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Comment. Math. Helvetici 52 (1977) 393-413 Birkhduser Verlag, Basel

Un théoreme de Hurewicz homologique

PiERRE VOGEL

§1. Introduction

Les outils essentiels de la chirurgie sont le théoréme de Hurewicz, la classifica-
tion des immersions et le théoreme de plongement de Whitney. Si 'on veut
cependant obtenir, par chirurgie, des équivalences d’homologie, ces moyens sont
parfois insuffisants. Ainsi, dans [4], si f: V— X est une application normale de
degré 1 d’une variété V dans un espace X a dualité de Poincaré homologique, on
peut déterminer Iobstruction o(f) pour trouver une équivalence d’homologie
normalement cobortante a f, mais la méthode utilisée ne marche que si X est a
squelettes finis, du moins jusqu’en dimension moitié.

On se propose ici de montrer une généralisation du théor¢me de Hurewicz
permettant de faire la chirurgie homologique dans des conditions plus larges. En
fait, on montre que, sous certaines conditions, tout élément du premier groupe
d’homologie non nul H,(X, A) d’une paire d’espaces non nécessairement simple-
ment connexes est obtenu par une application f: (W, V) — (X, A), ou (W, V) est
une paire de variétés différentiables stablement parallelisées homo-
logiquement équivalente a (B", S"™").

Plus précisément, on a ce résultat (Théoréme 1.2) pour n=6 (pour n<5, W
n’est plus nécessairement une variété) et si (X) et m(A) sont localement
A-parfaits au sens suivant:

DEFINITION 1.1. Soient A un anneau et G un groupe. On dira que G est
localement A -parfait si tout élément de G est contenu dans un sous groupe G’ de
G de type fini A-parfait (i.e. tel que H,(G’, A)=0) ou, ce qui est équivalent, si
tout sous-groupe de type fini de G est contenu dans un sous-groupe de G de type
fini A-parfait.

THEOREME 1.2. Soient (X, A) une paire d’espaces topologiques connexes, A
un sous-anneau unitaire de Q et n un entier=2, tels que tous les groupes
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394 P. VOGEL

H;(X, A; A) soient nuls pour i <n et tels que m(X) (resp. m1(X) et m1(A) si n=3)
soit localement A-parfait.

Alors, pour tout x € H,(X, A; A) il existe un CW-complexe fini W A-acyclique
de dimension n, un sous-complexe V de W de dimension n—1 ayant le type de
A-homologie de S"™", et une application continue f: (W, V)— (X, A), telle que x
soit I’image par fy d’un générateur de H,(W, V; A), et ou I’on a de plus:

a) W est une variété différentiable stablement parallélisée de bord V dans les cas
suivants:

i) n=6

ii) n=2, I’image de I’application: m,(A)— m(X) est A-parfaite et I’application
Hy(m1(A); A) — Hy(m(X); A) est surjective
iili) n=3 et x donne zéro par I’application composée:

H3(X, A; A)— Hy(A; A)— Hy(m(A); A)

b) si n=4, W est 'union d’une variété différentiable de dimension 4 stablement
parallélisée de bord V et de cellules de dimension 3

c) si n=35, V est 'union d’une variété différentiable de dimension 4 stablement
parallélisée et de cellules de dimension 3; et il existe un plongement de (W, V) dans
une paire (W', V') de variétés différentiables parallélisées avec:

V'coW’ dim W’'=8 dim V'=17.

Remarque 1.3. Si n=4 ou 5, la paire (W, V) n’est a priori pas une paire de
variétés, mais il est possible que I’on puisse toujours choisir (W, V) comme paire
de variétés différentiables stablement parallélisées dans ce cas. Ceci est une
question ouverte qui se ramene au cas n =4. On peut en effet facilement montrer
que si cette question avait une réponse affirmative dans le cas n =4, il en serait de
méme dans le cas n=35.

Du Théoréme 1.2, on peut tirer un certain nombre de conséquences.

Par exemple, comme il est dit plus haut, on peut effectuer des chirurgies sur
une application normale d’une variété dans un complexe non nécessairement fini.
Plus précisément, on a:

THEOREME 1.4. Soient A un sous-anneau unitaire de Q, n un entier=5, X
un espace topologique, N un sous-groupe normal de m(X) localement A-parfait et
w:m1(X)/N— £1 une classe de Stiefel-Whitney sur X. Supposons que X posséde



Un théoréme de Hurewicz homologique 395

une dualité en A[w;(X)/N]-homologie définie par un élément [ X]e H(X; A) et
que 71(X)/N est de présentation finie.

Soient, d’autre part, V une variété différentiable, PL ou Top de dimension n, ¢
un (micro-) fibré (stable) sur X et f une application fibrée du fibré normal de V dans
& de degré 1.

Alors f est normalement cobordante a une équivalence en A[m (X)/N]-
homologie si et seulement si deux invariants, oo(X)e Ko(A[m,(X)/N]) et o.(f),
défini lorsque oo(X)=0 dans LY(A[m(X)/N], w), s’annulent.

Dans une autre direction on montre également le théoréme suivant:

THEOREME 1.5. Soit K un complexe fini acyclique de dimension k et n un
entier =2k +2. Soit C,(K) le groupe de Hausmann [S] des sphéres d’homologie
PL orientées contenant K et ayant méme groupe fondamental que K. Alors
I application canonique de C,(K) dans m,(Bm1(K)") est un isomorphisme.

D’autres conséquences du Théoréme 1.2 ont été démontrées dans [7]. En fait
la technique de chirurgie homologique utilisée ii) généralise celle de [6] et les
résultats de [6] peuvent étre déduits du Théoréme 1.2.

