F, of
dimension p—2 with basis 1+ z, 1+2z%...,1+27% where z is any element in

T, z& T>. The logarithms log (1+ z), log (1+z3),...,log (14 z?~?) form a basis of
T. We now choose z such that x = e?, i.e.

z=logx=log(1+1)=1t—3"+" --+p_2t"‘2.

We have u; = 0j¢,=x = e”, and

! rz___l 2_1 -1
u,=-1-(1+x+---+x"l)=e .(e )
r rz z
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for r=2,...,p—2. It follows that

e”—1 e‘—1
logu,=12, logu,=log . —log > )

forr=2,...,p—2.
We seek a formula expressing log (e* —1)/X.
Recall the definition ‘of the Bernoulli numbers

=1+ ), (B/s)X*
=1

X
e —1 s

in Q[[X]]. We review the properties of the Bernoulli numbers B, which we need.
First B, =3. Next, write f(X)=X/(e*—1)—1+3X. It is easily verified that
f(=X) = f(X). Hence,

(*) B, vanishes for s odd > 1.

Now, an easy calculation shows that

d (ex—l) 1 1( X ) z
—1 R LSS £ v D N ys—1
— log > S-1+3X 3;2 (By/s)X*™",

eX —
and integrating formally,

X_l oo
log (e = )=%X+ Y (BJs - sHX",

§=2

Thus, in Q[XJ/(X?™') we have

X__l X Xp—2 1 .
lOg (e X ):103 (1+5—!-+ o +(p_1)!>€Z[(p_1)!][x]/(xp )

Therefore,
(**) The denominators of B, B, . .., B,_3 are not divisible by p.

It follows that

ez_l p=2
log( . )=%z+§2(Bs/s-s!)-zs
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makes sense and holds true in F,[¢]/(t°"") for any z in T, the ideal generated by t.
Going back to the calculation of log u,, we get

log u, = z,

p—2 p—=2
log u, =3rz + Z (B/s - s)(rz)* —3z— ), (Bys - s)z*
s=2 §=2
r'—
R

p=2 1
=}r-1)z+ Y, — - Bz,
s=2 .

forr=2,...,p—2.

Thus, we observe that modulo the subspace F,z of the vector space T over F,,
the elements log us, . .., log u,» are the transforms of the basis 27, ..., 2?72 of
T/F,z by the matrix M, where

i"—l.

AR

B, 2=ijsp-2.

But, M= A - B, where Ay =(i*-1)/k-k! and B is the diagonal matrix of
Bernoulli numbers diag (B, Bs, . . ., B,-2).

The first factor A is invertible as a matrix over F, as is easily verified. The
second has rank 3(p—3)— &, where §, is the number of Bernoulli numbers among
B, By, . .., B,—3 which vanish mod p. (B3=Bs=---=B,_,=0.)

The rank of the subgroup of U, generated by uy, ..., u,—, is thus seen to be
1+3(p—3)—8,=3(p—1)—8,. The cokernel of j has therefore the rank p—2—
i(p—1)+8,=2(p—3)+8, as asserted.

This finishes the proof of Theorem 5.1.

§7. Calculation of K,(ZC;s)

Let o, {, w{ denote primitive 3-rd, 5-th and 15-th roots of unity respectively.
Consider the map

I Ko(z Cis)— KQ(Z[Q)]) X Ko(z[g]) X KO(Z[w§])

induced by the inclusion of ZC;s in the maximal order of QC,;s.

We shall prove that Keriy=Z/2Z. On the right hand side, the factors
Ko(Z[w]), Ko(Z[¢]) and Ko(Z[wl]) are isomorphic to the ideal class groups of
Q(w), Q(¢) and Q(w{) respectively. It is easily verified that all three class groups
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are zero. This yields:

THEOREM 7.1. Ko(ZCi5)=Z/2Z.

Thus, in the case of a cyclic group of composite order (here C,s), Ker ix may
involve primes which do not divide the order of the group.

The proof is by direct calculation.

We start with the fibre product

ZCis—> Z[{]Cs

L

ZC3 _— F5C3

and the resulting exact sequence as in Section 1,
U(ZC5) x U(Z[{]C5) = U(FsCs) = Ko(ZC1s) > Ko(ZC3) X Ko(Z[{]C5) — 0.

We want to prove

(1) Ko(Z[L]1Cs)= Ko(Z[{]) x Ko(Z[w{]),
(2) Coker{j: UZC;) x UZ[{]C5) > FsCy}=Z/2Z.

This will yield the desired result, since Ko(Z Cs) = Ko(Z[w]) by Rim’s theorem.
We begin with the calculation of Ko(Z[{]C5). Consider the fibre product

Z[{1C; —> Z[w{]

| |

Z[{] — F[L]

with the obvious maps. It is easy to check that F;[{]=
Fi[X)/(1+X+X>+X>+ X% is a field. (Indeed, 3* is the lowest power of 3 which
is congruent 1 mod 5 and thus F;- is the smallest field in characteristic 3 contain-
ing a primitive 5-th root of unity.) We write F3({) instead of Fs[{].

