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Groups with cyclic Sylow subgroups and finiteness conditions for
certain complexes

G. MisLIN

Introduction

Let 7 denote a finite group of order n whose Sylow subgroups are all cyclic
and let N=) x € Zm, x € m, denote the norm element. The augmentation Zmw— Z
induces a map j:Za/N— Z/n which we use to consider Z/n as a Z=/N-module.
We show (Theorem 1.3) that

proj. dimg.,n (Z/n) <.
Thus there is a transfer map

j*: Ko(Z/n)— Ko(Zm/N)
between  projective class groups. It turns out that im (j*)c
im (pry: Ko(Z ) — Ko(Z7/N)) and, since im (Ko(Z ) — Ko(Z7/N)) =
(KoZ)/im S where S: K;(Z/n)— Ko(Z1) denotes the Swan homomorphism (cf.

Section 2), we can think of the transfer map to map Ky(Z/n) into (KoZ)/im S. If
we compose this map with the obvious homomorphism

1
(23]} i
we obtain a ‘“‘transfer’” homomorphism
1 .
T: u(Z[;]) — (KoZ)/im S

(u(Z[1/n]) denotes the group of units of Z[1/n]). The homomorphism T is in
general non-trivial, even if = is cyclig (in which case im S =0). However, we
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374 G. MISLIN

show that T=0 if n is a prime power or if n =2p, p an odd prime (cf. Theorem
2.5).

In the second half of the paper we make use of the homomorphism T to
compute the Wall obstruction wX e KoZm1 X for certain complexes. We will
consider spaces X for which ;X operates nilpotently on HyxX (ie. X is
homologically nilpotent in the sense of Brown-Kahn [3]). If such a space is
dominated by a finite complex and has a finite fundamental group of order n, then
the rational number

p(X) = card Hodd(Xa X)/Card Hev(Xa X)

is well defined and is a unit in Z[1/n]; p(X) is related to the finiteness obstruction
wX in the following way, (cf. Theorem 3.3).

THEOREM 1. Let X be a finitely dominated homologically nilpotent space with
non-zero finite fundamental group of square free order. Then

Tp(X)=wX
where wX denotes the image of wX in (KoZm,X)/im S.

In particular, if the space X in Theorem I is supposed to be nilpotent, then
1 X-being nilpotent and of square free order—is necessarily cyclic and therefore
im S =0 by a result of Swan [14]. The formula reduces then to

Tp(X)=wX

yielding new information concerning the Wall obstruction for nilpotent spaces.

Under suitable conditions on X the rational number p(X) depends only upon
HyX: Suppose that 7;X is cyclic of square free order n operating trivially on
H%x(X; IZ7). Then we show that

p(x)=I1p=>

p/n

the product being taken over all prime divisors of n, and e,(X) denoting the value
at —1 of the derivative of the Poincaré polynomial of X with respect to Z/p-
coefficients, a quantity depending only upon H4X.

As an illustration we show that for X an H-space of rank =2 one has
e,(X) =0 for all primes p, and hence p(X)=1. The following vanishing theorem
for the Wall obstruction for H-spaces then follows.
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THEOREM 1II. Let X be a finitely dominated H-complex with finite fun-
damental group of square free order. Then wX =0 and X is therefore of the
homotopy type of a finite complex.

1. Groups with cyclic Sylow subgroups and Z/N-modules

Let 7 denote a finite group whose p-Sylow subgroups are cyclic of order p*
for a fixed prime p. Such a group = is p-periodic in the sense of Cartan-Eilenberg
[4]. If g denotes the smallest p-period of , then H*(w; Z,)=Z/p", where Z,
denotes the integers localized at p. Furthermore, if H'(1; Z(,))=2Z/p* for some
i >0, then i is necessarily a multiple of q (see Swan [15]). It has been observed by
Lundmark [8] that

H(m;Z,)=0 for 0<i<gq.

Namely, suppose i is an integer with 0<i<gq and let m, denote a p-Sylow
subgroup of #. Then from the decomposition

Hi(wp; Z)=im «(m,, m)Dker t(m, m,)

(cf. [4]) and the fact that the map induced by inclusion t(m,, 7): H Ny Z)—
H i(wg; Z) is monic on the p-primary subgroup, we infer, because 7, is cyclic, that
H'(m; Z,))=1Z/p* or H (m;Z,)=0. The former case is impossible since i is not
a multiple of q and hence H'(m; Z,) =0 for 0<i<gq.