Le Théoréme 1.2 sera montré au §3 en considérant dans I'ordre les cas ii),
n=2,1ii), n=3, n=4, n=35, et par récurrence le cas n=6. On aura besoin pour
cela de certains résultats de chirurgie démontrés au §2.

Les Théorémes 1.4 et 1.5 sont démontrés au §4 et le §5 est consacré a une
étude des groupes localement A-parfaits.

§2. Chirurgie homologique

Soit A un sous-anneau unitaire de Q. On appellera A-anse d’indice k et de
dimension n toute paire (H, h) de variétés différentiables compactes stablement

parallelisées telles que:

-h<coH
-dimH=n dimh=n-1
— Hy(H; A)=0

— Hy(h; A)=Hx(S“; A)

— h se collapse sur un complexe de dimension k—1.

Par exemple si V est une variété différentiable compacte stablement
parallelisée de dimension n et A-acyclique, (VX Bf,8V X B®) est une A-anse
d’indice n et de dimension n+ p.
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THEOREME 2.1. Soient f: M — X une application continue d’une variété
différentiable, PL ou Top de dimension m dans un espace topologique, n un
entier=2, a : m1(X)— G un épimorphisme de groupe tel que Ker a soit localement
A-parfait, ainsi que Ker (m;M — G) si n=3. On suppose que H;(X, M; A[G]) est
nul pour tout i <n.

Soient d’autre part un fibré vectoriel, PL ou Top & sur X tel que w(§) soit trivial
sur Ker a et une application fibrée ¢ du fibré normal stable de M dans £ qui revét f.

Alors on a les deux propriétés suivantes:

a) si m=2(n—1), le A[G]-module H,(X, M; A[G]) est muni d’une forme
quadratique q a valeur dans A[G)/{t+(—1)"t} associée a la forme bilinéaire a
valeur dans A[G] déduite, via le bord: H,(X, M; A[G])— H,_.(M; A[G)), de la
forme intersection sur H,_,(M; A[G])

b) soit x€ H,(X, M; A[G]). Alors, dans les cas m>2(n—1) ou m=2(n—-1)=
6 et q(x)=0 il existe une A-anse (H, h) d’indice n et de dimension m+1 et un
diagramme commutatif

h“~— H

l l (1)

M-—X
f
revétu par un diagramme fibré:

Vh— Vy

Lo

VM-—-‘p—* g

tel que I'application h — M soit un plongement, que I’application v, — vy soit
I’application fibrée induite par ce plongement, que w(H) s’annule dans G et que
(1) induise Ax e H,(X, M; A[G]), A étant une unité de A.

Le Théoréme 2.1 est I'outil essentiel de la chirurgie homologique utilisée dans
cet article. La démonstration est enchevétrée avec la démonstration du Théoréme
1.2. On procedera donc avec précaution.

2.2. Démonstration de 2.1 a)

Cette démonstration est directe et n’utilise pas 1.2.
Soit B I’espace BO, BPL ou BTop suivant les cas. Le fibré £ induit une

application g:X — B. Soit X -2, B'—>B un scindage de cette application, B’
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étant un espace dont le groupe fondamental est G et tel que g’ induise a sur les
m;. On peut par exemple construire B’ en ajoutant des cellules de dimension 2 a
X.

Soient X' et M’ les fibres homotopiques de g': X — B’ et de g'of: M — B’.
On vérifie les formules suivantes:

H,(X,M; A[G)=H(X',M'; A)=7=}(X',M)® A pour tout i<n.
Si x' est un élément de (X', M’) représenté par un diagramme commutatif:

oW — W

Lo

Ml - XI

ou W est une variété différentiable compacte stablement parallélisée de dimen-
sion n, ’application 8 W — M’ induit une application dW — M dont la composée
dW — B est canoniquement homotope a zéro. Cette application dW— M est
donc revétue par une application fibrée et définit une classe d’homotopie réguliére
d’immersion dont le nombre de points doubles évalué dans Z[m(B"))/{t+(—1)"t}
sera noté q'(x’). L’application q' ainsi construite est une forme quadratique
associée 2 la forme intersection sur 7;_;(M) et induit, aprés tensorisation par A,
la forme quadratique cherchée.

On vérifie aisément que cette forme quadratique est indépendante du choix de
B'.

2.3. Démonstration de 2.1 b)

Pour démontrer 2.1 b) pour un n donné, on utilisera le Théoréme 1.2 pour ce
méme n. Cela ne créera pas de probléme logique puisque au §3, pour démontrer
le Théoréme 1.2 pour un n donné, on n’utilisera 2.1 que pour des n strictement
inférieurs.

Procédons comme plus haut, en construisant B’ de la fagon suivante:

Soient X (resp. B) le revétement de X (resp. B) de groupe fondamental Ker a
(resp. 0), X, (resp. By) le A-localisé au sens de [3] de X (resp. B) et X, (resp.
B,) le quotient de X, (resp. B4) par I'action rendue libre de G (resp. Z/2).
Comme toutes ces constructions sont fonctorielles on obtient le diagramme
commutatif suivant:

X —*-B

L

XA & Ba
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Soit alors B’ le produit fibré homotopique de B et de X, au dessus de B,.
L’application g se factorise a travers B’ et m(B’) est égal a G.

On construit, comme plus haut, les espaces M’ et X', et I’on vérifie que X' est
A-acyclique, que 71(X’) est une extension centrale de Ker a et que m;(M’) est
une extension centrale de Ker (m,(M) — G).

