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Comment. Math. Helvetici 52 (1977) 393-413 Birkhâuser Verlag, Basel

Un théorème de Hurewicz homologique

Pierre Vogel

§1. Introduction

Les outils essentiels de la chirurgie sont le théorème de Hurewicz, la classification

des immersions et le théorème de plongement de Whitney. Si Ton veut
cependant obtenir, par chirurgie, des équivalences d'homologie, ces moyens sont
parfois insuffisants. Ainsi, dans [4], si /: V—»X est une application normale de

degré 1 d'une variété V dans un espace X à dualité de Poincaré homologique, on
peut déterminer l'obstruction cr(f) pour trouver une équivalence d'homologie
normalement cobortante à /, mais la méthode utilisée ne marche que si X est à

squelettes finis, du moins jusqu'en dimension moitié.
On se propose ici de montrer une généralisation du théorème de Hurewicz

permettant de faire la chirurgie homologique dans des conditions plus larges. En
fait, on montre que, sous certaines conditions, tout élément du premier groupe
d'homologie non nul Hn(X, A) d'une paire d'espaces non nécessairement simplement

connexes est obtenu par une application f:(W, V)-» (X, A), où (W, V) est

une paire de variétés différentiables stablement parallèlisées homo-
logiquement équivalente à (Bn, S""1).

Plus précisément, on a ce résultat (Théorème 1.2) pour n^6 (pour rc«s5, W
n'est plus nécessairement une variété) et si 7Ti(X) et tti(A) sont localement

A-parfaits au sens suivant:

DEFINITION 1.1. Soient A un anneau et G un groupe. On dira que G est

localement A-parfait si tout élément de G est contenu dans un sous groupe G' de

G de type fini A-parfait (i.e. tel que H1(G\A) Q) ou, ce qui est équivalent, si

tout sous-groupe de type fini de G est contenu dans un sous-groupe de G de type
fini A-parfait.

THEOREME 1.2. Soient (X, A) une paire d'espaces topologiques connexes, A
un sous-anneau unitaire de Q et n un entier ^2, tels que tous les groupes

Ce travail de recherche a été subventionné en partie par le programme de Recherche Topologie
S.E.G.E.R.P. 59 de l'Université de Nantes.

393



394 P VOGEL

H,(X, A; A) soient nuls pour i<n et tels que tti(X) (resp. tti(X) et rr^A) si n^3)
soit localement A-parfait.

Alors, pour tout x € Hn(X, A; A) il existe un CW-complexe fini W A-acyclique
de dimension n, un sous-complexe V de W de dimension n — 1 ayant le type de

A-homologie de Sn~\ et une application continue /:(W, V)—»(X, A), te//e qwe x
soit l'image par /* d'un générateur de Hn(W, V; A), et où Von a de plus:

a) W est une variété différentiable stablement parallèlisée de bord V dans les cas
suivants:
i) n^6
ii) n 2, Vimage de Vapplication: tti(A)—» tti(X) est A-parfaite et l'application
H2(tt1(A); A)-* H2(7Ti(X); A) es* surjective
iii) n 3 ef x donne zéro par Vapplication composée:

H3(X, A ; A) -* H2(A ; A) -> H2(in(A); A)

b) si n 4, W esf l'union d'une variété différentiable de dimension 4 stablement

parallèlisée de bord V et de cellules de dimension 3

c) si n 5, V est l'union d'une variété différentiable de dimension 4 stablement

parallèlisée et de cellules de dimension 3; et il existe un plongement de (W, V) dans

une paire (W, V) de variétés différentiables parallèlisées avec:

V'<=.dW' dimW 8 dimV' 7.

Remarque 1.3. Si n =4 ou 5, la paire (W, V) n'est a priori pas une paire de

variétés, mais il est possible que Ton puisse toujours choisir (W, V) comme paire
de variétés différentiables stablement parallèlisées dans ce cas. Ceci est une
question ouverte qui se ramène au cas n 4. On peut en effet facilement montrer
que si cette question avait une réponse affirmative dans le cas n 4, il en serait de
même dans le cas n 5.

Du Théorème 1.2, on peut tirer un certain nombre de conséquences.
Par exemple, comme il est dit plus haut, on peut effectuer des chirurgies sur

une application normale d'une variété dans un complexe non nécessairement fini.
Plus précisément, on a:

THEOREME 1.4. Soient A un sous-anneau unitaire de Q, n un entier ^ 5, X
un espace topologique, N un sous-groupe normal de tti(X) localement A-parfait et

w : 7Ti(X)/N-> ±1 une classe de Stiefel-Whitney sur X. Supposons que X possède
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une dualité en A[7Ti(X)/N]-homologie définie par un élément [X]eHn(X; A) et

que tti(X)/N est de présentation finie.
Soient, d'autre part, V une variété différentiable, PL ou Top de dimension n, Ç

un {micro-) fibre (stable) sur X et f une application fibrée du fibre normal de V dans
£ de degré 1.

Alors f est normalement cobordante à une équivalence en A[tti(X)/N]-
homologie si et seulement si deux invariants, ao(X)eKo(A[7rn(X)/N]) et cri(/),
défini lorsque ao(X) 0 dans Ln(A[7Ti(X)/N], vv), s'annulent.

Dans une autre direction on montre également le théorème suivant:

THEOREME 1.5. Soit K un complexe fini acyclique de dimension k et n un
entier^2k + 2. Soit Cn(K) le groupe de Hausmann [5] des sphères d'homologie
PL orientées contenant K et ayant même groupe fondamental que K. Alors
l'application canonique de Cn(K) dans 7rn(B7Ti(K)+) est un isomorphisme.