Let 7 be an arbitrary finite group of order n and N=) x€Zm, x € 7. Then

Z7w— Zn/N
|
Z — 1Z/n

is a pullback square of rings (with obvious maps). Hence there is a short exact
sequence of Z/N-modules

0= IZ7n—>Za/N—>Z/n—>0

where IZ 7 denotes the augmentation ideal. Notice that a Zz/N-module may be
considered as a m-module via the projection Zm — Zm/N.
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DEFINITION 1.1. A Z#/N-module M is said to be trivial, if it is trivial as a
m-module; M is called nilpotent, if M possesses a finite filtration with associated
graded module a trivial Z#/N-module.

If M is a Zn/N-module, then we will write IM for (IZ7)M and I*M for
I(I*"'M), k = 2. Obviously, M is then nilpotent if and only if I*M = 0 for some k,
(if and only if M is nilpotent as a 7r-module, respectively). Furthermore, M is a
trivial Z#/N-module if and only if IM =0; hence a trivial Z«/N-module is the
same as a Z/n-module. It is plain that the underlying abelian group of a nilpotent
Z w/N-module is an n-torsion group.

LEMMA 1.2. Let 7 denote a finite group whose p-Sylow subgroups are cyclic of
order p*, p a fixed prime. Then, for Z/p* considered as a trivial Zw/N-module

proj. dimz.,n (Z/p“)<q

where q denotes the minimal p-period of .

Proof. By [14] there exists a periodic resolution

> P—->P_,—>-- ~—>P0-—->Z(p)—>0

with P; projective Z,m-modules, P; = P,,, and P, — P,_, factoring through Z,.
Let A=Znx/N and A, =A ®Z,. From the short exact sequence Z, — Z,ym—>
A, we deduce H;(w; A,)=H;_i(7; Z,) for i=2, and an exact sequence

0— Hy(m; Ay)— Ly — Zy—> Ho(m; A,)— 0.

Since Hi(w;Z,)) =0 for 0<i<q—1 we conclude that

Z/p* if i=0,q

H(m; A ={
mA)=lo it o<i<q

These groups are the homology groups of the complex - - - > Q> Q. —> - -+ —
Qo— 0 in dimension =<gq, where Q; = A, ®,, P.. Notice that Q; is torsionfree as an
abelian group, since it is A,-projective. We know that d,:Q,— Q,_, factors
through A, ®.. Z,,=Z/p* and therefore, since im (d,) is a torsionfree abelian
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group, we infer d, =0. Thus
0_) Qq—l—) Qq—Z_) Cre> QO_» Z/pk
is a projective resolution of the trivial A,-module Z/p*. As a result

proj.dim, (Z/p*)< q—1. Of course proj. dim, (A,)= 1, as one can see by tensor-
ing a free abelian presentation of Z,, with A. As a consequence

proj. dim, (Z/p*)<proj.dim,, (Z/p*)+proj. dim, (A,)<gq
which completes the proof of the lemma.

An immediate consequence is the following theorem which was mentioned in
the introduction.

THEOREM 1.3. Suppose 7 is a finite group of order n with cyclic Sylow
subgroups. Then Z/n considered as a trivial Zw/N-module has finite projective
dimension.

Proof. Write Z/n =®Z/p“®, the sum taken over all prime divisors of n. Then

proj. dimz.,n (Z/n) = max (proj. dimgz.,~ (Z/p“®) | p/n) <

Remark. From the short exact sequence IZw—Zw/N—Z/n we see that
proj. dimg/n (IZ 1) = proj. dimz/x (Z/n) — 1. Hence, if o has cyclic Sylow sub-
groups, we get from Theorem 1.3

prOj. dimz,.r/N (IZW) <o

This generalizes a well known fact on the augmentation ideal of a finite cyclic
group, in which case IZm is free of rank 1 over Zm/N.

We will apply later Lemma 1.2 and Theorem 1.3 in case 7 has square free
order; for such a 7 the Sylow subgroups are of course cyclic of prime order.

LEMMA 1.4. Let 7 be a finite group of square free order n and let M denote a
nilpotent Zn/N-module. Then

(i) proj. dimz.,n (M) <o;
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if, in addition, M is finitely generated, then

(ii) M is of type FP and card (M) is a unit in Z[1/n].