On en déduit (5.5) que m(X’) (resp. m1(M’) si n = 3) est localement A-parfait.
La paire (X', M’) vérifie donc les hypotheses du Théoreme 1.2. 1l existe alors une
paire (W, V) de CW-complexes finis et un diagramme commutatif

Ve W

| @

M"""-" Xl
induisant Ax € H,(X', M'; A) = H, (X, M; A[G]), A étant une unité de A.

1) Lecas m>2(n—1)

Comme W est un complexe fini de dimension n <(m +1)/2, on peut épaissir la
paire (W, V) en une A-anse (H, h) de dimension m+1 et d’indice n.

Le diagramme (2) induit alors un diagramme:

h— H

l l 2)

Ml_____} X’

revétu par des applications fibrées. L’application h — M’ définit alors une classe
d’homotopie réguliere d’immersion qui contient. un plongement car h se collapse
en V de dimension strictement inférieure a n/2. On en déduit alors 2.1 b).

2) Lecas m=2(n—1)=6

Dans ce cas, n est supérieur ou égal a 4 et V est une variété différentiable
stablement parall¢lisée pour n#5. Si n est égal a2 5, V est 'union d’une variété
différentiable stablement parallé¢lisée V' et de cellule de dimension 3. Lorsque n
est différent de 5 on posera V'=V.

Comme plus haut I’application de V dans M’ induit par restriction une classe
d’homotopie réguliére d’immersion de V' dans M dont le nombre de point double
est un élément a du groupe

I'=Z[m (V' )\m(M)/m( V)Yt +(=1)"1}

qui donne q(Ax)=0 dans A[GJ{t+(-1)"}.
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Comme la torsion de I' n’a que des éléments d’ordre 2, on peut, quitte a
remplacer W par la somme connexe de W et de W sur le “bord” de fagon a ce
que le diagramme (2) induise 2Ax si 3 appartient a A, supposer que a donne zéro
dans le groupe Z[GJ/{t+(—1)"t}, et par conséquent dans un groupe
Z[G'\m(M)/GY{t+(-1)"t} ot G’ est un sous-groupe de Ker (w,(M)— G) de
type fini contenant I'image de ,(V’).

Soit G" un sous-groupe de m(M’) de type fini qui se surjecte sur G'. Comme
m1(M’) est localement A-parfait, quitte 4 augmenter G”, on peut supposer que G”
est A-parfait.

Soient xi, ..., x, des générateurs de G". Comme G" est A-parfait, il existe un
entier A inversible dans A tel que x} s’exprime en produits de commutateurs ¢; en
les x. Soit alors G” le groupe de présentation {x; | x} =¢;}. Le groupe G" est le
groupe fondamental d’un complexe fini A-acyclique K de dimension 2 et se
surjecte sur G".

Apres épaississement de K, on obtient une variété différentiable compacte K’
stablement parallélisée et A acyclique de dimension n=4 qui s’envoie par une
application « dans M'.

Soient alors W, la somme connexe de W et de K’ (Cette somme connexe sera
effectuée sur I'intérieur de V' dans V lorsque n est égal a 5).

Lorsque n est égal a 5, V; est 'union de Vi= V'#94K' et de cellules de
dimension 3.

Le diagramme (2) et I’application « induisent un diagramme:

Vi— W,

|

M— X

et I’application V; — M’ induit une classe d’homotopie régulicre d’immersion de
V, dans M (resp. V} dans M si n =5) dont le nombre de point double est nul par
construction.

Si I’on épaissit maintenant (W;, V;) en une A-anse d’indice n et de dimension
m+ 1, ce qui est possible vu les propriétés de (W, V), on obtient un diagramme:

h — H

|

MI__) X’

revétu par des applications fibrées. L’application h— M’ induit une classe
d’homotopie réguliére d’immersion de h dans M qui par construction contient un
plongement pour n#5. Si n est égal & 5 I'immersion de h dans M est
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régulicrement homotope a une immersion injective sur Vj, et par position

générale, cette immersion est régulierement homotope a un plongement; ce qui
acheve de démontrer le théoréme.

§3. Demonstration du Théoréme 1.2
3.1. Le cas ii)

On suppose ici que n est égal a 2, que I'image de l’application: m;(A)—
m1(X) est A-parfaite et que I’application H,(m1(A); A) = Hy(m(X); A) est sur-
jective.

LEMME 3.1. Soit X un espace topologique de groupe fondamental . Alors
H,(X; A) est égal a Hi(mw; A) et on a la suite exacte:

Ce lemme, qui se démontre aisément en considérant la suite spectrale
d’homologie du fibré X — K(1r, 1), permet d’obtenir le diagramme suivant, ou G
est I'image de: m(A) —» m X:

m(A) — m2(X) - m(X,A) - m(A) -G-—1

| l ! ! I
Hy(A;A) — Hy(X;A4) — HiX A;4)—> Hi(A;4)— 0
l !

Hy(m(A); A) = Hy(m(X); A)

Comme I’application m,(A) — H,;(A; Z) est surjective et que G est A-parfait,
on vérifie que, pour x appartenant a H,(X, A; A), il existe un entier A inversible
dans A et un élément y de m(X, A) tel que y donne Ax dans
H>(X, A; A)/Hy(X; A).