D'autres conséquences du Théorème 1.2 ont été démontrées dans [7]. En fait
la technique de chirurgie homologique utilisée ii) généralise celle de [6] et les

résultats de [6] peuvent être déduits du Théorème 1.2.

Le Théorème 1.2 sera montré au §3 en considérant dans l'ordre les cas ii),
n 2, iii), n 3, n 4, n 5, et par récurrence le cas n 2*6. On aura besoin pour
cela de certains résultats de chirurgie démontrés au §2.

Les Théorèmes 1.4 et 1.5 sont démontrés au §4 et le §5 est consacré à une
étude des groupes localement A-parfaits.

§2. Chirurgie homologique

Soit A un sous-anneau unitaire de Q. On appellera A-anse d'indice k et de

dimension n toute paire (H, h) de variétés différentiables compactes stablement

parallèlisées telles que:
-hadH
- dim H= n dim h n -1
-H*(H;A) 0

-h se collapse sur un complexe de dimension k-1.
Par exemple si V est une variété différentiable compacte stablement

parallèlisée de dimension n et A-acyclique, (VxBp,dVxBp) est une A-anse

d'indice n et de dimension n + p.
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THEOREME 2.1. Soient /:M-»X une application continue d'une variété
différentiable, PL ou Top de dimension m dans un espace topologique, n un
entier 2*2, a : tti(X)—» G un épimorphisme de groupe tel que Ker a soit localement

A-parfait, ainsi que Ker (ttiM-» G) si n ^ 3. On suppose que Ht(X, M; A[G]) est

nul pour tout i < n.

Soient d'autre part un fibre vectoriel, PL ou Top £ sur X tel que w(£) soit trivial
sur Ker a et une application fibrée <p du fibre normal stable de M dans f qui revêt f.

Alors on a les deux propriétés suivantes:
a) si m 2(n-l), le A[G]-module Hn(X, M; A[G]) est muni d'une forme

quadratique q à valeur dans A[G]/{f + (-l)nF} associée à la forme bilinéaire à

valeur dans A[G] déduite, via le bord: Hn(X, M; A[G])-+Hn^iM; A[G]), de la
forme intersection sur Hn_i(M; A[G])

b) soit x e Hn(X, M; A[G]). Alors, dans les cas m > 2(n -1) ou m 2(n -1) ^
6 et q(x) Q il existe une A-anse (H, h) d'indice n et de dimension m + 1 et un
diagramme commutatif

hH
1 I

M-pX
revêtu par un diagramme fibre:

I

tel que Vapplication h ~> M soit un plongement, que l'application vh —» vM soit

l'application fibrée induite par ce plongement, que tti(H) s'annule dans G et que
(1) induise kxeHn(X, M; A[G]), A étant une unité de A.

Le Théorème 2.1 est l'outil essentiel de la chirurgie homologique utilisée dans

cet article. La démonstration est enchevêtrée avec la démonstration du Théorème
1.2. On procédera donc avec précaution.

2.2. Démonstration de 2.1 a)

Cette démonstration est directe et n'utilise pas 1.2.

Soit B l'espace BO, BPL ou BTop suivant les cas. Le fibre £ induit une

application g:X-+B. Soit X-^—»B'-»B un scindage de cette application, B'
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étant un espace dont le groupe fondamental est G et tel que g' induise a sur les

tti. On peut par exemple construire B' en ajoutant des cellules de dimension 2 à

X.
Soient X' et M' les fibres homotopiques de gf:X-*B' et de g'°/:M->B'.

On vérifie les formules suivantes:

H,(X, M; A[G]) H,(X', M'; A) irf(X\ M') ® A pour tout î ^ n.

Si x' est un élément de 7Tn(X', M') représenté par un diagramme commutatif :

dW (—? W
1

M' > X'

où W est une variété difïérentiable compacte stablement parallèlisée de dimension

n, l'application dW-+ M' induit une application dW-+ M dont la composée
dW-+B est canoniquement homotope à zéro. Cette application dW-*M est

donc revêtue par une application fibrée et définit une classe d'homotopie régulière
d'immersion dont le nombre de points doubles évalué dans Z[7r1(B')]/{r + (-l)nF}
sera noté q'(x'). L'application q' ainsi construite est une forme quadratique
associée à la forme intersection sur TTn-i(M) et induit, après tensorisation par A,
la forme quadratique cherchée.

On vérifie aisément que cette forme quadratique est indépendante du choix de

B'.

2.3. Démonstration de 2.1 b)

Pour démontrer 2.1 b) pour un n donné, on utilisera le Théorème 1.2 pour ce

même n. Cela ne créera pas de problème logique puisque au §3, pour démontrer
le Théorème 1.2 pour un n donné, on n'utilisera 2.1 que pour des n strictement
inférieurs.

Procédons comme plus haut, en construisant B' de la façon suivante:
Soient X (resp. B) le revêtement de X (resp. B) de groupe fondamental Ker a

(resp. 0), XA (resp. BA) le A-localisé au sens de [3] de X (resp. B) et XA (resp.
BA) le quotient de XA (resp. BA) par l'action rendue libre de G (resp. Z/2).
Comme toutes ces constructions sont fonctorielles on obtient le diagramme
commutatif suivant:

X —*-> B

i î

Xa eA
* BA
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Soit alors B' le produit fibre homotopique de B et de XA au dessus de BA.

L'application g se factorise à travers B' et 7Ti(B') est égal à G.

On construit, comme plus haut, les espaces M' et X', et l'on vérifie que X' est

A-acyclique, que tti(X') est une extension centrale de Kera et que tti(M') est

une extension centrale de Ker (tti(M) -» G).
On en déduit (5.5) que tt\(X') (resp. tti(M') si n ^ 3) est localement A-parfait.