Proof. We first assume that M is a trivial Zn/N-module. Then M is a direct
sum of modules of the form Z/p, p dividing n. From Lemma 1.2 we see then that
proj. dim M <, If M is a general nilpotent Z#/N-module, we choose a finite
filtration of M such that gr(M) is a trivial Za/N-module. Clearly
proj. dim gr(M)=proj.dim M and i) follows. If M is finitely generated then,
Z7/N being noetherian, we can find a projective resolution of M of finite length,
which is also of finite type; by definition, M is therefore of type FP. Finally, a
finitely generated nilpotent Zm/N-module has as underlying abelian group a
finitely generated n-torsion group. Hence card (M) is a unit in Z[1/n].

2. The transfer homomorphism T:u(Z[1/n]) — (K,Zw)/im S
Let 7 denote a finite group of order n with cyclic Sylow subgroups. Then
according to Theorem 1.3, proj.dimz,/n(Z/n) <o, and therefore the canonical

projection j:Za/N—7Z/n gives rise to a transfer map (cf. Bass [1, Chapter IX,
1.7))

j*: Ko(Z/n)— Ko(Zm/N).

The map j* is defined on a generator [Z/p*] of Ko(Z/n) by choosing a Zm/N-
projective resolution of finite type

0—Pp—Ppn_y— +—>Py—>Z/p“—>0

of the trivial Z#/N-module Z/p*, and setting
#ZIp*1= X (=1)[P]e Ko(Z7/N).

Let jx:Ko(Zn/N)— Ko(Z/n) denote the map induced by the projection
j:Zw/N—>Z/n.
LEMMA 2.1. j4j*: Ko(Z/n)—> Ko(Z/n) is the 0-homomorphism.

Proof. Let q denote the minimal p-periode of 7 and let [Z/p*]e Ko(Z/n)
denote a generator. Choose a Z#/N-projective resolution of finite type of Z/p*
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which has length q (cf. Lemma 1.2)
0—>L,—>L,,— - -—Ly—>Z/p“—0.
Then
jxi*(ZIp 1= jx(X (~1)[L])
=2 (-1)'[Z/n ®, L]
=2 (X -)'[Z/n(r)®. L)

r/n

where n(r) stands for the highest power of the prime r, which divides n. For r#p -
we have

Tors.n(Z/n(r), Z/p*) =0

and therefore the complex
0—>Z/n(rN®,L,—-+--—=Z/n(r)®,Ly—>0

is exact. Hence ¥ (—1)'[Z/n(r)®, L;]=0 for r#p, and therefore jxj*[Z/p*]=
Y (-1)'[Z/p* ®,L]. To compute ¥ (—1)'[Z/p* ®, L] and the homology of
{Z/p* ®., L} we can as well use the Za/N ®Z,-projective resolution {Q;} of
Z/p*, which was considered in the proof of Lemma 1.2. Hence

Y (~1)[Z/p* @, Li]= QZ 1) [Z/p* ®. Q]

and plainly for 0<i<gq—1 one has

; 0 for 0<i<q-1
Tory. (Z/p*, Z/p*) = Hi(m; Z/p* ={

2o (Z1p", Z1p") (m; Z/p") Z/pk for i=0,q-1
Therefore jxj*[Z/p*]1=[Z/p*]+(~1)*"'[Z/p“]=0 because the p-period q of = is
an even number [15].

If 7 denotes an arbitrary group of order n then associated with the square of

rings

Zw 2> Za/N

|l

Z — 1Z/n
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there is an exact sequence (cf. Milnor [9]) which reduces to
Uu(Z/n) —— Ko(Z 1) ——=— Ko(Zw/N) —=—> Ro(Z/n)— 0 (2.2)

We call S the Swan homomorphism (cf. [14]). S can be described in the following
way: for k a unit mod n, S(k) =[(k, N)] where (k, N) denotes the projective ideal
in Zm generated by k and N.

Consider now the case of a 7 with cyclic Sylow subgroups. Then jxj* =0 by
Lemma 2.1 and, by the exactness of (2.2), the transfer j* gives therefore rise to a
homomorphism

t:Ko(Z/n)— (KoZm)/im S

such that prgt = j*, pry: (KoZm)/im S — Ko(Z7/N) denoting the map induced by
PTx.