Il suffit alors de considérer le diagramme suivant, ou les lignes sont exactes,
ainsi que les colonnes apreés tensorisation par A:

ma(A) - ma(X) - m(X, A)

d l d
Hy(A;A) — HyX;A) —>HxyX A;A)
' \d ¥
Hy(m1(A); A) = Hy(m(X); A)—> 0
d {

0 0
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pour trouver un entier A’ inversible dans A et un élément z de m,(X, A) dont
Pimage dans H>(X, A; A) est égale & AA'x; ce qui démontre le Théoréme 1.2 dans
le cas ii).

3.2. Construction de la paire (X', A”)

Pour démontrer 1.2 dans les autres cas, on aura besoin d’une autre paire
d’espace (X', A’) que I'on va construire de la fagon suivante:

Soit X, le A-localisé de X au sens de [3]. On désignera alors par X’ (resp. A’)
la fibre homotopique de I'application X — X, (resp. A — X,). La paire (X', A’)
ainsi construite s’envoie par une application ¢ dans (X, A), et I’on a:

LEMME 3.2. L’application ¢ induit un isomorphisme de H;(X', A’; A) sur
H;(X, A; A) pour tout i<n. De plus X' est A-acyclique et w,(X') (resp. m(A’) si
n=3) est localement A-parfait.

Démonstration. Les deux premiers résultats se déduisent des suites spectrales
d’homologie des deux fibrés (X, A) — X, et X — X,.

Pour montrer que m(X’) (ou m(A’) est localement A-parfait, il suffit de
remarquer que w(X') (resp. m(A’)) est extension centrale de m;(X) (resp.
m1(A)) et d’utiliser (5.5).

33. Lecasn=2

On suppose maintenant que n est égal a 2, sans hypothése supplémentaire.

L’élément xe€ Hy(X, A; A) se reléve en x'e Hy(X', A’; A) qui induit un
élément ye Hi(A'; A).

Soit V le cercle S' et f': V— A’ une application telle que y soit 'image par fx
d’un générateur de H,(V; A).

Comme 7;(X’) est localement A-parfait, on peut ajouter a V des cellules de
dimension 1 et obtenir un bouquet de cercles W' et une application f;: W' — X’
qui prolonge f' et telle que I'image de w;(W’) soit A-parfaite.

Or X' est A-acyclique et H(m(X'); A) est nul. On peut alors utiliser le
Théoréme 1.2 cas ii) a la paire (X', W’) et rajouter a W' des cellules de dimension
2 pour obtenir un complexe fini A-acyclique W et un prolongement f5 de f;.
L’application go f5:(W, V)— (X, A) répond a la question et le théoréme est
démontré dans le cas n=2.

3.4. Le cas iii)

On suppose ici que n est égal a 3 et que x donne zéro dans Hy(mw;(A); A).
Comme H;(X,A;A) est égal a4 =3(X,A)® A, il existe une variété
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différentiable compacte connexe stablement parallélisée W' et une application
f(W,0W')—> (X, A) telle que x soit I'image par f d’un générateur de
H3(W’,aW’; A). De plus, comme le bord de x appartient a m,(A)® A, on peut,
quitte & changer de variété W', supposer que W’ est la sphére S°.

De plus, I’application f': W — X vérifie toutes les hypothéses du Théoréme
2.1 pour n=2 avec G =0 et application H,(X, W'; A) = H;(W'; A) est surjec-
tive.

Comme le Théoreme 2.1 est démontré pour n =2, on peut faire les chirurgies
homologiques avec des A-anses de dimension 4 et d’indice 2 pour tuer n’importe
quel élément de H;(W'; A). On calque alors la démonstration de [8], [1] qui
marche dans ces dimensions, et l'on obtient, aprés chirurgie, une variété
différentiable compacte A-acyclique et stablement parallelisée W de bord V = §°
et une application f:(W, V)— (X, A) telle que x soit I'image par fyx d’un
générateur de H3(W, V; A); et le Théoréme 1.2 est démontré dans le cas iii).

3.5.Lecas n=3

L’élément xe Hs5(X, A; A) se releve en x'e Hy(X', A'; A) qui induit un
élément y € H,(A'; A).

Soient V' une surface orientée compacte connexe sans bord et f': V' — A’ une
application telle que y soit 'image par f% d’un générateur de H,(V'; A). La paire
(A, V') vérifie les hypothéses du Théoréme 1.2 pour n=2 et I'application:
H,(A', V'; A)— H,(V'; A) est surjective. Il existe donc des complexes finis W; de
dimension 2 et des sous-complexes V;de dimension 1 ainsi que des diagrammes

Vie— W,

L

V— A’

tels que (W;, V) ait le type de A-homologie de (B>, S) et que les V; induisent une
base de H;(V'; A). Soit alors V la variété V' a laquelle on a ajouté les “cellules”
Wi, le long des V.. Le complexe V est un complexe fini de dimension 2 qui a le
type de A-homologie de S*, et V s’envoie par une application f” dans A’ de fagon
que y soit 'image par fx d’un générateur de H,(V; A).

LEMME 3.5. Soit a : G — I' un morphisme d’un groupe de présentation finie G
dans un groupe localement A-parfait I' avec: Hy(I'; A)=0.

Alors a se factorise a travers un groupe de présentation finie G' tel que:
Hi(G'; A)=H,(G'; A)=0.
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Ce lemme sera démontré plus loin et va permettre de terminer la
démonstration du cas n.=3.

En effet, comme X' est A-acyclique, d’apres le Lemme 3.1, Hy(m(X"); A) est
nul. On en déduit, d’aprés le lemme ci-dessus, ’existence d’un groupe de
présentation finie G’ dont les deux premiers groupes de A-homologie sont nuls et
d’un diagramme commutatif:

GI
N
(V) - m(X)

On attache alors des cellules de dimension 1 et 2 3 V de fagon a obtenir un
complexe fini W' de dimension 2 dont le groupe fondamental est G’ et une
extension f”: W’'— X' de f".