La paire (X', M') vérifie donc les hypothèses du Théorème 1.2. Il existe alors une
paire (W, V) de CW-complexes finis et un diagramme commutatif

Ve—> W
(2)

M' >X'

induisant \x e Hn(X', M'; A) « Hn(X, M; A[G]), A étant une unité de A.

1) Le cas m > 2(n -1)
Comme W est un complexe fini de dimension n ^ (m +1)/2, on peut épaissir la

paire (W, V) en une A-anse (H, h) de dimension m + 1 et d'indice n.

Le diagramme (2) induit alors un diagramme:

h<—> H
1 I W

M' >X'

revêtu par des applications fibrées. L'application h —» M' définit alors une classe

d'homotopie régulière d'immersion qui contient un plongement car h se collapse
en V de dimension strictement inférieure à n/2. On en déduit alors 2.1 b).

2) Le cas m
Dans ce cas, n est supérieur ou égal à 4 et V est une variété différentiable

stablement parallèlisée pour n#5. Si n est égal à 5, V est l'union d'une variété
différentiable stablement parallèlisée V et de cellule de dimension 3. Lorsque n
est différent de 5 on posera V V.

Comme plus haut l'application de V dans M'induit par restriction une classe

d'homotopie régulière d'immersion de V dans M dont le nombre de point double
est un élément a du groupe

qui donne q(À*) 0 dans A[G]/{f + (-l)nF}.
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Comme la torsion de F n'a que des éléments d'ordre 2, on peut, quitte à

remplacer W par la somme connexe de W et de W sur le "bord" de façon à ce

que le diagramme (2) induise 2\x si \ appartient à A, supposer que a donne zéro
dans le groupe Z[G]/{t + (-l)nï}, et par conséquent dans un groupe
Z[GVi(M)/G']/{f + (-l)nF} où G' est un sous-groupe de Ker (7rn(M)-> G) de

type fini contenant l'image de tti(V').
Soit G" un sous-groupe de tti(M') de type fini qui se surjecte sur G'. Comme

tti(M') est localement A-parfait, quitte à augmenter G", on peut supposer que G"
est A-parfait.

Soient xu xp des générateurs de G". Comme G" est A-parfait, il existe un
entier À inversible dans A tel que xf s'exprime en produits de commutateurs cx en
les x. Soit alors G'" le groupe de présentation {xt | xf c,}. Le groupe G"' est le

groupe fondamental d'un complexe fini A-acyclique K de dimension 2 et se

surjecte sur G".

Après épaississement de K, on obtient une variété différentiable compacte Kf
stablement parallèlisée et A acyclique de dimension n 5* 4 qui s'envoie par une
application a dans M'.

Soient alors WA la somme connexe de W et de K' (Cette somme connexe sera
effectuée sur l'intérieur de V dans V lorsque n est égal à 5).

Lorsque n est égal à 5, Vx est l'union de V[= V'#dKf et de cellules de

dimension 3.

Le diagramme (2) et l'application a induisent un diagramme:

• * J

I

M' X'

et l'application Vx —> M' induit une classe d'homotopie régulière d'immersion de

Vi dans M (resp. V[ dans M si n 5) dont le nombre de point double est nul par
construction.

Si l'on épaissit maintenant (Wu Vx) en une A-anse d'indice n et de dimension

m +1, ce qui est possible vu les propriétés de W, V), on obtient un diagramme:

h<—y H
i i

M' > X'

revêtu par des applications fibrées. L'application h -> M' induit une classe

d'homotopie régulière d'immersion de h dans M qui par construction contient un

plongement pour n#5. Si n est égal à 5 l'immersion de h dans M est
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régulièrement homotope à une immersion injective sur Vi, et par position
générale, cette immersion est régulièrement homotope à un plongement; ce qui
achève de démontrer le théorème.

§3. Démonstration du Théorème 1.2

3.1. Le cas ii)

On suppose ici que n est égal à 2, que l'image de l'application: tti(A)—»
tti(X) est A-parfaite et que l'application H2(tti(A); A)—> H2(tti(X); A) est sur-
jective.

LEMME 3.1. Soit X un espace topologique de groupe fondamental tt. Alors
Hx(X; A) est égal à Hi(tt; A) et on a la suite exacte:

tt2(X) ® A -» H2(X; A) -> H2(tt; A) -> 0.

Ce lemme, qui se démontre aisément en considérant la suite spectrale
d'homologie du fibre X—> K(tt, 1), permet d'obtenir le diagramme suivant, où G
est l'image de: tti(A)—

7T2(A) -» 7T2(X) -* 7T2(X,A) ~+ 7Ti(A) ~* G

H2(A;A) -+ H2(X;A) -+H2(X9A;A)-+H1(A'9A)->0
ï i

Comme l'application tti(A)-» Hx(A; Z) est surjective et que G est A-parfait,
on vérifie que, pour x appartenant à H2(X, A; A), il existe un entier À inversible
dans A et un élément y de tt2(X, A) tel que y donne kx dans

H2(XfA;A)/H2(X;A).
Il suffit alors de considérer le diagramme suivant, où les lignes sont exactes,

ainsi que les colonnes après tensorisation par A:

rr2(A) -*
i

H2(A;A) -h.