If n=p} - pir then Ko(Z/n) is a free abelian group, freely generated by
{{Z/p¥], 1<i<m}. Hence there is a unique group homomorphism

@ u(Z[%])—»KO(Z/n)

such that ¢(£p;) =[Z/p¥]. If we compose ¢ with t we get a map T = t¢ which we
will also call a transfer, since it is induced by j*. For w a group with cyclic Sylow
subgroups we get therefore a commutative diagram

u(Z[1/n]) = (KoZm)/im S

J* / I" 23

Ko(Z/n) L= Ko(Zw/N)

We will sometimes consider Ko(Zn/N) to be the range of T'; this should not give
rise to any confusion, since pry is injective.

It is well known that if R is a ring and M an R-module of type FP, then M
defines an element [M] € KR (depending only upon the isomorphism class of M)
by choosing any finite projective resolution of finite type

O—P,—P,.1—> +—>Py;>M-—0
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and setting [M]=Y (-1)'[P,]Je K(R; if 0> M'— M — M"—0 is an exact sequ-
ence of modules of type FP, then [M]=[M']+[M"] (cf. [1] and [11]).

LEMMA 2.4. Let 7 denote a finite group of square free order n and let M
denote a finitely generated nilpotent Z=/N-module. Then

T(card M) =[M]e Ko(Zn/N).

Proof. Notice that M is of type FP over Zn/N and card M€ u(Z[1/n]) by
Lemma 1.4. Hence T(card M) and [ M] are well defined elements of Ko(Zn/N). If
M is a trivial Zn/N-module, then T(card M) = j*p(card M) =[M] where the
second equation follows from the definition of ¢, j* and [M] respectively. For the
general case we choose a finite filtration of M with gr(M) a trivial Z#/N-module.
Clearly card M = card gr(M) and [M]=[gr(M)]; therefore T(card M)=[M].

For the applications in the next section we will be particularly interested in
groups  for which im S = 0. The following theorem gives some information on T
for such cases.

THEOREM 2.5. Let = denote a finite group of order n with cyclic Sylow
subgroups. Then

(i) T=0 in case n is a prime power or n=2p, p an odd prime.
(i) T(py- -+ pm)=0 if = is cyclic of order pt* - - - pir.
(iii) T(3)=T(5)#0 if n=15, and T(3) has order 2.
Furthermore, in all three cases listed above one has im S =0, and T can therefore be
considered as a map T:u(Z[1/n])— KZ.

We will break the proof up into a couple of lemmas.
LEMMA 2.6. Let 7 be a cyclic group of order n. Then j*: Ko(Z/n)— K(Z#/N)

factors through Ko(Z/n).

Proof. We may assume n>1. Let x denote a generator of 7. Then IZ is
freely generated by (1—x) over Z#/N and hence there is an exact sequence
0—>Zn/N—>Zn/N—>Z/n—0, from which we infer that j*[Z/n]=
[Zm/N]—-[Z7/N]=0. Thus j* factors through Ko(Z/n)= Ko(Z/n)/{[Z/n)).

LEMMA 2.7. Let p denote an odd prime and w=1Z/2p or the dihedral group
D,,. Then

j*=0:Ko(Z/2p)— Ko(Z7/N)
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Proof. We will first consider the case @ =Z/2p. Since j* factors through
Ko(Z/2p) which is cyclic, generated by the equivalence class of [Z/2], it suffices to
prove that j*[Z/2]=0. Let w=(x,y|x*=y?=1,xy=yx), R=Z[w] with w=
exp (2mi/p) and R[Z/2]=Zm/(1+y+- - - y*~') the obvious isomorphism (mapping
o to y). Consider the pullback square of rings

A

Zw —— R[Z/2]

1 J

2[Z/2] — F,[Z/2]

with obvious maps. Since u(R[Z/2])— u(F,[Z/2]) is surjective (cf. Reiner-Ullom
[12,8§7]) we get from the associated Milnor-Mayer-Vietoris sequence a mono-
morphism

