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Groups with cyclic Sylow subgroups and finiteness conditions for
certain complexes

G. MlSLIN

Introduction

Let 7T dénote a finite group of order n whose Sylow subgroups are ail cyclic
and let N £ x e Zit, xeir, dénote the norm élément. The augmentation Ztt —* Z
induces a map j:Zir/N—>Z/n which we use to consider Z/n as a Z7r/iV-module.
We show (Theorem 1.3) that

proj.dimZir/N(Z/n)<oo.

Thus there is a transfer map

j*:K0(Z/n)-^K0(Z7TlN)

between projective class groups. It turns out that im (/*) c
im {pr* : K0(Ztt)-> X0(Ztt/N)) and, since im (K0(Ztt)-+ K0(Ztt/N)) s
(K0Z7r)/im S where S:Xi(Z/n)-» K0(Ztt) dénotes the Swan homomorphism (cf.
Section 2), we can think of the transfer map to map K0(Z/n) into (K0Z7r)/im S. If
we compose this map with the obvious homomorphism

¦ŒD- •Ko(Z/n)

we obtain a "transfer" homomorphism

(w(Z[l/n]) dénotes the group of units of Z[l/n]). The homomorphism T is in
gênerai non-trivial, even if ir is cyclic (in which case im S 0). However, we
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374 G MISLIN

show that T 0 if n is a prime power or if n — 2p, p an odd prime (cf. Theorem
2.5).

In the second half of the paper we make use of the homomorphism T to

compute the Wall obstruction wXgKoZttiX for certain complexes. We will
consider spaces X for which ttiX opérâtes nilpotently on H#X (i.e. X is

homologically nilpotent in the sensé of Brown-Kahn [3]). If such a space is

dominated by a finite complex and has a finite fundamental group of order n, then
the rational number

p(X) card Hodd(X, X)/card Hev(X, X)

is well defined and is a unit in Z[l/n]; p(X) is related to the finiteness obstruction
wX in the following way, (cf. Theorem 3.3).

THEOREM I. Let X be a finitely dominated homologically nilpotent space with

non-zero finite fundamental group of square free order. Then

Tp(X) wX

where wX dénotes the image of wX in (K0Z7TiX)/im S.

In particular, if the space X in Theorem I is supposed to be nilpotent, then

TTiX-being nilpotent and of square free order-is necessarily cyclic and therefore
im S 0 by a resuit of Swan [14]. The formula reduces then to

Tp(X) wX

yielding new information concerning the Wall obstruction for nilpotent spaces.
Under suitable conditions on X the rational number p(X) dépends only upon

HjfcX: Suppose that ttiX is cyclic of square free order n operating trivially on
HJ(X; IZtt). Then we show that

pin

the product being taken over ail prime divisors of n, and ep(X) denoting the value
at -1 of the derivative of the Poincaré polynomial of X with respect to Z/p-
coefficients, a quantity depending only upon H*X.

As an illustration we show that for X an H-space of rank ^2 one has

ep(X) 0 for ail primes p, and hence p(X) 1. The following vanishing theorem
for the Wall obstruction for H-spaces then follows.
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THEOREM IL Let X be a finitely dominated H-complex with finiîe fun-
damental group of square free order. Then wX 0 and X is therefore of the

homotopy type of a finite complex.

1. Groups with cyclic Sylow subgroups and Zir/N-modules

Let 7T dénote a finite group whose p-Sylow subgroups are cyclic of order pk
for a fixed prime p. Such a group n is p-periodic in the sensé of Cartan-Eilenberg
[4]. If q dénotes the smallest p-period of ir, then ffq(7r;Z(p)) Z/pk, where Z(p)
dénotes the integers localized at p. Furthermore, if HI(7r;Z(p)) Z/pk for some
i > 0, then i is necessarily a multiple of q (see Swan [15]). It has been observed by
Lundmark [8] that

Hl(7r;Z(p)) 0 for 0

Namely, suppose i is an integer with 0<i<q and let rrp dénote a p-Sylow
subgroup of 7T. Then from the décomposition

Hl(7rp;Z) im i(ttp, 7r)©ker £(tt, ttp)

(cf. [4]) and the fact that the map induced by inclusion i(ttp, 'n):Hl('Tr\rL)-*
H1(ttp;Z) is monic on the p-primary subgroup, we infer, because ttp is cyclic, that
JJl(7r;Z(P))s=Z/pk or H'(7r;Z(p)) 0. The former case is impossible since i is not
a multiple of q and hence H1(tt; Z(p)) 0 for 0 < i < q.