1T2(X)

4

H2(X; A)

-» "T2(X,A)

i
-* H2(X, A ; i

H2(in(A); A) -> H2(in(X); A)
1 i
0 0
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pour trouver un entier À' inversible dans A et un élément z de tt2(X,A) dont
l'image dans H2(X, A, A) est égale à ÀÀ'x, ce qui démontre le Théorème 1 2 dans
le cas n)

3 2 Construction de la paire (X', A')

Pour démontrer 1 2 dans les autres cas, on aura besoin d'une autre paire
d'espace (X', A') que l'on va construire de la façon suivante

Soit XA le A-localise de X au sens de [3] On désignera alors par X' (resp A')
la fibre homotopique de l'application X—> XA (resp A —» XA) La paire (X', A')
ainsi construite s'envoie par une application <p dans (X, A), et l'on a

LEMME 3 2 Vapplication <p induit un isomorphisme de Ht(X\ Af, A) sur
H,(X, A, A) pour tout i^n De plus X' est A-acychque et 7Ti(X') (resp tti(A') si
n ^ 3) est localement A-parfait

Démonstration Les deux premiers résultats se déduisent des suites spectrales
d'homologie des deux fibres (X, A)—> XA et X—» XA

Pour montrer que 77i(X') (ou tti(A') est localement A-parfait, il suffit de

remarquer que tti(X') (resp tti(A')) est extension centrale de 7ri(X) (resp

tti(A)) et d'utiliser (5 5)

3 3 Le cas n 2

On suppose maintenant que n est égal à 2, sans hypothèse supplémentaire
L'élément xeH2(XJA,A) se relève en x'eH2(X',AU) qui induit un

élément yeHx(A\A)
Soit V le cercle S1 et /' V—> A' une application telle que y soit l'image par /#

d'un générateur de Hi(V, A)
Comme tti(X') est localement A-parfait, on peut ajouter à V des cellules de

dimension 1 et obtenir un bouquet de cercles W et une application f[ W-> X'
qui prolonge f et telle que l'image de tti(W) soit A-parfaite

Or Xf est A-acychque et H2(7Ti(X'), A) est nul On peut alors utiliser le

Théorème 1 2 cas n) à la paire (X', W) et rajouter à W des cellules de dimension
2 pour obtenir un complexe fini A-acychque W et un prolongement f2 de /i
L'application g°f2 (W, V)—>(X, A) répond à la question et le théorème est

démontré dans le cas n 2

3 4 Le cas ni)

On suppose ici que n est égal à 3 et que x donne zéro dans H2(tti(A), A)
Comme H3(X, A, A) est égal à tt|(X, A)®A, il existe une variété
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différentiable compacte connexe stablement parallélisée W et une application
f':(W',dWf)-+(X9A) telle que x soit l'image par f d'un générateur de

H3(W',dWr; A). De plus, comme le bord de x appartient à tt2(A)® A, on peut,
quitte à changer de variété W, supposer que dW est la sphère S2.

De plus, l'application /' : W —» X vérifie toutes les hypothèses du Théorème
2.1 pour n 2 avec G 0 et l'application H2(X, W; A) -» Hi( W; A) est surjec-
tive.

Comme le Théorème 2.1 est démontré pour n 2, on peut faire les chirurgies
homologiques avec des A-anses de dimension 4 et d'indice 2 pour tuer n'importe
quel élément de Hi(W; A). On calque alors la démonstration de [8], [1] qui
marche dans ces dimensions, et Ton obtient, après chirurgie, une variété
différentiable compacte A-acyclique et stablement parallélisée W de bord V S2

et une application /:(W, V)-» (X, A) telle que x soit l'image par /# d'un
générateur de H3(W, V; A); et le Théorème 1.2 est démontré dans le cas iii).

3.5. Le cas n 3

L'élément xeH3(X,A;A) se relève en x'eH3(X\ A'; A) qui induit un
élément yeH2(A'; A).

Soient V une surface orientée compacte connexe sans bord et /': V—» A1 une

application telle que y soit l'image par /# d'un générateur de H2( V; A). La paire
(A', V) vérifie les hypothèses du Théorème 1.2 pour n 2 et l'application:
H2(A\ V; A)-» Hi(V; A) est surjective. Il existe donc des complexes finis Wt de

dimension 2 et des sous-complexes V, de dimension 1 ainsi que des diagrammes

i i
V ?A'

tels que Wl9 Vt) ait le type de A-homologie de (B2, S1) et que les V, induisent une
base de Hx{ V; A). Soit alors V la variété V à laquelle on a ajouté les "cellules"
W, le long des V,. Le complexe V est un complexe fini de dimension 2 qui a le

type de A-homologie de S2, et V s'envoie par une application /" dans A' de façon

que y soit l'image par /* d'un générateur de H2(V; A).

LEMME 3.5. Soit a:G-+ F un morphisme d'un groupe de présentation finie G
dans un groupe localement A-parfait F avec: H2(F; A) 0.

Alors a se factorise à travers un groupe de présentation finie G' tel que:
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Ce lemme sera démontré plus loin et va permettre de terminer la
démonstration du cas n 3.

En effet, comme X' est A-acyclique, d'après le Lemme 3.1, H2(tti(X'); A) est

nul. On en déduit, d'après le lemme ci-dessus, l'existence d'un groupe de

présentation finie G' dont les deux premiers groupes de A-homologie sont nuls et
d'un diagramme commutatif:

G'

On attache alors des cellules de dimension 1 et 2 à V de façon à obtenir un
complexe fini W de dimension 2 dont le groupe fondamental est G' et une
extension f": W-» X' de /".

Comme le groupe H3(X', W; A) H2{W\ A) est un A-module libre de type
fini, on peut utiliser le Théorème 1.2, cas iii) pour attacher à W des 3-boules

d'homologie sur leur bord, et l'on obtient un complexe fini W de dimension 3

A-acyclique contenant V et une application f:(W, V)—> (X', A') qui prolonge f",
ce qui démontre le Théorème 1.2 dans le cas n 3.