Let P<Zmx be the ideal generated by (1—y) and 2. Then Zn#/P=F,[Z/2] is
certainly cohomologically trivial and hence P is projective (cf. Rim [13]). Since
F,[Z/2])/N =7Z/2 we see that j*[Z/2]=[Z7/N]—-[Zn/N ®,, P]. It suffices therefore
to show that [P]=[Zw]e KoZnw. But A4 [P]=[(1—w,2)]=[R[Z/2]] since
R/(1-w)R=Z/p and p odd. Hence [P]=[Zm] because A4 is injective, from
where we conclude that j*[Z/2]=0. In case = = D,, we proceed in a similar way.
Notice that Ko(Z/2p) is freely generated by [Z/2] and [Z/p]. From Corollary 3.5
we infer that j*[Z/p]=0 and we are therefore left showing that j*[Z/2]=0. Let
D,,=(x, y | x*=yP, yxy = x). Notice that P=(1—y)Zm+2Zm is a twosided ideal
with Z«/P = F,[Z/2], which is cohomologically trivial. Hence P is a projective
w-module and clearly j*[Z/2]=[Zn/N]—-[Zn/N ®,P]. In order to see that
[P]=[Zmn] we consider the square of rings

Zw — RJ[Z/2]

l l

Z[Z/2] — F,[Z/2]

with R,[Z/2]=Z=/(1+y+---y*"!) a twisted group ring. By [12, §7]
u(R,[Z/2])— u(F,[Z/2)) is surjective and hence

Ax: KoZm — KoR,[Z/2]
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is injective. Since F,[Z/2]®, R,[Z/2]=F,[Z/2]®, F,[Z/2]=0 we infer that
Ax[P]=[R,[Z/2]] and whence [P]=[Zw] from the injectivity of A4. Therefore
j*[Z/2]=0, which completes the proof.

LEMMA 2.8. Let w=2Z/15. Then T(3) is the element of order 2 in K,Z[Z/15].

Proof. Let w=(x,y|x’= y’=1,xy=yx) and let P=(x+2)Zw+(y—1)Zm.
Then Z#/P =M is cyclic of order 9 with y operating trivially and x operating by
multiplication with 7 mod 9. One checks easily that M is cohomologically trivial
using the criterion of [13]. Hence P is projective. Since M/NM =1Z/3 as trivial
Z7/N-module we infer that

i*[Z/3]=[Zw/N]-[Z /N ®.. Ple Ko(Zn/N).

Notice that im $=0 since #w is cyclic. Hence we can think of T(3) to be the
element [Zw]—[P]e Ko(Z7). Recall that KoZ7w=Z@Z/2 by Kervaire-Murthy
[7]. Since P is projective of rank 1, it remains therefore to prove that [P] #0 in
Ko(Zr)=1Z/2. For this we consider the pullback square (with obvious maps)

Zw — R[Z/3]

Z[Z/3] — Fs[Z/3]

where R = Z[exp (2wi/5)]. The associated Milnor-Mayer-Vietoris sequence yields
a map

9: u(Fs[Z/3]) — KoZ[Z/15]

By [7] o factors through u(Fs(w))=Z/24 where Fs(w) is the field
Fs[Z/3)/(1+x+x?),  is the residue class of the generator x € Z/3. Furthermore, 9
is surjective (cf. [7]). Notice that R[Z/3]®,M=0 and therefore P'=
R[Z/3]®.,. P=R[Z/3]. Furthermore P"=Z[Z/3]®,P<Z[Z/3] is the principal
ideal generated by (x +2). Hence (cf. [9])

P={((x+2)a, b)e Z[Z/3]x R[Z/3] | (x +2)a = b e Fs[Z/3]}.

Notice that x+2 e u(Fs[Z/3]) corresponds to (3, w+2) € u(Fs) X u(Fs(w)) under
the obvious isomorphism Fs[Z/3]= Fs x Fs(w). It follows therefore that A(x+2)=
d(w +2)=[P] and, since (& +2) has order 24 in u(Fs(w)), we conclude that [P]
must have order 2. This completes the proof of the lemma.



384 G. MISLIN

We can now complete the proof of Theorem 2.5: First, if n is a prime power,
w (having cyclic Sylow subgroups) is necessarily cyclic and therefore
J*: Ko(Z/n) — Ko(Zm/N) factors through Ko(Z/n) by Lemma 2.6. But Ko(Z/n)=0
for n a prime power. Hence T=0 in this case. If n=2p, p an odd prime, then
m=12Z/2p or D,, and it follows from Lemma 2.7 that T=0. Thus (i) holds.
Assume now that = is cyclic of order [[ pf = n. Then T([] p;) = to([] p:) = t[Z/n] =
0, since j*[Z/n]=0 by Lemma 2.6. Therefore (ii) holds. For (iii) notice that in
case n=15, 7 is necessarily cyclic. Hence, by applying Lemma 2.6, j*[Z/3]=
—j*[Z/5] or T(3)=-T(5). Moreover T(3) has order 2 by Lemma 2.8 and
therefore T(3) = T(5) # 0. Finally im S =0 for m cyclic or w = D,,, p an odd prime
(cf. Ullom [16]) and hence im S=0 for the groups considered in (i)-(iii) of
Theorem 2.5.