Moreover, U(Z[w(]) = U(F3({)) is surjective because w — ¢ is a unit in Z[w{],
with inverse {*—w(1+¢>), and w — ¢ projects to 1— ¢ € F5(¢) which generates the
cyclic group of non-zero elements (of order 80).

It follows that the sequence

U(Z[{D) x UZ[wl]) = U(F3(0)) > Ko(Z[{1Cs) > Ko(Z[¢]) x Ko(Z[w]) — 0

yields the assertion (1).
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For use in proving (2), we note that the above fibre product also yields the
following information.

A unit in Z[w{] is the image of a unit in Z[{]C; if and only if its projection to
F3({) is in the image of U(Z[{]) — U(Fs(Q)).

We now show that this image consists precisely of the squares in U(F5({)).

It is well known that U(Z[{]) is the direct product of its torsion subgroup
generated by —¢ and an infinite cyclic group generated by the fundamental unit
e={""+1+¢

It is somewhat more convenient to work with the generators —¢ and

te=1+(+{% In F5({), we have

14+ =1-20+=(1-0? -¢=01-9"

Therefore, we have the following criterion:

A unit in Z[w{] is the image of a unit in Z[{]C; if and only if its projection into
Fs({) is an even power of 1—¢.

Using this, we proceed to prove (2), i.e.
Coker {j: UZCs)x U(Z[{]Cs) = U(FsC3)}=Z/2Z.

First, every unit in ZC; can be regarded as a unit in Z[{]C; under the obvious
inclusion Z C; — Z[{]Cs. Moreover, ue€ U(ZCs) and the corresponding element
in U(Z[{]C;) have the same j-image in FsC;. It suffices therefore to prove that

Coker {j: U(Z[{]Cs3) > U(FsC3)}=Z/2Z.

We use the diagram (no, not a fibre product):

Xi,

U(Z[{]C5) —=2> U(Z[{]) x UZ[ )

| o

U(FsC;) ——> U(Fs)x U(Fs(w)),
where i;(x) =1, i,(x) = w with x a generator of Cs;, and j'({)=1, j"({)=1.

LEMMA 7.2. If ue U(Z[wl]) belongs to Kerj", then u=i,(v) for some
ve U(Z[{]G,).

Proof. Let f:Z[wl]— F3({) be the projection with f(w)=1. By the criterion
above, u € i,{U(Z[{]C)} if and only if f(u) is a square.
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In order to calculate f(u), we use the commutative diagram

Z[ w115 Fy(2)

l N l squaring

Z[{] —— Fi(0),

where p is reduction mod 3 and N:Z[w{]— Z[{] is the norm map. Since Nu is a
unit in Z[¢] it must be of the form Nu=(—-{)*(1+ ¢+ ¢*)*. We claim that u is
even. Look at the composition Z[w{]——> Z[{]— Fs. The unit Nu projects to
(=1)*3*. On the other hand, since j"(u)=1, we have u=1+(1-¢)(a+bw) for
some a, beZ[{]. It follows that Nu projects to 1 in Fs. Combining the two, we
must have

(-1)*3* =1mod 5.

This is possible only if u is even. Write u =2m.
Coming back to the diagram, we have

f(u)* = pNu = p{(=0" (1 + £+ )™} =(1-)*™7™,

and hence f(u)=+(1-¢)>"*>** which is a square since —1=(1-¢)*°. We con-
clude that uei,{U(Z[{]C5)} and Lemma 7.2 is proved.

It is now easy to show that Coker j=Z/2Z.

Identifying FsCs; with FsxFs(w) under x — (1, »), where x is a choice of
generators of C,, observe first that the unit —x(1+ {x)eZ[{]C;, with inverse
~x*(1+ ¢+ )1 —x+%x%), maps by j to j(—x(1+x))=(3,1)eFsxFs(w).
Hence, the factor F5x {1} is in the image of j and thus Coker j = Coker (j" - i»).

Now, Fs(w) is generated by w —1 of order 24 and w —1=j"(w —{).

By the criterion above, we know that (0 —£)* € i,{U(Z[{]C5)}. Thus, (0 —1)*€
Im (" - i2).

It remains to show that o — 1€ 1Im (j” - i). But, if j"(0w —{) = 0 —1=j"i,w, then
u=(w—2{)- i(weKerj".

By Lemma 7.2, this implies u = i(v) for some ve U(Z[{]C5), and conse-
quently w—{ =i(vw)€Im i,. This contradicts the criterion above, since f(w—
{)=1-{ is not a square in F3({).

This completes the proof of Ker ix =Z/2Z, where

i : Ko(ZCi5) = Ko(Z[w]) x Ko(Z[{]) x Ko(Z[w]).



452 MICHEL A. KERVAIRE AND M. PAVAMAN MURTHY

The verification that the ideal class groups of Q(w), Q(¢) and Q(w{) are zero is
easy and left to the reader.
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