Démonstration du Lemme 3.5. Comme G est de présentation finie, H2(G; A)
est un A-module de type fini, et comme H2(F; A) est nul, il existe un sous-groupe
de type fini G" de F contenant a(G) et tel que H2(G;A) s'annule dans

H2(G"; A).
Comme de plus F est localement A-parfait on peut supposer que G" est

A-parfait.
Soit {xi,..., xp | ri • • • rq 1} une présentation de G. En rajoutant des

générateurs et des relations à G, on obtient une présentation

{xi,..., xp,..., xn | ri • • • rq rq+i • • • 1} de G", et l'application standard

entre ces présentations est l'application a.
Comme H2(G;A) est de type fini et s'annule dans H2(G"\A) il existe un

entier m^q tel que H2(G;A) s'annule dans H2(G"r; A), G1" étant le groupe de

présentation {xu xn \ rx • • • rm 1}. Comme de plus Hi(G"; A) est nul, on
peut choisir m assez grand pour que Hi(G";; A) soit également nul.

Soit G'" l'extension centrale universelle de G1" par H2(Gf"; A) définie par
l'identité de Hom (H2(G'"; A); H2(Gf"; A)) H2(Gf", H2(Gf"; A)). Comme

H2(G;A) s'annule dans H2(G"f; A), il existe un diagramme commutatif:

G"'
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Soit G' un sous-groupe de G'" de type fini qui contient s (G) et qui se surjecte
sur G'". Comme G"' est de présentation finie et que l'extension G''—» G'" est

centrale, G' est de présentation finie. On vérifie de plus que les groupes
Hi(G'; A) et H2(G'; A) sont nuls et le lemme est démontré.

3.6. Le cas n 4

Soient x un élément de H4(X, A ; A) et xf un relevé de x dans H4(X', A':A)-
ttI(X\ A')® A. Il existe une variété différentiable compacte W stablement
parallèlisée de dimension 4 et une application f :(W,dW)-»(X',A') qui
induise kx\ À étant une unité de A.

On effectue alors des chirurgies d'indice 1 sur dW pour rendre dW connexe.
On utilise ensuite le Théorème 2.1 (démontré dans ce cas) pour faire des

chirurgies sur d W avec des A-anses de dimension 4 et d'indice 2 de façon à tuer
tout Hi(aW;A).

On peut donc, quitte à faire ces chirurgies, supposer que d W (que l'on écrira
V) a le type de A-homologie de S3. On peut également, quitte à faire sur W des

chirurgies d'indice 1, supposer que W est connexe.
D'autre part, d'après le Lemme 3.5 il existe un groupe de présentation finie G

tel que Ht(G; A) H2(G; A) 0 et une factorisation de l'application: 7Ti(W')—»

tti(X') à travers G. On effectue alors sur W des chirurgies d'indice 1 et 2 et l'on
obtient une variété différentiable compacte W" stablement parallèlisée de bord V
et de groupe fondamental G et un diagramme commutatif:

yc—> w"
'1 !-
A' > X'
On utilise le Théorème 1.2 cas iii) pour la paire (X', W"), et l'on obtient des

variétés différentiables compactes W, stablement parallèlisées et A-acycliques et
des applications (/„ &) : Wt, d W,) -» (X', W") représentant une base de

H3(X\ W"; A) H2(W"; A) qui, par dualité de Poincaré, est un A-module libre.
Choisissons, pour tout i, une boule B, de dimension 2 dans dW» et soit N, un

voisinage régulier de B, dans W,. On désignera par W! l'adhérence de Wl-Nl. La
variété Wt est la somme connexe sur le bord de N, et de W[.

Quitte à déformer les applications (/„ g,), on supposera que les restrictions de

g, à WÎHdW, sont des plongements à images disjointes dans l'intérieur de W".
On effectue alors des "chirurgies" sur W" à l'aide des boules homologiques

W[ de la façon suivante:
On épaissit (/„ g,) en (/;, g'l):(WIxB2,aWlxB2)-> (X\ W) de façon que les
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restrictions de g[ à (W[ndWt)xB2 soient des plongements à images disjointes, et
l'on pose:

w"'=(w"-U gîKWfndWOxB^u (aWxBVWnôWjxB2).

Cette variété W" est stablement parallèlisée de bord V et s'envoie dans X' par
une application /'" qui prolonge /'. De plus Ht( W"; A) est nul et les applications
(/„ g,) induisent des diagrammes:

dN/ > Nt

i i

donnant une base de H3(X\ W"; A)~H2(Wm; A).
Le complexe W cherché est alors l'union de W" et des cellules N,.

3.7. Le cas n 5

Soit x9 un relevé de x e H5(X, A; A) dans H5(X', A'; A)- tt?(X', A')® A. Le
bord de x' appartenant à nt(Af) est défini, à une unité de A près, par une
application /': V—» A' où V est une variété difïérentiable compacte sans bord
stablement parallèlisée de dimension 4.

On procède alors comme dans 3.6 et l'on obtient une variété difïérentiable
stablement parallèlisée V" et une application /'": V'"—» A' telles que:

1) Ho(V'";A) H1(Vw;A) 0

2) (V"\f") est cobordante à (V',f)
3) l'application 7r3(A', V'")® A -> H3(A', V'";A) est surjective.
On choisit des applications (a,, j8,):(B3, S2)—> (A', V") induisant une base de

H3(A\ V"; A) H2(V"; A) et l'on désigne par V l'union de V" et des cellules
attachées par /3,. Le complexe V est ainsi construit et s'envoie par g dans A'.