3. Applications to homologically nilpotent spaces

Following [3] we call a connected space X homologically nilpotent, if m X
operates nilpotently on H.X for all i. In particular, if X is a nilpotent space, then
X is homologically nilpotent and conversely, a homologically nilpotent space X is
nilpotent if and only if #,X is a nilpotent group (cf. [10]). Let Hx(X; IZ)
denote the homology of the (left) Zn/N-complex IZ7 &, CsxX, where m= 7 X;
similarly for H¥(X; Znw/N).

LEMMA 3.1. If X is homologically nilpotent with 7, X of finite order n, then
H{(X;IZw) and H7(X;Zn/N) are nilpotent Zw/N-modules for all i. If, in
addition, n is square free and X finitely dominated, then H7(X;IZw) and
H{(X;Zn/N) are of type FP over Zw/N.

Proof. Consider the long exact homology sequence associated with the exact
sequence of chain complexes 0— IZ7 ®, CxX — C4X — Cx X —0. Standard
results on nilpotent actions (cf. [6, Chapter 1.4]) imply then that H(X; IZm) is
a nilpotent w-module. Since the m-action on H{(X; IZ) factors through Zm/N,
we conclude that H(X; IZ) is a nilpotent Z«/N-module. If X is dominated by a
finite complex and 7, X finite, then certainly H; (X; IZ) is a finitely generated
Z7/N-module. Hence, by Lemma 1.4, H7(X; IZ) is of type FP. The proof for
H7(X;Zw/N) is similar, using 0— Cx X — CsX—>Zu/N®, CeX— 0.

LEMMA 3.2. Let X be a finitely dominated homologically nilpotent space with
finite fundamental group of order n and let Hy(X, X) denote the homology of the
mapping cylinder of X— X mod X. Then the groups HY(X, IZ) and H,,,(X, X)
have the same finite cardinality c(i) for i=0, and c(i) is a unit in Z[1/n].
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Proof. Since H7(X; IZ) is a finitely generated nilpotent Z#/N-module, it has
by Lemma 1.4 a cardinality c(i) which is a unit in Z[1/n]. From long exact
homology sequences it is obvious that c(i) is also given by

¢(i) = (card coker (H;,1 X = H;+1X)) - (card ker (H.X — H;X))

which equals card H;, (X, X).
It follows that for X as in Lemma 3.2, the rational number

p(X) = card Hoqa(X, X)/card H.,(X, X)

is a well defined unit in Z[1/n]. This unit p(X) is related to the finiteness
obstruction wX € KoZ X of Wall (cf. [17], [10]) in the following way.

THEOREM 3.3. Let X be a homologically nilpotent space with non-trivial
fundamental group m of square free order n. Suppose further that X is dominated by
a finite complex and let wX denote the image of wX in (KoZmX)/im S. Then

Tp(X)=wX

If X is in addition nilpotent (i.e. ;X is cyclic) then
(i) Tp(X)=wX, and
(i) wX =0 in case p(X) is a power (positive or negative) of n.

Before proving Theorem 3.3 we will establish a different way of computing
p(X).

LEMMA 3.4. Let X be as in (3.2) and let Hx(X; Zn/N) denote the homology
of Z7w/N ®,. Cx(X). Then

p(X)=card H,,(X; Znw/N)/card Hy44(X; Zm/N)

Proof. We may of course assume that n=card 7, X>1. Since Hx(X;Q) is
semisimple and nilpotent as w-module, we have Hy(X; Q)= Hx(X; Q) and there-
fore the Euler characteristic of X vanishes. Thus, for all primes p, x,(X)=
¥ (—1)' dim H;(X;Z/p)=0. Since n is square free, we infer then that

card H.,(X; Z/n) = card Hoqq(X; Z/n).
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The long exact homology sequence associated with the exact sequence IZ7—
Z7/N—Z/n then yields

card H.,(X; Zn/N)/card H344(X; Z7/N)
= card HZ,(X; IZw)/card H4a(X; IZ )

from where the result follows, using Lemma 3.2.

