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Comment. Math. Helvetici 52 (1977) 357-371 Birkhiuser Verlag, Basel

On the Banach algebra A(I') for smooth sets I’ = R"

By YNGVE DoOMAR

0. The main part of this investigation is devoted to the problem of estimating
le"||acry,ast—>.Here te R,I'< R",and f e A(I')isreal-valued. A (I')is the quotient
Banach algebra A(R")/I(I'), where I(I') is the ideal in A(R")=%L'(R") of all
functions, vanishing on I'. We shall discuss only very regular situations. I" is thus
in general a well-behaved compact subset of a smooth manifold in R", an interval
on R, a curve in R", a surface in R® etc.,, and f has high differentiability
properties. In order not to complicate the discussion and obscure the principal
ideas, we shall be very generous with our regularity assumptions. Thus we assume
that all manifolds and functions f involved are infinitely differentiable. It can
however be shown that each particular result holds as well, if we only require
differentiability up to a certain order. The principal object of our work is to show
that very simple, straightforward and seemingly rough methods give very precise
estimates. In the concluding section we show how our results can be used to
determine, for the sets I' considered, all those homomorphisms of A(R") into
A(T'), which are given by C” mappings of I" into R".

1. Let I' be a compact interval of R and let fe C”(I') be real-valued. The
following theorem is well known, even under much weaker differentiability
assumptions on f:

THEOREM 1.1. If f is non-linear, there are positive constants C; and C, such
that

Cit'? =|e™||am= Cot'?, (1.2)

for t=1. For f linear, ||| =1 for every teR.

The inequality to the left in (1.2) is due to Leibenzon [9], while the right hand
inequality is an easy corollary of the inequality of Carlson [1]. We shall give a
proof of Theorem 1.1, not the shortest one, but a proof which can serve as a
model for the deduction of estimates in more general situations.
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358 YNGVE DOMAR

Proof of Theorem 1.1. The only non-trivial part is the proof of (1.2) for
non-linear f. Let us start with the inequality to the right. Instead of applying
Carlson’s inequality, we base the proof on three elementary observations.

Firstly, we observe that a partitioning of the unit in A(I") shows that it suffices
to prove that there exists a constant C such that

le“law=C, (1.3)

for every subinterval I', < T" of length t~'/2.

Secondly, the norm of a function in any algebra A(E), E<R", does not
change after multiplying the function with a constant of norm 1 or with a bounded
continuous character on R" (restricted to E). Hence, with x, denoting an endpoint
of I', and x standing as symbol for the variable, we obtain

lle itf”A(r,) = ||exp (it(f(x) = f(x0) — (x — x0)f '(xo))”A(r,)
= [lexp (it(x — x0)> gy xo(x — xo)|| acry»

where g, € C*([0, t*/*]), and where g, and all its derivatives have bounds that
are uniform in t and x,.

Thirdly, the norm of a function h in any Banach algebra A(E), E <R", is not
affected by affine bijections of R" and corresponding mappings of E and h. Thus,
putting x = xo+ ut~ "%, with u as new variable, we obtain

|lei‘f”A(I}) - “exp (iu28t7xo(ut—1/2)I|A([0, 1]

But the right hand member is the norm of a function on [0, 1], bounded uniformly
in xo and ¢, for t=1, as well as all its derivatives. Hence (1.3) is proved.

To prove the left inequality of (1.2) we observe that the assumed non-linearity
of f implies the existence of a subinterval I’ < I" of positive length where f” does
not vanish. Let ¢ € Z(R), with Supp (¢)<=I" and fg ¢ dx=1. We consider the
function t[;e—“f, defined as 0 outside I, as an element in the Banach space
PM(R) =%L"(R) of pseudomeasures on R. It follows from the definition of the
norm in A(I') that

1= [ ey () dx =l acr e W lonn (14)
r

Thus the left inequality of (1.2) follows with C; = C', if
le” " Wllome = Ct 12, (1.5)

t=1, for some C. (1.5) can be deduced from the lemma of van der Corput [2]. We
shall, however, apply a more general lemma, Lemma 1.6 below, which is needed
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in later discussions. It is well known that lemmas of this general type exist. This
particular formulation is due to J.-E. Bjork (personal communication). We omit
the proof of the lemma, since it is fairly close to van der Corput’s proof.

LEMMA 1.6. Let [a,b] be a compact interval on R, and e P(]a, bl),
ke CP([a, b]) with

0< Ci=|k'(x)|+|k"(x)|+" - - +|kP(x)|=< Cy,

if xe[a, b], where C; and C, are constants and p a positive interger. Then there
exists a constant C not depending on k, such that

< Cs——l/p,

b
J eiSk(x)dl(X) dx

for every s> 0.
In order to prove (1.5) we first observe that its left member is, by definition,
the L™ norm of the function with values

J‘ ~exp (—itf (x) — iux)P(x) dx, uekR,

with the Fourier transform defined properly. Taking s=t+|u|, we can apply
Lemma 1.6 with [a, b]=1", p=2, and

k(x) = _Et fR)-2x  xel,

Ci=__ Min__ ([(1=[rDf'G)+r[+(A=[rDIf" ()],

a=x=sb, —l=sr=
C =1+ sup (f (0] + ().
From this we obtain (1.5).

2. Now we assume that I' is a curve in R? representable as the graph of a
real-valued function ge C”([a, b]), where —o<a<b<x. As always we have
fe C™(I'), and f is real-valued.