Pour construire W, on va procéder ainsi:
Comme ttS(X') ® A wî ® A est nul, V" est le bord d'une variété

difïérentiable W stablement parallèlisée et l'on a un diagramme commutatif :

A' > X'
On effectue alors des chirurgies d'indice 1 pour rendre W connexe puis on

utilise le Théorème 2.1 avec n 2 et n 3 pour faire des chirurgies avec des
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A-anses d'indice 2 et 3 de façon à tuer HX{W\ A) et H2(W, d W; A) par la méthode
de [8]. On vérifie, après ces chirurgies, que H*(W\ A) et H5(W; A) sont nuls et

que H3(W';A) est un A-module libre. On en déduit que le complexe W'"
VU v" W a le type de A-homologie d'un bouquet de sphères de dimension 3.

On utilise alors le Théorème 1.2 pour n 4 pour trouver des paires de

complexes finis (W,, V,) ayant le type de A-homologie de (B4, S3) et telles que Wt

est de dimension 4 et V, est une variété difïérentiable stablement parallèlisée, et
des diagrammes

V, c—> Wt

W" > X'

induisant une base de H4(X', W"; A) H3(W"; A).
Le complexe W cherché sera alors l'union de W" et des complexes Wt. Pour

montrer le théorème dans le cas n 5 il reste à montrer que (W, V) se plonge
dans une paire de variétés différentiables parallèlisées de dimension respectivement

8 et 7, ce qui est clair, d'après la construction de W.

3.8. Le cas n^6

Le Théorème 1.2 se montre maintenant aisément par récurrence dans le cas

En effet, l'élément *€Hn(X, A; A)«irJ(X', A')® A est représenté, à une
unité près, par une application f:(W',dW')->(X'9Ar), W étant une variété
différentiable stablement parallèlisée.

On utilise alors le Théorème 2.2 pour tuer les groupes Ht(d W; A) [1]. Si n -1
est impair, il n'y a pas d'obstruction. Si n-l est divisible par 4, la forme
quadratique de dW est hyperbolique et si n +1 est divisible par 4, l'invariant de

Arf de dWf est nul. En effet dW borde une variété stablement parallèlisée.
Dans tous les cas, après chirurgie, dW a le type de A-homologie de Sn~\
Soit W' la variété W munie d'une trivialisation opposée. On désigne par W"

la somme connexe sur le bord de W" et de W' et par f" l'application de (W", dW")
dans (X', A') égale à f sur W et constante sur W1.

L'application /" représente Ax, A étant une unité de A, V dW" a le type de

A-homologie de Sn~\ et, si n est pair, la forme quadratique est hyperbolique ou
l'invariant de Arf est nul. On utilise alors le Théorème 2.1 et l'on tue par
chirurgie toute l'homologie de W", ce qui termine la démonstration du Théorème
1.2 ainsi que celle du Théorème 2.1.
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§4. Démonstration des Théorèmes 1.4 et 1.5

4.1. Démonstration du Théorème 1.4

Soient X le revêtement de X de groupe fondamental N, et G le groupe
tti(X)/N. Le complexe singulier C*(X)®A est un A[G]-module différentiel
gradué libre.

LEMME 4.1. Le complexe C*(X)®A a le type d'homotopie d'un complexe:

0 <- Co «- Ci < <r- Cn «- 0.

où les Q sont des A[G]~ modules projectifs de type fini.

Démonstration. Soit FIa^[G] un produit d'exemplaires de A[G]. On a le

diagramme

-*- IlftCX; A[G])
a a

Hnw-\X;\\A[G]) -^ Unr

Comme D, D' et fi sont des isomorphismes, À est un isomorphisme et par
suite [2], Cj|c(X)(8) A a le type de A-homologie d'un complexe:

0 <- Ci «- C£ <

où les C[ sont des A[G]-modules libres de type fini.
D'autre part H'(X; M) est nul pour tout A[G]-module M et pour tout i > n.

On en déduit que C'n/Cn+1 est projectif et que C#(X)(g) A a le type d'homotopie
du complexe:

o <- a <— <- c;_i <- oc;+1 <- o.

Le lemme est donc démontré.

On posera alors:

<ro(X) £ (-l)l[CJe K0(A[G]).



408 P VOGEL

II est clair que o-0(X) est bien défini et doit être nul si / est normalement
cobordante à une équivalence de A[G]-homologie.

On suppose maintenant que cro(X) est nul.
Quitte à faire sur V des chirurgies d'indice 1, on peut supposer que V est

connexe et que l'application. 7Ti(V)-» G est surjective.
Le noyau de l'application: tti(V)-> G est l'enveloppe normale d'un groupe de

type fini quotient d'un groupe libre de type fini L. Comme N est localement
A-parfait, l'application de L dans N se factorise par un groupe de présentation
finie F A-parfait.

Soit tt la somme amalgamée F*lttiV. L'application de tti(V) dans ttx{X) se

factorise par tt. De plus tt est de présentation finie et l'enveloppe normale de F
dans tt est le noyau de tt-* G. Ce noyau est donc localement A-parfait.

On fait ensuite sur V des chirurgies d'indice 1 et 2 pour que tti(V) devienne

égal à m
Ensuite on procède comme dans [9] en remplaçant les chirurgies par des

chirurgies homologiques avec des A-anses, ce qui est possible d'après le

Théorème 2.1. Le seul problème est de vérifier qu'après chaque chirurgie
homologique le noyau de l'application tti(V)-> G reste localement A-parfait ce

qui résulte du lemme:

LEMME. Soit un diagramme de groupes de présentation finie:

TT TT

7T" -î— G

tel que tt" soit A-parfait et le noyau de tt1'-» G localement A-parfait.
Alors le noyau de tt' *7Ttt"-^ G est localement A-parfait.