Proof of Theorem 3.3. Let pry: Ko(Zm)— Ko(Z7/N) be the map induced by
the projection. If Cx denotes a chain complex of type FP, homotopy equivalent to
the singular complex of X, then prewX=Y (-1)[Z7/N®,C]. Since
H7(X;Zw/N) is of type FP (cf. Lemma 3.1) we infer that (cf. [11])

Y. (-1)[Za/N ®, Cl= 2, (~1)[HI(X; Zm/N)]

and therefore, since [H;(X; Z#n/N)]= T(card H{(X; Znw/N)) by Lemma 2.4, we
get

. prewX = wX = T(card Hg,(X; Z#@/N)/card Hoqa(X; Zn/N)) = Tp(X).

In case X is in addition nilpotent, 71 X is necessarily cyclic and therefore im S = 0.
Hence Tp(X)=wX in this case. Furthermore, if p(X)=n*, we conclude from
Theorem 2.5(ii) that wX = T(n*) = 0. This completes the proof of Theorem 3.3.

As a first application we will prove the following algebraic result, which is used
to prove Lemma 2.7.

COROLLARY 3.5. Let w denote the dihedral group D,,, p an odd prime. Then
i*[Z/p]=0€ Ko(ZD,,/N).

Proof. By Theorem A [14] there is a finite simplicial complex X of the
homotopy type of S*> on which D,, acts freely and simplicially. Let X = X/D,,.
Then

) 0, if i=0,2
H(X X)={ Z/2, if i=1
Z)2p, if i=3

Thus p(X) =4p. Since X is a finite complex with trivial action of 7, X on HyxX, we
infer that wX =0 and therefore T(4p)=0. We have already observed in course of
the proof of Lemma 2.7 that j*[Z/2]=0. Hence

i*[Z/p]=j*((Z/2)®(Z/2)® (Z/p)]= T(4p) =0.
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Recall that two nilpotent spaces X and Y of finite type are of the same genus
(cf. [6]) if their p-localizations X,, Y, are homotopy equivalent for all primes p. In
[10] one finds an example of two finitely dominated nilpotent spaces X and Y of
the same genus with fundamental groups of order 8 such that wX# 0 but wY =0.
For fundamental groups of square free orders, such an example is impossible.

Namely one has

COROLLARY 3.6. Let X and Y be two finitely dominated nilpotent spaces of
the same genus, with non trivial fundamental groups of square free order n. Then
p(X)=p(Y) and wX, wY have the same finite orders.

Proof. Notice that 7; X and m, Y are abelian and whence m X = m, Y, since X
and Y are of the same genus (cf. [6]). Furthermore, there are for all primes p
commutative diagrams

X,— Y,
b
X,— Y,

with the horizontal maps being homotopy equivalences. Thus
IIi (X9 X’ Z(p)) = I_Ii(Xm Xp > Z(p)) = H ( Yp: Yp; Z(p)) = H( Ya YI, Z(p))

and therefore H;(X, X)= H,(Y, Y) since the groups H;(X, X) and H(Y, Y) are
finite. Hence pX = pY and, since m; X = 7Y, it follows from Theorem 3.3(i) that
wX and wY have the same orders; the orders must be finite, because X and Y
must have vanishing Euler characteristic (cf. proof of Lemma 3.4).

Another application of Theorem 3.3 is the following vanishing theorem for the
Wall obstruction.

COROLLARY 3.7. Let X be a finitely dominated homologically nilpotent
space with fundamental group of order p or 2p, p a prime. Then wX =0 and X is
therefore of the homotopy type of a finite complex.

Proof. First consider the case p=2. By a result of Frohlich (cf. [5, Theorem
6())]) we infer that K,m, X =0 and, since the Euler characteristic of X is
necessarily 0 (cf. proof of Lemma 3.4), it follows that wX =0. Second, let p
denote an odd prime. Then we may apply Theorem 3.3 and obtain Tp(X)= wX.
Since T=0 and im S =0 for the 7, X in question (cf. Theorem 2.5), we infer that
wX =0.
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It is sometimes possible to compute p(X) directly from HyX, giving rise to a
particular simple formula for wX. We will treat one such case in the next section
and plan to treat other cases in a forthcoming paper.