Let 7T be an arbitrary finite group of order n and N ^xeZrr, xett. Then

Ztt >Ztt/N
i i
Z > Z/n

is a pullback square of rings (with obvious maps). Hence there is a short exact

séquence of Z7r/N-modules

0-» IZtt-+Ztt/N-h> Z/rc--? 0

where JZtt dénotes the augmentation idéal. Notice that a Z7r/N-module may be

considered as a n-module via the projection
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DEFINITION 1.1. A Z7r/N-module M is said to be trivial, if it is trivial as a

7r-module; M is called nilpotent, if M possesses a finite filtration with associated

graded module a trivial Z7r/N-module.
If M is a Zir/N-module, then we will write IM for (IZtt)M and IkM for

î(Ik~lM), k ^ 2. Obviously, M is then nilpotent if and only if IkM 0 for some k,

(if and only if M is nilpotent as a 7r-module, respectively). Furthermore, M is a

trivial Z7r/N-module if and only if IM=0; hence a trivial Zir/N-module is the
same as a Z/n-module. It is plain that the underlying abelian group of a nilpotent
Z7r/N-module is an n-torsion group.

LEMMA 1.2. Let tt dénote a finite group whose p-Sylow subgroups are cyclic of
order pk, p a fixed prime. Then, for Z/pk considered as a trivial Ztt/N-module

where q dénotes the minimal p-period of tt.

Proof By [14] there exists a periodic resolution

with P, projective Z^Tr-modules, P, =Pl+q and Pq—»Pq_i factoring through Z(p).

Let A Ztt/N and AP=A® Z(p). From the short exact séquence Z(p) > Z(p)7r —»

Ap we deduce H,(tt; Ap) Hi-i(tt; Z(p)) for i^2, and an exact séquence

Since Hl(7r;Z(p)) 0 for 0<i<q — l we conclude that

fZ/pk if î
j
10 if 0

r; Ap) j
10 f 0<i<q.

Thèse groups are the homology groups of the complex • • • —» Q, -* Q,-i~> • • ->
Qo-^ 0 in dimension ^q, where Qt Ap 0^ P,. Notice that Q, is torsionfree as an
abelian group, since it is Ap-projective. We know that dq:Qq^Qq-1 factors

through Ap ®w Z(p)sZ/pk and therefore, since im(dq) is a torsionfree abelian
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group, we infer dq 0. Thus

is a projective resolution of the trivial Ap-module Z/pk. As a resuit
proj. dimAp (Z/pk) ^ q -1. Of course proj. dimA (Ap) 1, as one can see by tensor-
ing a free abelian présentation of Z(p) with A. As a conséquence

proj.dim4 (Z/pkHproj. dimAp (Z/pk) + proj. dimA (ApHq

which complètes the proof of the lemma.

An immédiate conséquence is the following theorem which was mentioned in
the introduction.

THEOREM 1.3. Suppose tx is a finite group of order n with cyclic Sylow
subgroups. Then Z/n considered as a trivial Zir/iV-module has finite projective
dimension.

Proof. Write Z/n =©Z/pk(p), the sum taken over ail prime divisors of n. Then

proj. dimZWN (Z/n) max (proj. dimZ7r/N (Z/pk(p)) |pin) <oo

Remark. From the short exact séquence IZ7r-^Zir/N~»Z/n we see that

proj. dimZir/N(IZ7r) proj. dimZ7r/iV(Z/n)-1. Hence, if rr has cyclic Sylow
subgroups, we get from Theorem 1.3

proj. dimZ7r/N (IZtt) < »

This generalizes a well known fact on the augmentation idéal of a finite cyclic

group, in which case IZrr is free of rank 1 over Ztt/N.
We will apply later Lemma 1.2 and Theorem 1.3 in case tt has square free

order; for such a tt the Sylow subgroups are of course cyclic of prime order.