Comme le groupe H;(X', W’; A)= H,(W'; A) est un A-module libre de type
fini, on peut utiliser le Théoréme 1.2, cas iii) pour attacher 8 W' des 3-boules
d’homologie sur leur bord, et ’'on obtient un complexe fini W de dimension 3
A-acyclique contenant V et une application f: (W, V) — (X', A") qui prolonge ",
ce qui démontre le Théoréme 1.2 dans le cas n = 3.

Démonstration du Lemme 3.5. Comme G est de présentation finie, H,(G; A)
est un A-module de type fini, et comme H,(I"; A) est nul, il existe un sous-groupe
de type fini G” de I' contenant a(G) et tel que H,(G;A) s’annule dans
H,(G"; A).

Comme de plus I' est localement A-parfait on peut supposer que G" est
A-parfait.

Soit {x1,...,%,|r1=--+=r,=1} une présentation de G. En rajoutant des
générateurs et des relations & G, on obtient une présentation
(X503 Xpyeo oy Xu | i="""=r,=r01=---=1} de G”, et lapplication standard

entre ces présentations est I’application a.

Comme H,(Gj; A) est de type fini et s’annule dans H,(G"; A) il existe un
entier m = q tel que H,(G; A) s’annule dans H,(G"; A), G" étant le groupe de
présentation {X;,..., X, |11 ="+ =r, =1}. Comme de plus H;(G"; A) est nul, on
peut choisir m assez grand pour que H,;(G"; A) soit également nul.

Soit G" I’extension centrale universelle de G" par H,(G"; A) définie par
lidentité de Hom (Ho(G";A); H,(G";A))=H*G", Hy(G"; A)). Comme
H,(G; A) s’annule dans H,(G"; A), il existe un diagramme commutatif:

Gm
-
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Soit G’ un sous-groupe de G"” de type fini qui contient s(G) et qui se surjecte
sur G”. Comme G" est de présentation finie et que I’extension G'— G" est
centrale, G’ est de présentation finie. On vérifie de plus que les groupes
H,(G'; A) et Hy(G'; A) sont nuls et le lemme est démontré.

3.6. Lecas n=4

Soient x un élément de H (X, A; A) et x' un relevé de x dans H,(X', A': A) =
m3(X', A)® A. 1l existe une variété différentiable compacte W' stablement
parallelisée de dimension 4 et une application f':(W',o0W’)— (X', A’) qui in-
duise Ax’, A étant une unité de A.

On effectue alors des chirurgies d’indice 1 sur W' pour rendre dW' connexe.
On utilise ensuite le Théoréme 2.1 (démontré dans ce cas) pour faire des
chirurgies sur 9W'’ avec des A-anses de dimension 4 et d’indice 2 de fagon a tuer
tout H;(oW'; A).

On peut donc, quitte a faire ces chirurgies, supposer que dW' (que ’on écrira
V) a le type de A-homologie de S°. On peut également, quitte a faire sur W’ des
chirurgies d’indice 1, supposer que W' est connexe.

D’autre part, d’apres le Lemme 3.5 il existe un groupe de présentation finie G
tel que H,(G; A) = H»(G; A)=0 et une factorisation de I’application: m,(W')—
71(X’) a travers G. On effectue alors sur W' des chirurgies d’indice 1 et 2 et 'on
obtient une variété différentiable compacte W" stablement parallelisée de bord V
et de groupe fondamental G et un diagramme commutatif:

VL—-—) W”

il

Al— X'

On utilise le Théoréme 1.2 cas iii) pour la paire (X', W”), et 'on obtient des
variétés différentiables compactes W, stablement parallelisées et A-acycliques et
des applications (f;, g):(W,0W))— (X', W") représentant une base de
H3(X', W"; A)= H,(W"; A) qui, par dualité de Poincaré, est un A-module libre.

Choisissons, pour tout i, une boule B; de dimension 2 dans d W,, et soit N; un
voisinage régulier de B; dans W;. On désignera par W/ I’adherence de W;—N.. La
variété W, est la somme connexe sur le bord de N; et de Wi.

Quitte a déformer les applications (f;, g:), on supposera que les restrictions de
g a WiNoW, sont des plongements a images disjointes dans I'intérieur de W".

On effectue alors des “chfrurgies” sur W" a I'aide des boules homologiques
W! de la fagon suivante:

On épaissit (f,, g) en (fi, g}): (W;xB?, aW;xB? — (X', W’) de fagon que les
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restrictions de g/ a (W;NaW,) x B? soient des plongements 4 images disjointes, et
I’'on pose:

W= (W= gll(WiNaW)x B* DU (a(Wix B*)—(WiN3aW) x B”).

Cette variété W" est stablement parall¢lisée de bord V et s’envoie dans X' par
une application f” qui prolonge f'. De plus H;(W"; A) est nul et les applications
(fi, &) induisent des diagrammes:

aNi > Ni

L

WHI __77;__) XI

donnant une base de H3(X', W"; A)= Hy(W"; A).
Le complexe W cherché est alors 'union de W" et des cellules N,.

3.7. Le cas n=5

Soit x’ un relevé de x € Hs(X, A; A) dans Hs(X', A"; A)=w(X', A)® A. Le
bord de x' appartenant i mi(A’) est défini, 3 une unité de A prés, par une
application f': V'— A’ ou V' est une variété différentiable compacte sans bord
stablement parallelisée de dimension 4.