4. The Wall obstruction for H-spaces
We want to prove the Theorem II mentioned in the introduction.

Suppose X is a space with @H;(X;Z) finitely generated and let p denote a
fixed prime. Then we write

(X, =2 (1), B =dim H(X;Z/p)

for the Poincaré polynomial of X with respect to Z/p. Define

d
ep(X) = EI- Xp(X, t) -

and, in case ;X has finite order n, define

e(x)=]] p=*

pin

THEOREM 4.1. Let X be a finitely dominated nilpotent space with fundamen-
tal group m of square free order. Suppose that Hi (X; IZ) is a trivial w-module for
all i. Then

p(X)=e(X)

Proof. We may assume that 7# {1}. Let x denote a generator of the necessar-
ily cyclic group . Then there is a exact sequence of Z«/N-modules

0 IZ7 —=>I1Z7—Z/n—0

where n denotes the order of #. Since (1—x) induces 0 in H%(X; IZm), the
associated long exact homology sequence breaks up into short exact sequences

0> H{(X;IZw)—> H(X; Z/n)—> H_(X;IZ7)—0
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for i=0. Since H{(X;IZm) is a trivial Z#/N-module and n is square free,
H7(X; IZ7)QZ, is a Z/p-vector space. Define

Then
Yi=Bi—Yi-1=Bi—Bi-1t- - +(_1)i30

and

Y (=1Yy = 2 (Bo—Bi+- - - +(=1YB,)
=(m+1)Bo—mBy+ - +(—=1)"Bn

where m denotcs the largest integer k with B, # 0. Hence

t
=(m+1)x (X, =1+ xp(X, —1).

2 1Yy = (—l)m% (tmﬂx"(x’ l>) ‘t=~1

Since X is homologically nilpotent with non-trivial finite fundamental group, the
Euler characteristic of X is 0 (cf. proof of Lemma 3.4) and hence x,(X, —1)=0.
The above equation reduces therefore to

Y (—1)y; = x4(X, —1) = €,(X).

Hence card HZ,(X; I1Z)/card HZay(X; IZ7) =[1,n p*™ =e(X) and therefore
p(X) = e(X).

In order to prove that for an H-space X the mr-operation on Hy(X; IZ™7) is
trivial, we will need the following lemma.

LEMMA 4.2. Let X be an H-space and a € m,X. Then the induced covering
transformation ax:X— X is equivariantly homotopic to the identity.

Proof. Without loss of generality we may assume that the H-structure u : X X
X— X has the base point as a strict identity. Equip X with the canonical
H-structure fi. Then pr~'(*) is a central subgroup of (X, fi), naturally isomorphic
to 7, X. We may thus think of a as an element of pr~'(*) which acts on X by left
multiplication. Choosing a path from a € pr™'(*) to * we get a homotopy of the
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map ax to Id, which is equivariant with respect to the ;X = pr '(*)-action,
because pr~'(*) is central.

COROLLARY 4.3. If X is an H-space, then H¥(X; IZ) is a trivial Zw/N-
module.

This is clear since by 4.2, the operation of a € w; X on C*X' is chain homotopic
to Id as map of m;X-complexes, and therefore the induced action of a on
IZ7 ®,. CxX is chain homotopic to Id.

Proof of Theorem II of the Introduction. If X is of rank 1, then X is equivalent
to one of the spaces S, S, §7, RP> or RP’ (cf. Browder [2]). Hence wX =0 in
these cases. If rank (X)=2, then x,(X, t) contains a factor (1—¢™)(1—1t") with n,
and n, odd. Therefore

e, (X) = x4(X, —1)=0

for all primes p. In particular we obtain e(X)=1 and, since H;(X;IZw) is a
trivial w-module for all i we infer from Theorem 4.1 that p(X)=e(X). Hence
wX = Tp(X)=0.

5. Appendix

If X denotes a homologically nilpotent space with finite fundamental group,
then there is a simple criterion for deciding whether X is dominated by a finite
complex.

THEOREM 5.1. Let X be a homologically nilpotent complex with finite fun-
damental group. Then the following are equivalent.

(i) X is dominated by a finite complex
(i) H;(X;Z) and H;(X;Z) are finitely generated abelian groups for all i and
zero for i sufficiently large.

Proof. Certainly (i) implies (ii). If (ii) is given, then from [3, Corollary 3.4] we
infer that X has the homotopy type of a finite dimensional complex. Since Zm X
is noetherian and H;(X;Z) finitely generated for all i, Theorems B and F of [17]
imply that X is dominated by a finite complex.

A more general result of this type in case X is nilpotent was proved in [11].
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