LEMMA 1.4. Let ir be a finite group of square free order n and let M dénote a

nilpotent Ztt/N- module. Then

(i) proj.dimZ7r/N(M)<oo;
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if, in addition, M is finitely generated, then

(ii) M is of type FP and card (M) is a unit in Z[l/n].
Proof. We first assume that M is a trivial Ztt/N-module. Then M is a direct

sum of modules of the form Z/p, p dividing n. From Lemma 1.2 we see then that
proj.dimM<°o. If M is a gênerai nilpotent ZTr/N-module, we choose a finite
filtration of M such that gr(M) is a trivial Z7r/N-module. Clearly
proj. dim gr(M) ^proj.dim M and î) follows. If M is finitely generated then,
Ztt/N being noetherian, we can find a projective resolution of M of finite length,
which is also of finite type; by définition, M is therefore of type FP. Finally, a

finitely generated nilpotent Z7r/N-module has as underlying abehan group a

finitely generated n-torsion group. Hence card (M) is a unit in Z[l/n].

2. The transfer homomorphism T: u(Z[l/n])-> (K0Z77)/im S

Let 7T dénote a finite group of order n with cyclic Sylow subgroups. Then
according to Theorem 1.3, proj.dimZ7r/N(Z/n)<a>, and therefore the canonical
projection jiZtt/N"—»Z/n gives rise to a transfer map (cf. Bass [1, Chapter IX,
1.7])

The map j* is defined on a generator [Z/pk] of K0(Z/n) by choosing a Ztt/N-
projective resolution of finite type

of the trivial Z7r/N-module Z/pk, and setting

f[Z/pk]= I (-Dl[Pje K0(Ztt/N).

Let j*:K0(Z7r/N)-+K0(Z/n) dénote the map induced by the projection
j:Z<ir/N-*Z/n.

LEMMA 2.1. j*j*:K0(Zln)-+K0(Z/n) is the O-homomorphism.

Proof. Let q dénote the minimal p-periode of tt and let [Z/pk]eK0(Z/n)
dénote a generator. Choose a Zw/N-projective resolution of finite type of Z/pk



Groups with cyclic Sylow subgroups 379

which has length q (cf. Lemma 1.2)

0-* Lq -* Lq_!-> > Lo-^ Z/pk -> 0.

Then

/*/*[Z/pk] /?(!(-

Z(Z(-Dl[Z/n(r)(8)irLI])
r/n •

where n(r) stands for the highest power of the prime r, which divides n. For r^p
we hâve

TorL/N(Z/n(r),Z/pk) 0

and therefore the complex

0 -* Z/n(r) 0,, Lq -^ > Z/n(r) ®w Lo-* 0

is exact. Hence X (-l)l[Z/n(r)®irLI] 0 for r^p, and therefore /?/*[Z/pk]
^O^Lj. To compute Z(-l)l[Z/pk®flrLl] and the homology of

we can as well use the Z7r/N(g>Z(prprojective resolution {Q,} of
Z/pk, which was considered in the proof of Lemma 1.2. Hence

1 0

and plainly for 0 ^ i ^ q - 1 one has

Therefore /*/*[Z/pk] [Z/pk]-4-(-l)q""1[Z/pk] 0 because the p-period q of tt is

an even number [15].
If 7t dénotes an arbitrary group of order n then associated with the square of

rings

Ztt -^ Ztt/N
i i-

Z > Z/n
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there is an exact séquence (cf. Milnor [9]) which reduces to

u(Z/n)—^—> K0(Zir)—^U K0(Z<7r/N) —-!L-> K0(z/n)-»0 (2.2)

We call S the Swan homomorphism (cf. [14]). S can be described in the foliowing
way: for fc a unit mod n, S(k) [(fc, N)] where (k, N) dénotes the projective idéal
in Ztt generated by k and N.

Consider now the case of a tt with cyclic Sylow subgroups. Then /*/* 0 by
Lemma 2.1 and, by the exactness of (2.2), the transfer /* gives therefore rise to a

homomorphism

t:Ko(Z/n)-^(KoZ7r)/imS

such that pM /*, pr*:(K0Z7r)/im S-* K0(Ztt/N) denoting the map induced by

If n=pi1 • • • p£r then K0(Z/n) is a free abelian group, freely generated by
f'], 1 =^ i ^ m}. Hence there is a unique group homomorphism

such that <p(±pt) [Z/pM If we compose <p with t we get a map T=t<p which we
will also call a transfer, since it is induced by /*. For it a group with cyclic Sylow
subgroups we get therefore a commutative diagram

(X0Z7r)/im S

r (2.3)
KQ(Z/n) -£- KoiZrr/N)

We will sometimes consider K0(Ztt/N) to be the range of T; this should not give
rise to any confusion, since p?# is injective.