On procede alors comme dans 3.6 et ’'on obtient une variété différentiable
stablement paralleélisée V" et une application f”: V" — A’ telles que:

1) Ho(V"; A)=Hy(V"; A)=0

2) (V", f") est cobordante a (V', f)

3) l'application m3(A’, V")® A — H3(A', V"; A) est surjective.

On choisit des applications (a;, B8;):(B>, §°) = (A’, V") induisant une base de
H;3(A', V"; A)= H,(V"; A) et 'on désigne par V l'union de V" et des cellules
attachées par B;. Le complexe V est ainsi construit et s’envoie par g dans A’.

Pour construire W, on va procéder ainsi:

Comme 73 X)®A=7w3® A est nul, V" est le bord d’une variété
différentiable W' stablement parallelisée et ’on a un diagramme commutatif:

Vﬂl ( WI

ok

A'— X'

On effectue alors des chirurgies d’indice 1 pour rendre W’ connexe puis on
utilise le Théoréme 2.1 avec n=2 et n=3 pour faire des chirurgies avec des
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A-anses d’indice 2 et 3 de fagon a tuer H;(W’, A) et H(W',aW'; A) par la méthode
de [8]. On vérifie, aprés ces chirurgies, que Hy(W', A) et Hs(W’; A) sont nuls et
que H3(W’'; A) est un A-module libre. On en déduit que le complexe W"” =
VUv» W' ale type de A-homologie d’un bouquet de sphéres de dimension 3.

On utilise alors le Théoreme 1.2 pour n=4 pour trouver des paires de
complexes finis (W;, V) ayant le type de A-homologie de (B*, S°) et telles que W,
est de dimension 4 et V; est une variété différentiable stablement parallélisée, et
des diagrammes

Vi(“""Vi

I

Wn — Xr

induisant une base de H, (X', W"; A)= H3(W"; A).

Le complexe W cherché sera alors I'union de W” et des complexes W,. Pour
montrer le théoréme dans le cas n=35 il reste a montrer que (W, V) se plonge
dans une paire de variétés différentiables parallelisées de dimension respective-
ment 8 et 7, ce qui est clair, d’apres la construction de W.

3.8. Lecas n=6

Le Théoreme 1.2 se montre maintenant aisément par récurrence dans le cas
n=6.

En effet, ’élément xe H,(X, A; A)=m3(X', A)® A est représenté, i une
unité pres, par une application f:(W',aW’)— (X', A'), W' étant une variété
différentiable stablement parallelisée.

On utilise alors le Théoréme 2.2 pour tuer les groupes H;(0W'; A) [1]. Sin—1
est impair, il n’y a pas d’obstruction. Si n—1 est divisible par 4, la forme
quadratique de dW’ est hyperbolique et si n+ 1 est divisible par 4, I'invariant de
Arf de W’ est nul. En effet 9W’ borde une variété stablement parallélisée.

Dans tous les cas, aprés chirurgie, dW’ a le type de A-homologie de S$" .

Soit W’ la variété W’ munie d’une trivialisation opposée. On désigne par W"
la somme connexe sur le bord de W’ et de W’ et par f” I'application de (W", 9W")
dans (X', A') égale a f' sur W' et constante sur W'.

L’application f” représente Ax, A étant une unité de A, V=0W" a le type de
A-homologie de S™77, et, si n est pair, la forme quadratique est hyperbolique ou
I'invariant de Arf est nul. On utilise alors le Théoréme 2.1 et 'on tue par
chirurgie toute ’homologie de W", ce qui termine la démonstration du Théoréme
1.2 ainsi que celle du Théoréme 2.1.
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§4. Démonstration des Théoremes 1.4 et 1.5
4.1. Démonstration du Théoréme 1.4

Soient X le revétement de X de groupe fondamental N, et G le groupe
7#(X)/N. Le complexe singulier Cx(X)® A est un A[G]-module différentiel
gradué libre.

LEMME 4.1. Le complexe Cx(X)® A a le type d’homotopie d’un complexe:
0=Co—Cie"-+ <« (C,«0.
ou les C; sont des A[ G]-modules projectifs de type fini.

Démonstration. Soit [[, A[G] un produit d’exemplaires de A[G]. On a le
diagramme

H(x;[1A[G) = [l Hi(X;A[G)
H'(x; [[AlG) & [IHL(X; ALG).

Comme D, D' et u sont des isomorphismes, A est un isomorphisme et par
suite [2], C£(X)® A a le type de A-homologie d’un complexe:

0—Cie<Cie--

ou les Cj sont des A[G]-modules libres de type fini.

D’autre part H'(X; M) est nul pour tout A[G]-module M et pour tout i > n.
On en déduit que C,/C,., est projectif et que Cx(X)® A a le type d’homotopie
du complexe:

0—Che "« Cp1 < Ch/Criy 0.
Le lemme est donc démontré.

On posera alors:

oo(X) = ), (~1)[Cle RKo(A[G)).
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Il est clair que oo(X) est bien défini et doit étre nul si f est normalement
cobordante a une équivalence de A[G]-homologie.

On suppose maintenant que oo(X) est nul.

Quitte a faire sur V des chirurgies d’indice 1, on peut supposer que V est
connexe et que I'application. m;(V)— G est surjective.

Le noyau de I’application: 7;(V) — G est ’enveloppe normale d’un groupe de
type fini quotient d’un groupe libre de type fini L. Comme N est localement
A -parfait, ’application de L dans N se factorise par un groupe de présentation
finie I' A-parfait.