Démonstration. Comme le noyau de 7r'-*G est localement A-parfait et

enveloppe normale d'un groupe de type fini, il existe un sous-groupe de type fini
A-parfait F de tt' dont l'enveloppe normale est le noyau de l'application tt'—» G
et qui contient l'image de tt.

Le groupe F*^tt" est un groupe de type fini A-parfait dont l'enveloppe
normale dans tt' ^^tt" est le noyau de tt' *7TTr"-+ G.

Ce noyau est donc localement A-parfait.
On applique alors les méthodes de [9] pour tuer Ht(X, V; A[G]) par des

chirurgies homologiques. En dimension paire il n'y a aucun problème et cr^f) est

défini par la forme intersection dans A [G] et la forme quadratique construite en
2.1 a).
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Si n est égal à 2fc + 1 il faut juste "plonger" la boule Bn dans X au sens des

espaces à dualité de Poincaré, ce qui résulte du lemme ci-dessous, et cr(f) est
définie par une isométrie de l'espace hyperbolique standard comme dans [9].

LEMME. Si n est égal à 2fc + 1, si le noyau de Vapplication ttiV-^G est

localement A-parfait et si H,(X, V; A [G]) est nul pour i ^ k, V application f : V-» X
se factorise à travers un complexe fini K de dimension n, n'ayant qu'une cellule de

dimension n et ayant même A[G]-homologie que X.

Démonstration. Par dualité de Poincaré, Ht(X, V; A[G]) est nul pour iV k +1,
Je+ 2. On attache alors à V des cellules homologiques données par le Théorème
1.2, en dimension k + 1 et fc + 2, et l'on obtient un complexe K qui vérifie le

lemme.

4.2. Démonstration du Théorème 1.5

Ce théorème est démontré par Hausmann lorsque tti(K) est de type (FP) en
utilisant les résultats de [6].

Le groupe Cn(K) est l'ensemble des variétés PL orientées V de dimension n

contenant K avec même groupe fondamental et ayant le type d'homologie de Sn,

modulo H*-cobordisme induisant des isomorphismes sur les groupes fondamentaux

et contenant Kxl; Cn(K) est un groupe pour la somme connexe sur un
voisinage de K.

L'application canonique cp : Cn(K)—» 7rn(B(7Ti(K))+) est définie de la façon
suivante:

Soit V=>X une variété de Cn(K). L'application: ttiCV)2^ tt^K) induit une

application de V dans B(tti(X)) K(tti(K), 1). En appliquant l'opération + de

Quillen on déduit une application de Sn dans jB(tti(K))+ d'où un élément de

a) Surjectivité de <p. Désignons par ir le groupe tti(K), et soit x un élément de

7rn(B7T+) représenté par une application de Sn dans Bir+. Désignons par X le

produit fibre homotopique de Sn et de Bit au dessus de Btt+. Comme [K, Btt+]
est nul par obstruction, l'application K -> Bit se factorise à travers X par une

application g. Il suffit alors de factoriser g à travers une variété PL V de façon que
l'on ait:

H*(V)-H*(X)
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Désignons par Vo une variété contenant K et représentant l'élément neutre de

Cn(K); Vo est le bord d'une variété Wo qui a le type d'homotopie de K. On a

donc une application f0 de Vo dans X induisant un isomorphisme sur les tti.
D'autre part, si CX est le cône de X, la paire (CX, X) vérifie les hypothèses du

Théorème 1.2 pour n +1 (^7) avec A Z, il existe donc une variété acyclique W
et une application / de W, d W) dans (CX, X) telle que /*[ W] est le générateur
canonique de Hn+1(CX, X) Hn(X).

On définit alors V comme la somme connexe de Vo et dW; V est une variété
stablement parallèlisée ayant le type d'homologie de Sn, qui s'envoie par /' dans

X et /'[V] est le générateur canonique de Hn(X).
De plus 7Ti(V')—>• ir est surjectif, car V contient K.
Comme tt est de présentation finie, le noyau de 7Ti(V)—» tt est engendré par

un nombre fink d'éléments. On peut alors faire des chirurgies d'indice 2 sur V et
obtenir une variété V" stablement parallèlisée qui contient K, tel que:
7r, et qui s'envoie dans X.

D'autre part, on a la suite exacte:

H3(X, V; Z[tt]) -» H3(X, V") -» Tor?M (H2(X, V; Z[ir]), Z) -> 0.

Comme H2(X, V"; Z[tt]) tt2(X, V") est un quotient de 7r2(X) H3(tt) sur

lequel agit ir trivialement, Torf7r] (tt2(X, V"), Z) H^tt; tt2(X, V")) 0.

On en déduit que tt3(X, V") -> H3(X, Vw) est surjectif, et, comme H3(X, V")
est libre, on peut faire des chirurgies d'indice 3 sur V" pour tuer H2(V"). On
obtient alors une variété V ayant le type d'homologie de Sn qui factorise

l'application g:K—>X, telle que l'image de [V] soit le générateur canonique de

Hn(X) et telle que: 7r1(X) 7r1(V) tt.
On vérifie alors aisémeût que cette variété donne xe7rn(B7r+) par l'application

<p, laquelle est surjective.

b) Injectivité de (p. Soit V une variété PL orientée ayant le type d'homologie
de Sn contenant K et représentant un élément de Cn(K) annulé par <p.

Si l'on désigne par F la fibre homotopique de Bit —> Btt+, l'application
V—» Btt est homotope à zéro dans Btt+, et se factorise par /: V—» F.

Comme V est bord d'une variété acyclique, V possède une structure de

variété différentiable stablement parallèlisée et définit un élément de Trn(F).

Comme 7Tn(F) est égal à it^, V est bord d'une variété différentiable stablement

parallèlisée W qui s'envoie dans F.