It is well known that if JR is a ring and M an R -module of type FP, then M
defines an élément [M] e K0R (depending only upon the isomorphism class of M)
by choosing any finite projective resolution of finite type
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and setting [M] 2(-l)l[PI]eKol?; if 0^M'->M-»M"-»0 is an exact séquence

of modules of type FP, then [M] [M'] + [M"] (cf. [1] and [11]).

LEMMA 2.4. Let tt dénote a finite group of square free order n and let M
dénote a finitely generated nilpotent Zir/N-module. Then

T(card M) [M] e K0(Ztt/N).

Proof. Notice that M is of type FP over Ztt/N and card Me w(Z[l/n]) by
Lemma 1.4. Hence T(card M) and [M] are well defined éléments of K0(Ztt/N). If
M is a trivial Z7r/N-module, then T(card M) /*cp(card M) [M] where the
second équation follows from the définition of <p, j* and [M] respectively. For the

gênerai case we choose a finite filtration of M with gr(M) a trivial Z7r/N-module.
Clearly card M card gr(M) and [M] [gr(M)]\ therefore T(card M) [M].

For the applications in the next section we will be particularly interested in

groups tt for which im S 0. The following theorem gives some information on T
for such cases.

THEOREM 2.5. Let tt dénote a finite group of order n with cyclic Sylow
subgroups. Then

(i) T 0 in case n is a prime power or n 2p, p an odd prime.
(ii) T(pi • • • pm) 0 if tt is cyclic of order pï1 • • • pk-
(iii) T(3) T(5) * 0 if n 15, and T(3) has order 2.

Furthermore, in ail three cases listed above one has im S 0, and T can therefore be

considered as a map T: u(Z[l/n])-

We will break the proof up into a couple of lemmas.

LEMMA 2.6. Let irbea cyclic group of order n. Then j* : K0(Z/rc)-> K(Ztt/N)
factors through K0(Z/n).

Proof. We may assume n>\. Let x dénote a gênerator of tt. Then IZtt is

freely generated by (1-x) over Zrr/N and hence there is an exact séquence
0-*Z7r/N-^Z7r/N-H>Z/n-*0, from which we infer that ;*[Z/n]
[Ztt/N]-[Zit/N]==0. Thus /* factors through K0(Z/n) K0(Z/n)/<[Z/n]>.

LEMMA 2.7. Let p dénote an odd prime and 7r Z/2p or the dihedral group
D2p. Then

j* 0 : K0(Z/2p)-» Xo(Ztt/N)
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Proof. We will first consider the case tr Z/2p. Since /* factors through
K0(Z/2p) which is cyclic, generated by the équivalence class of [Z/2], it suffices to

prove that /*[Z/2] 0. Let tt (x, y \ x2 yp 1, xy yx>, R=Z[(o] with w

exp (2mlp) and R[Z/2] Ztt/(1 + y + • • • yp~l) the obvious isomorphism (mapping
(o to y). Consider the pullback square of rings

Ztt —^ K[Z/2]

i i

Z[Z/2] > Fp[Z/2]

with obvious maps. Since m(JR[Z/2])-> m(Fp[Z/2]) is surjective (cf. Reiner-Ullom
[12, §7]) we get from the associated Milnor-Mayer-Vietoris séquence a mono-
morphism

Let Pc:Ztt be the idéal generated by (1-y) and 2. Then Ztt/P F2[Z/2] is

certainly cohomologically trivial and hence P is projective (cf. Rim [13]). Since

F2[Z/2]/N Z/2 we see that /*[Z/2] [Ztt/N] - [Ztt/N &„ P]. It suffices therefore
to show that [P] [Z7r]eK0ZiT. But à*[P] [(1-û^2)] [K[Z/2]] since