Soit 7 la somme amalgamée I" *, 7, V. L’application de 7(V) dans =(X) se
factorise par 7. De plus 7 est de présentation finie et ’enveloppe normale de I’
dans 7 est le noyau de # — G. Ce noyau est donc localement A-parfait.

On fait ensuite sur V des chirurgies d’indice 1 et 2 pour que (V) devienne
égal a .

Ensuite on procéde comme dans [9] en remplagant les chirurgies par des
chirurgies homologiques avec des A-anses, ce qui est possible d’apres le
Théoréme 2.1. Le seul probleme est de vérifier qu’aprés chaque chirurgie
homologique le noyau de I’application 7(V)— G reste localement A-parfait ce
qui résulte du lemme:

LEMME. Soit un diagramme de groupes de présentation finie:

1

1
"

—

tel que " soit A-parfait et le noyau de w'— G localement A-parfait.
Alors le noyau de ' * . w"— G est localement A-parfait.

Démonstration. Comme le noyau de #'— G est localement A-parfait et
enveloppe normale d’un groupe de type fini, il existe un sous-groupe de type fini
A-parfait I de 7' dont ’enveloppe normale est le noyau de I’application 7' — G
et qui contient 'image de .

Le groupe I' * . 7" est un groupe de type fini A-parfait dont I’enveloppe
normale dans 7' *, 7" est le noyau de =’ *,. 7" — G.

Ce noyau est donc localement A -parfait.

On applique alors les méthodes de [9] pour tuer H;(X, V; A[G]) par des
chirurgies homologiques. En dimension paire il n’y a aucun probleme et o(f) est
défini par la forme intersection dans A[G] et la forme quadratique construite en
2.1 a).
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Si n est égal a 2k +1 il faut juste “plonger’ la boule B" dans X au sens des
espaces a dualité de Poincaré, ce qui résulte du lemme ci-dessous, et o(f) est
définie par une isométrie de ’espace hyperbolique standard comme dans [9].

LEMME. Si n est égal a 2k+1, si le noyau de I’application mV— G est
localement A-parfait et si Hi(X, V; A[G)) est nul pour i <k, I’application f: V— X
se factorise a travers un complexe fini K de dimension n, n’ayant qu’une cellule de
dimension n et ayant méme A[GJ-homologie que X.

Démonstration. Par dualité de Poincaré, H;(X, V; A[G]) est nul pour i# k +1,
k+2. On attache alors a V des cellules homologiques données par le Théoréme
1.2, en dimension k+1 et k+2, et 'on obtient un complexe K qui vérifie le
lemme.

4.2. Démonstration du Théoréme 1.5

Ce théoréme est démontré par Hausmann lorsque ,(K) est de type (FP) en
utilisant les résultats de [6].

Le groupe C,(K) est ’ensemble des variétés PL orientées V de dimension n
contenant K avec méme groupe fondamental et ayant le type d’homologie de S",
modulo Hg-cobordisme induisant des isomorphismes sur les groupes fondamen-
taux et contenant KxI; C,(K) est un groupe pour la somme connexe sur un
voisinage de K.

L’application canonique ¢ : C,(K)— m,(B(m(K))") est définic de la fagon
suivante:

Soit V> K une variété de C,(K). L’application: (V)= m;(K) induit une
application de V dans B(m(K)) = K(m;(K), 1). En appliquant I'opération + de
Quillen on déduit une application de S" dans B(w(K))" d’ou un élément de
7 (B(m1(K))").

a) Surjectivité de ¢. Désignons par = le groupe m,(K), et soit x un élément de
m.(B7") représenté par une application de S" dans Bw". Désignons par X le
produit fibré homotopique de S™ et de Bw au dessus de Bw*. Comme [K, B7"]
est nul par obstruction, I’application K — B# se factorise a travers X par une
application g. Il suffit alors de factoriser g a travers une variété PL V de fagon que
I’on ait:

Hyx(V) = Hy(X)
m(V)= 7= m(X)
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Désignons par V; une variété contenant K et représentant ’élément neutre de
C.(K); Vj est le bord d’une variété W, qui a le type d’homotopie de K. On a
donc une application f, de V, dans X induisant un isomorphisme sur les ;.

D’autre part, si CX est le cone de X, la paire (CX, X) vérifie les hypothéses du
Théoréme 1.2 pour n+1 (=7) avec A =Z, il existe donc une variété acyclique W
et une application f de (W, aW) dans (CX, X) telle que fs[ W] est le générateur
canonique de H,.(CX, X)=H,(X).

On définit alors V' comme la somme connexe de V, et aW; V' est une variété
stablement parallélisée ayant le type d’homologie de S”, qui s’envoie par f' dans
X et f[V'] est le générateur canonique de H,(X).

De plus m,(V')— o est surjectif, car V' contient K.

Comme 7 est de présentation finie, le noyau de (V') = & est engendré par
un nombre finit d’éléments. On peut alors faire des chirurgies d’indice 2 sur V' et
obtenir une variété V" stablement parallelisée qui contient K, tel que: 7 (V") =
w, et qui s’envoie dans X.

D’autre part, on a la suite exacte:

Hy(X, V", Z[7]) = Hs(X, V") Tor™ (Hx(X, V"; Z[7]), Z) — 0.

Comme H,(X, V";Z[w]) = m,(X, V") est un quotient de w,(X)= Hs(w) sur
lequel agit 7 trivialement, Tor?™ (m,(X, V"), Z) = H,(mr; (X, V")) = 0.