On fait ensuite sur W des chirurgies d'indice 2 pour tuer le noyau de

7Ti(W)-*7r. On utilise ensuite le Théorème 2.1 pour tuer toute homologie de

(F, W) par des chirurgies homologiques, quitte à faire la somme connexe sur le
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bord, de W et d'une variété stablement parallèlisée dont le bord est une sphère

d'homotopie, si la signature ou l'invariant de Arf de W n'est pas nul. On obtient
alors une variété acyclique stablement parallèlisée W, de bord V et une application

g:W —> F qui prolonge /.
On procède alors comme au a) et l'on tue le noyau de 7Ti(W)—» 77 par des

chirurgies d'indices 2 et 3 (à ceci près qu'il faut remplacer X et V par F et W1).

On obtient alors une variété W" acyclique de bord V tel que tti(K) 7Ti(V) soit

isomorphe à tti( W"). Il en résulte que V est trivial dans Cn(K) et <p est injective.

§5. Sur les groupes localement A-parfaits

Soit G un groupe. On désignera par PA(G) l'union des sous-groupes de type
fini de G A-parfaits. On a le lemme suivant:

LEMME 5.1. Pa(G) est un sous-groupe de G stable par tout automorphisme.
De plus Pa(G) est le plus grand sous-groupe localement A-parfait de G.

La démonstration est évidente.

COROLLAIRE 5.2. Un groupe G est localement A-parfait si et seulement si:
G PAG.

Vérifier si un groupe est localement A-parfait n'est pas toujours facile. Voici
trois critères pour étudier ce problème:

PROPOSITION 5.3. Soit N un sous-groupe de G, enveloppe normale d'un
nombre fini d'éléments. Alors N est localement A-parfait si et seulement si N est

Venveloppe normale d'un groupe de type fini A-parfait.

Démonstration. Le groupe N est l'enveloppe normale d'éléments x, de G.

Si N est localement A-parfait, les x, sont contenus dans un sous-groupe F de

type fini de N, A-parfait, et N est l'enveloppe normale de F.

Si N est l'enveloppe normale d'un sous-groupe F de type fini de G et

A-parfait, on a:

et N est localement A-parfait.
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PROPOSITION 5.4. Soir

une extension de groupes. Alors si G et G' sont localement A-parfaits, G" est localement

A -parfait.

Démonstration. Soit xoeG". Comme G est localement A-parfait, il existe

Xi • • • xn € G" tels que le sous-groupe F" de G" engendré par les xt se projette sur
un sous-groupe de type fini de G A-parfait.

Il existe alors des éléments c0,...,cne [F", Fr] et une unité A de A tels que
x^c^1 appartienne à G' pour tout i.

Comme G' est localement A-parfait, les éléments x^c'1 de G' sont contenus
dans un sous-groupe F' de G' de type fini et A-parfait, et le groupe engendré par
F' et les x, est de type fini et A-parfait. On en déduit que PA{G") contient x0 et

par conséquent est égal à G", ce qui signifie que G" est localement A-parfait.

PROPOSITION 5.5. Soit

une extension centrale de groupes.
Alors si G' est A-parfait et G localement A-parfait, G' est localement A-parfait.

Démonstration. Soit F un sous-groupe A -parfait de type fini de G. Choisissons

un sous-groupe F' de type fini de G' qui se surjecte sur F, et désignons par F" le

noyau de l'application: F'—>Hi(F';A).
On vérifie que F" se surjecte sur F et l'on choisit un sous-groupe F" de type

fini de F" qui se surjecte sur F. On désigne par M' (resp. M", M'") les groupes
MPI F (resp. MO F", M H F").

Le groupe M" <g> A est l'image de H2(F; A) dans M' ® A et par suite M'" <g> A
est égal à M"® A. On en déduit que l'application H2(F; A)-» M'"(g> A est

surjective et F" est A-parfait. Comme F" est de type fini, F" est contenu dans

PA(Gf). Il en résulte que l'image de PA(G') dans G' contient F, et comme cela a

lieu pour tout F, PA(Gf) se surjecte sur G.

On en déduit que G'/PA(Gf) est un quotient de M et est commutatif Comme
G' est A-parfait, Gf/PA(G') est A-parfait et comme G'/PA(Gf) est commutatif,
G'/PA(G') est localement A-parfait.

D'après la Proposition 5.4, G' est localement A-parfait et la proposition est

démontrée.



Un théorème de Hurewicz homologique 413

BIBLIOGRAPHIE

[1] Barge, J Lannes, J Latour, F et Vogel, P, A-sphères, Ann Sci Ecole Norm Sup 4eme
série 4 (1974) p 463-506

[2] Bieri, R et Eckmann, B Finiteness properties of duality groups, Comm Math Helv 49 (1974),
p 74-83

[3] Bousfield, A K et Kan, D M Homotopy hmits, complétions and localizations. Lecture Notes m
Math 304 Spnnger-Verlag, (1972)

[4] Cappell, S et Shaneson, J The codimenswn two placement problem and homology équivalent
manifold, Ann of Math 99 (1974), p 277-348

[5] Hausmann, J C Classification of intégral homologv sphères, (a paraître)
[6] Homological surgery, Ann of Math 104 (1976), p 573-584
[7] 1 Vogel, P, Plus construction and lifting maps from manifolds, (à paraître)
[8] Kervaire, M et Milnor, J Groups of homotopy sphères, Ann of Math 77 (1963), p 397-537
[9] Wall, C T C, Surgery on compact manifolds, Académie Press, (1970)

Université de Nantes,
U E R de Mathématiques,
38, blvd Michelet,
F-44 Nantes BP 1044

Reçu Décembre 1975/November 1976




	Un théorème de Hurewicz homologique.