R/(l-ù))R=Z/p and p odd. Hence [P] [Ztt] because A* is injective, from
where we conclude that ;*[Z/2] 0. In case tt D2p we proceed in a similar way.
Notice that K0(Z/2p) is freely generated by [Z/2] and [Z/p]. From Corollary 3.5

we infer that j*[Z/p] 0 and we are therefore left showing that /*[Z/2] 0. Let
£>2P (x, y | x2 yp, yxy x>. Notice that P (1 - y)Z7r + 2Ztt is a twosided idéal
with Ztt/P= F2[Z/2], which is cohomologically trivial. Hence P is a projective
7r-module and clearly /*[Z/2] [Zir/N]-[Zw/N®wP]. In order to see that
[P] [Ztt] we consider the square of rings

Ztt -î- Kr[Z/2]

i i

ZtZ/2] — Fp[Z/2]

with R([Z/2] Z77-/(l + y + ---yp""1) a twisted group ring. By [12, §7]

u(R,[Z/2])-»u(Fp[Z/2]) is surjective and hence
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is injective. Since F2[Z/2]®W JRt[Z/2] F2[Z/2]®ir Fp[Z/2] 0 we infer that
À*[P] [R,[Z/2]] and whence [P] [Ztt] from the injectivity of A*. Therefore

;*[Z/2] 0, which complètes the proof.

LEMMA 2.8. Let tt Z/15. Then T(3) is the élément of order 2 in K0Z[Z/15].

Proof. Let ir {x,y\x3 y5 1, xy yx) and let P (x + 2)Zir + (y- 1)Ztt.
Then Ztt/P M is cyclic of order 9 with y operating trivially and x operating by
multiplication with 7 mod 9. One checks easily that M is cohomologically trivial
using the criterion of [13]. Hence P is projective. Since M/NM Z/3 as trivial
Z7r/N-module we infer that

f[Z/3] [Ztt/N] - [Ztt/N ®w P] e K0(Ztt/N).

Notice that im S 0 since ir is cyclic. Hence we can think of T(3) to be the
élément [Z7r]-[P]eK0(Z7r). Recall that K0Z7r Z©Z/2 by Kervaire-Murthy
[7]. Since P is projective of rank 1, it remains therefore to prove that [PjVO in
K0(Ztt) Z/2. For this we consider the pullback square (with obvious maps)

Ztt > R[Z/3]
i i

Z[Z/3] > F5[Z/3]

where R Z[exp (2iri/5)]. The associated Milnor-Mayer-Vietoris séquence yields
a map

d:M(F5[Z/3])->K0Z[Z/15]

By [7] a factors through w(F5(û>)) Z/24 where F5(û>) is the field
F5[Z/3]/(l + x + x2), a) is the residue class of the generator x e Z/3. Furthermore, d

is surjective (cf. [7]). Notice that K[Z/3]®7rM 0 and therefore P'
K[Z/3](8)^P K[Z/3]. Furthermore P" Z[Z/3] ®^ P c Z[Z/3] is the principal
idéal generated by (jc + 2). Hence (cf. [9])

P {((x -h 2)a, 6) € Z[Z/3] x JR[Z/3] | (x + 2)5 6 € F5[Z/3]}.

Notice that x + 2g u(F5[Z/3]) corresponds to (3, ù> + 2)e u(¥5)x u(F5((o)) under
the obvious isomorphism F5[Z/3]= F5 x F5(o>). It follows therefore that d(x + 2)

d(ca + 2) [P]" and, since (w + 2) has order 24 in w(F5(û>)), we conclude that [P]~

must hâve order 2. This complètes the proof of the lemma.
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We can now complète the proof of Theorem 2.5: First, if n is a prime power,
7T (having cyclic Sylow subgroups) is necessarily cyclic and therefore
/* : K0(Z/n)-*K0(ZTr/N) factors through K0(Z/n) by Lemma 2.6. But K0(Z/n) 0

for n a prime power. Hence T^O in this case. If n 2p, p an odd prime, then
7r Z/2p or D2p and it follows from Lemma 2.7 that T 0. Thus (i) holds.
Assume now that tt is cyclic of order [] P*1 w. Then T([] pt) fcpQl p,) f[Z/rc]
0, since /*[Z/n] 0 by Lemma 2.6. Therefore (ii) holds. For (iii) notice that in
case n 15, tt is necessarily cyclic. Hence, by applying Lemma 2.6, /*[Z/3]
-;*[Z/5] or T(3) -T(5). Moreover T(3) has order 2 by Lemma 2.8 and
therefore T(3) T(5) # 0. Finally im S 0 for ir cyclic or tt D2p, p an odd prime
(cf. Ullom [16]) and hence imS 0 for the groups considered in (i)-(iii) of
Theorem 2.5.