On en déduit que m3(X, V") — H;(X, V") est surjectif, et, comme Hs(X, V")
est libre, on peut faire des chirurgies d’indice 3 sur V" pour tuer H,(V"). On
obtient alors une variété V ayant le type d’homologie de S" qui factorise
l’application g: K — X, telle que 'image de [ V] soit le générateur canonique de
H,(X) et telle que: m(K)=m(V)=m.

On vérifie alors aisément que cette variété donne x € 7, (Bw") par I'applica-
tion ¢, laquelle est surjective.

b) Injectivité de ¢. Soit V une variété PL orientée ayant le type d’homologie
de S" contenant K et représentant un élément de C,(K) annulé par ¢.

Si on désigne par F la fibre homotopique de Bw— Bw", I'application
V — B7 est homotope a zéro dans Bw", et se factorise par f: V— F.

Comme V est bord d’une variété acyclique, V posséde une structure de
variété différentiable stablement parallélisée et définit un élément de my(F).
Comme my(F) est égal & m,, V est bord d’une variété différentiable stablement
parallelisée W qui s’envoie dans F.

On fait ensuite sur W des chirurgies d’indice 2 pour tuer le noyau de
m1(W)— 7. On utilise ensuite le Théoréme 2.1 pour tuer toute homologie de
(F, W) par des chirurgies homologiques, quitte a faire la somme connexe sur le
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bord, de W et d’une variété stablement parallelisée dont le bord est une sphere
d’homotopie, si la signature ou I'invariant de Arf de W n’est pas nul. On obtient
alors une variété acyclique stablement parallelisée W', de bord V et une applica-
tion g: W' — F qui prolonge f.

On procéde alors comme au a) et ’on tue le noyau de m,(W'’) — & par des
chirurgies d’indices 2 et 3 (a ceci prés qu’il faut remplacer X et V' par F et W').
On obtient alors une variété W” acyclique de bord V tel que m1(K)= m;(V) soit
isomorphe a 7(W"). Il en résulte que V est trivial dans C,(K) et ¢ est injective.

§5. Sur les groupes localement A -parfaits

Soit G un groupe. On désignera par P,(G) 'union des sous-groupes de type
fini de G A-parfaits. On a le lemme suivant:

LEMME 5.1. P,(G) est un sous-groupe de G stable par tout automorphisme.
De plus P,(G) est le plus grand sous-groupe localement A-parfait de G.

La démonstration est évidente.

COROLLAIRE 5.2. Un groupe G est localement A-parfait si et seulement si:
G =P,G.

Vérifier si un groupe est localement A-parfait n’est pas toujours facile. Voici
trois critéres pour étudier ce probléeme:

PROPOSITION 5.3. Soit N un sous-groupe de G, enveloppe normale d’un
nombre fini d’éléments. Alors N est localement A-parfait si et seulement si N est
I’enveloppe normale d’un groupe de type fini A-parfait.

Démonstration. Le groupe N est I’enveloppe normale d’éléments x; de G.

Si N est localement A-parfait, les x; sont contenus dans un sous-groupe I' de
type fini de N, A-parfait, et N est ’enveloppe normale de I

Si N est ’enveloppe normale d’un sous-groupe I' de type fini de G et
A-parfait, on a:

I'c Po,(N) = N =P,(N)

et N est localement A-parfait.
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. PROPOSITION 5.4. Soit
1-G—->G"->G—1

une extension de groupes. Alors si G et G' sont localement A -parfaits, G" est locale-
ment A -parfait.

Démonstration. Soit xoe G". Comme G est localement A-parfait, il existe
X1 * x, € G" tels que le sous-groupe I'” de G" engendré par les x; se projette sur
un sous-groupe de type fini de G A-parfait.

Il existe alors des éléments co,...,c, €[, I'"] et une unité A de A tels que
xic;! appartienne 2 G’ pour tout i.

Comme G’ est localement A-parfait, les éléments x;c; ' de G’ sont contenus
dans un sous-groupe I'" de G’ de type fini et A-parfait, et le groupe engendré par
I'" et les x; est de type fini et A-parfait. On en déduit que P,(G") contient x, et
par conséquent est égal a G”, ce qui signifie que G” est localement A-parfait.

PROPOSITION 5.5. Soit
0> M->-G' -G—-1

une extension centrale de groupes.
Alors si G' est A-parfait et G localement A-parfait, G' est localement A-parfait.

Démonstration. Soit I' un sous-groupe A-parfait de type fini de G. Choisissons
un sous-groupe I de type fini de G’ qui se surjecte sur I, et désignons par I le
noyau de lapplication: I — H;(I"'; A).

On vérifie que I se surjecte sur I' et I’on choisit un sous-groupe I de type
fini de I'” qui se surjecte sur I. On désigne par M’ (resp. M", M") les groupes
MNT' (resp. MNT", MNOI™).

Le groupe M" ® A est I'image de H,(I'; A) dans M' @ A et par suite M" @ A
est égal 3 M"® A. On en déduit que l'application Hy(I'; A)—> M" Q@ A est
surjective et I'"” est A-parfait. Comme I est de type fini, I"” est contenu dans
P,(G'). 1l en résulte que I'image de P,(G') dans G’ contient I', et comme cela a
lieu pour tout I, P,(G’) se surjecte sur G.

On en déduit que G'/P,(G’) est un quotient de M et est commutatif Comme
G’ est A-parfait, G'/P,(G’) est A-parfait et comme G'/P,(G’) est commutatif,
G'/P5(G’) est localement A-parfait.

D’aprés la Proposition 5.4, G' est localement A-parfait et la proposition est
démontrée.
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