3. Applications to homologically nilpotent spaces

Following [3] we call a connected space X homologically nilpotent, if
opérâtes nilpotently on H,X for ail i. In particular, if X is a nilpotent space, then
X is homologically nilpotent and conversely, a homologically nilpotent space X is

nilpotent if and only if ttxX is a nilpotent group (cf. [10]). Let HJ(X; IZtt)
dénote the homology of the (left) Z7r/N-complex IZTr®^ C*X, where tt= ttiX;
similarly for HJ(X; Ztt/N).

LEMMA 3.1. If X is homologically nilpotent with ir\X of finite order n, then

H?(X;IZtt) and H7(X;Zir/N) are nilpotent Ztt/N-modules for ail i. If, in
addition, n is square free and X finitely dominated, then H?(X; IZtt) and

H?(X; Ztt/N) are of type FP over Ztt/N.

Proof. Consider the long exact homology séquence associated with the exact

séquence of chain complexes 0—> JZtt®,,. C#X-»ChcX-» C*X->0. Standard
results on nilpotent actions (cf. [6, Chapter 1.4]) imply then that H^(X; IZtt) is

a nilpotent 7r-module. Since the 7r-action on H?(X; IZir) factors through Ztt/N,
we conclude that H?(X; IZtt) is a nilpotent Zir/N-module. If X is dominated by a

finite complex and ttxX finite, then certainly H7(X; IZir) is a finitely generated
Z7r/N-module. Hence, by Lemma 1.4, H?(X; IZtt) is of type FP. The proof for
H7(X;Ztt/N) is similar, using 0-^ C*X-> C^X-^Ztt/N®^ C*X->0.

LEMMA 3.2. Let X be a finitely dominated homologically nilpotent space with
finite fundamental group of order n and let H#(X, X) dénote the homology of the

mapping cylinder of X-^Xmod X. Then the groups H?(X, IZw) and Hl+1(X, X)
hâve the same finite cardinality c(i) for i^0, and c(i) is a unit in Z[l/n].
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Proof. Since H?(X; JZtt) is a finitely generated nilpotent Z7r/N-module, it has

by Lemma 1.4 a cardinality c(i) which is a unit in Z[l/n]. From long exact
homology séquences it is obvious that c(i) is also given by

c(i) (card coker (Hl+1X-> Hl+1X)) • (card ker (HtX^> HtX))

which equals card Hl+ï(X, X).
It follows that for X as in Lemma 3.2, the rational number

p(X) card Hodd(X, X)/card Hev(X, X)

is a well defined unit in Z[l/n]. This unit p(X) is related to the finiteness
obstruction wXgXqZttiX of Wall (cf. [17], [10]) in the following way.

THEOREM 3.3. Let X be a homologically nilpotent space with non-trivial
fundamental group tt of square free order n. Suppose further that X is dominated by

a fïnite complex and let wX dénote the image of wX in (K0Z7TiX)/im S. Then

Tp(X) wX

If X is in addition nilpotent (i.e. ttiX is cyclic) then

(i) Tp(X) wX, and

(ii) wX 0 in case p(X) is a power (positive or négative) of n.

Before proving Theorem 3.3 we will establish a différent way of Computing
p(X).

LEMMA 3.4. Let X be as in (3.2) and let HJ(X; Ztt/N) dénote the homology
Then

p(X) card Jf?v(X; Z7r/N)/card HJdd(X; Ztt/N)

Proof. We may of course assume that n card ttiX> 1. Since H*(X;Q) is

semisimple and nilpotent as Tr-module, we hâve H*(X; Q) H#(X; Q) and there-
fore the Euler characteristic of X vanishes. Thus, for ail primes p, #P(X)
X(-l)1 dimH,(X;Z/p) 0. Since n is square free, we infer then that

card Jfev(X; Z/n) card Hodd(X; Z/n).



386 G MISLIN

The long exact homology séquence associated with the exact séquence IZtt—>
Z<rr/N^>Z/n then yields

card H£(X; Z7r/N)/card H£dd(X; Ztt/N)
card H:V(X; IZ7r)/card H£dd(X; IZtt)

from where the resuit follows, using Lemma 3.2.

Proof o/ Theorem 3.3. Let pr#:Ko(Z7r)-*Ko(Z7r/N) be the map induced by
the projection. If C* dénotes a chain complex of type FP, homotopy équivalent to
the singular complex of X, then pr*wX X(-l)l[Z7r/N®7r CJ. Since

HT(X;Ztt/N) is of type FP (cf. Lemma 3.1) we infer that (cf. [11])

X (-D'tZir/N®, CJ= I (-1)'[HT(X; Zir/N)]

and therefore, since [H7(X;Ztt/N)]= T(card HT(X;Zit/N)) by Lemma 2.4, we

get

wX T(card H?V(X; Z7r/N)/card H£dd(X; Ztt/N)) Tp(X).

In case X is in addition nilpotent, ttiX is necessarily cyclic and therefore im S 0.

Hence Tp(X) wX in this case. Furthermore, if p(X)=nk, we conclude from
Theorem 2.5(ii) that wX= T(nk) 0. This complètes the proof of Theorem 3.3.

As a first application we will prove the following algebraic resuit, which is used

to prove Lemma 2.7.

COROLLARY 3.5. Let tt dénote the dihedral group D2p, p an odd prime. Then

/*[Z/p] 0 g K0(ZD2p/N).

Proof. By Theorem A [14] there is a finite simplicial complex X of the

homotopy type of S3 on which D2p acts freely and simplicially. Let X X/D2p.
Then

(0,
if i 0, 2

Z/2, if î l
Z/2p, if i 3

Thus p(X) 4p. Since X is a finite complex with trivial action of ttiX on H#X, we
infer that wX 0 and therefore T(4p) 0. We hâve already observed in course of
the proof of Lemma 2.7 that ;*[Z/2] 0. Hence

/*[Z/p] /?[(Z/2)0(Z/2)0(Z/p)] T(4p) 0.
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Recall that two nilpotent spaces X and Y of finite type are of the same genus
(cf. [6]) if their p-localizations Xp, Yp are homotopy équivalent for ail primes p. In
[10] one finds an example of two finitely dominated nilpotent spaces X and Y of
the same genus with fundamental groups of order 8 such that wX^ 0 but wY 0.

For fundamental groups of square free orders, such an example is impossible.

Namely one has

COROLLARY 3.6. Let X and Y be two finitely dominated nilpotent spaces of
the same genus, with non trivial fundamental groups of square free order n. Then
p(X) p(Y) and wX, wY hâve the same finite orders.

Proof. Notice that ttiX and ttx Y are abelian and whence 7TiX=7TiY, since X
and Y are of the same genus (cf. [6]). Furthermore, there are for ail primes p
commutative diagrams

Y YvVp lp

with the horizontal maps being homotopy équivalences. Thus

Ht(X, X; Z(p)) H,(Xp, Xp; Z(P>) H,( Yp, Yp; Z(p>)^^(Y, Y; Z(p))

and therefore H,(X, X) JFf,(Y, Y) since the groups Ht(X,X) and H,(Y, Y) are
finite. Hence pX pY and, since ttiX^ttiY, it follows from Theorem 3.3(i) that
wX and wY hâve the same orders; the orders must be finite, because X and Y
must hâve vanishing Euler characteristic (cf. proof of Lemma 3.4).

Another application of Theorem 3.3 is the foliowing vanishing theorem for the
Wall obstruction.

COROLLARY 3.7. Let X be a finitely dominated homologically nilpotent
space with fundamental group of order p or 2p, p a prime. Then wX 0 and X is

therefore of the homotopy type of a finite complex.

Proof. First consider the case p 2. By a resuit of Frôhlich (cf. [5, Theorem
6(i)]) we infer that KqttiX 0 and, since the Euler characteristic of X is

necessarily 0 (cf. proof of Lemma 3.4), it follows that wX 0. Second, let p
dénote an odd prime. Then we may apply Theorem 3.3 and obtain Tp(X) wX.
Since T=0 and im S 0 for the ttxX in question (cf. Theorem 2.5), we infer that
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It is sometimes possible to compute p(X) directly from H*X, giving rise to a

particular simple formula for wX. We will treat one such case in the next section
and plan to treat other cases in a forthcoming paper.

4. The Wall obstruction for Ji-spaces

We want to prove the Theorem II mentioned in the introduction.
Suppose X is a space with ©H,(X;Z) finitely generated and let p dénote a

fixed prime. Then we write

XP(X, 0 1 (-1W, ft dira H,(X; Z/p)

for the Poincaré polynomial of X with respect to Z/p. Define

and, in case iriX has finite order n, define

pin

THEOREM 4.1. Let Xbe a finitely dominated nilpotent space with fundamen-
tal group 7T of square free order. Suppose that H7(X; IZtt) is a trivial ir-module for
ail L Then

Proof. We may assume that 7T5*{1}. Let x dénote a generator of the necessar-

ily cyclic group tt. Then there is a exact séquence of Z7r/N-modules

where n dénotes the order of tt. Since (1-x) induces 0 in HÏ(X;IZtt), the

associated long exact homology séquence breaks up into short exact séquences

0-* H7(X; IZtt)-* H,(X; Z/n)-* HT-i(X; IZir)-* 0
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for i^O. Since H7(X; IZtt) is a trivial Zir/N-module and n is square free,
H?(X; IZtt)(8)Z(p) is a Z/p-vector space. Define

ft dim Ht(X; Z/p), % dim Hr(X; JZtt)(8)Z(p).

Then

7. ft - 7.-1 ft ~ ft-i + • • • + (-l)'ft>

and

where m dénotes the largest integer k with j3k 5* 0. Hence

Since X is homologically nilpotent with non-trivial finite fundamental group, the
Euler characteristic of X is 0 (cf. proof of Lemma 3.4) and hence xP(X, -l) 0.

The above équation reduces therefore to

Hence card H^(X; /Z7r)/card Hodd(X; IZ7r) l\p/npe*(x) e(X) and therefore

In order to prove that for an H-space X the tt-opération on H*(X; TLtt) is

trivial, we will need the foliowing lemma.

LEMMA 4.2. Let X be an H-space and a e irxX. Then the induced covering
transformation a*:X—>X is equivariantly homotopic to the identity.

Proof. Without loss of generality we may assume that the H-structure ix:Xx
X—>X has the base point as a strict identity. Equip X with the canonical
H-structure fi. Then pr~l{*) is a central subgroup of (X, fi), naturally isomorphic
to ttiX. We may thus think of a as an élément of pr^i*) which acts on X by left
multiplication. Choosing a path from aepr'1^) to * we get a homotopy of the
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map a* to Id, which is equivariant with respect to the 7r:lX pr~1(*)-action,
because pr'1^) is central.

COROLLARY 4.3. If X is an H-space, then H*(X; IZtt) is a trivial Ztt/N-
module.

This is clear since by 4.2, the opération of a e ttiX on C*X is chain homotopic
to Id as map of TTiX-complexes, and therefore the induced action of a on
IJjtt ®,r C#X is chain homotopic to Id.

Proof of Theorem II of the Introduction. If X is of rank 1, then X is équivalent
to one of the spaces S1, S3, S7, RP3 or RP7 (cf. Browder [2]). Hence wX 0 in
thèse cases. If rank (X) ^ 2, then *P(X, t) contains a factor (1 - rni)(l - tn*) with nx

and n2 odd. Therefore

for ail primes p. In particular we obtain e(X) l and, since H^(X;IXtt) is a

trivial 7r-module for ail i we infer from Theorem 4.1 that p(X) e(X). Hence

wX=Tp(X) 0.

5. Appendix

If X dénotes a homologically nilpotent space with finite fundamental group,
then there is a simple criterion for deciding whether X is dominated by a finite
complex.

THEOREM 5.1. Let X be a homologically nilpotent complex with finite
fundamental group. Then the following are équivalent.

(i) X is dominated by a finite complex
(ii) Ht(X;Z) and Ht(X;Z) are finitely generated abelian groups for ail i and

zéro for i sufficiently large.

Proof. Certainly (i) implies (ii). If (ii) is given, then from [3, Corollary 3.4] we
infer that X has the homotopy type of a finite dimensional complex. Since ZttiX
is noetherian and Ht(X; Z) finitely generated for ail i, Theorems B and F of [17]
imply that X is dominated by a finite complex.

A more gênerai resuit of this type in case X is nilpotent was proved in [11].
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