THEOREM 2.1. Let I" have non-vanishing curvature. If f is not the restriction
of a linear function on R?, there exist positive constants C; and C, such that

C1t1/3 s"e"f”A(r)S C2t1/3, (2.2)

for t=1. If f is the restriction of a linear function, then |le|| sy = 1, for every teR.
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Proof of Theorem 2.1. The only non-trivial part is the proof of (2.2). A
detailed proof of the right hand inequality has been given in [5], and we shall here
give only a brief outline. The proof uses the same technique as the corresponding
proof in Section 1. This time we observe that it suffices to obtain a uniform bound
for

le™ || (2.3)

where T, is the graph of g, restricted to a subinterval I, <[a, b] of length t™'".

Denoting by x, an endpoint of I,, we can now use the assumption g”"# 0 and the
presence of a two-parameter family of bounded characters to obtain

le™ llacro = llexp (it(x — X0)° gxo(x = Xo)acry,

where g.,, has the differentiability and boundedness properties specified in
Section 1. The transformation x = xo+ ut_ "> proves the uniform boundedness of
(2.3).

To prove the left inequality, we first observe that there is a subinterval
[a’, b']<[a, b], of positive length, where the function h = feog satisfies the condi-
tion

,hlll gﬂl' # 0' (2'4)
h" g

For otherwise the condition g”# 0 implies that h” and g" are linearly dependent,
i.e.

h(x)=Ax+Bg(x)+C, x €[a, b],

for some constants A, B and C. But this means that f is the restriction to I" of the
linear function

(x,y)>Ax+By+C, (x,y)eR>.

Choosing [a’, b'] as above we can now continue as in Section 1. Let ¢ € Z(R)
with Supp (¢) =[a’, b'] and with fg ¢(x) dx =1. u is the Borel measure on I" for
which the projection on the x-axis is the Lebesgue measure multiplied with . We
consider u as a pseudomeasure on R? and obtain

b
1= [ e sy ) ax = e du <l acole™ il
a

Thus it suffices to show that

Ile'"f d}L”pM(R2) = Ct-1/3, (25)
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t=1, for some constant C. But the left member is the supremum of the absolute
value of

J exp (—itf(x, y) — iux —ivy) du(x, y)
b
= J exp (—ith(x)— iux —ivg(x))y(x) dx,

as (u, v) e R®. Taking s = t+|u|+|v|, and observing the relation (2.4), we can apply
Lemma 1.6 with p=3 and

PR
k()= = h(x) == x = g(x),

and this gives (2.5).

Remark. Theorem 2.1 has analogues for curves in R”, n =3, now with '/
g

replaced by ¢ /" As for the right hand inequality we refer to [5]. The
inequality to the left can be discussed as in the proof of Theorem 2.2, using
Lemma 1.6.

3. In this and the next section we are concerned with cases when the dimension of
I' is two or higher. In order to avoid complications at the boundary of I" we prefer
to change our setup in the following way.

Let 2 be a C” manifold in R" and f a real-valued function in C*(£2). We say
that a positive function M on [1, [ is a majorant if, for every compact K < {2,
there is a constant C >0 such that

le™||.axy= CM(1), (3.1

t=1. A positive function m on [1,o] is a minorant if there exists a compact
K< and a constant C>0 such that

le|lax)= Cm(t), (3.2)

t=1.
In this section we assume that {2 is an open non-empty subset of R?, and
denote by k the maximal rank in 2 of the Hessian

e 7

Then the following theorem holds.
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THEOREM 3.3. The function t—t**, t=1, is both majorant and minorant.

Proof of Theorem 3.3. We first prove that the function is a majorant. In the
case when k =0, all second order derivatives of f vanish, and thus f is linear on
every component of (2. It is obvious that the theorem holds in this case. In the
discussion of the case when k =2, it suffices to consider the case when K is a
square contained in {2. We can then argue exactly as in the proof of Theorem 1.1.
By a partitioning of the unit it follows that it suffices to show that

|le "f”A(K,)

is uniformly bounded for the family of squares contained in K, with sides parallel
to the sides of K, and with side length t™'%>, t=1. The proof of this is quite
parallel to the corresponding part of the proof of Theorem 1.1, and is omitted
here.

The proof that M(t)=t"? t=1, is a majorant when k=1 is similar, but is
more complicated. If suffices to show that every given point P = (xo, yo)€ {2 has a
compact neighborhood K such that (3.1) holds for some C.

We shall use a result of Hartman and Nirenberg [6] (Theorem A), which states
that the surface z=f(x, y) in R? is locally developable at P when k=1, in the
following sense: There exists an ¢ >0 and a continuous real function h on [—¢, €]
such that the line segments

L, = {xo— s sin h(s)+ v cos h(s), yo+s cos h(s)+v sin h(s)) | ve[—¢, €]},

s €[—¢, €], are disjoint and have a compact neighborhood K of P as their union,
and are such that the tangent plane of the surface is common for all (x, y, f(x, y))
with (x, y) on the same segment L,. The property that the segments L, are disjoint
implies evidently that h is Lipschitz continuous. This implies that if ¢ is chosen
small enough, we have for every so€[—¢, €] and t=1, that

K.= U L

‘S “SolS "”2

is contained in the rectangle

R, ={(xo— s sin h(so)+ v cos h(so), yo+ s cos h(so)+ v sin h(so))]
||s —sol <2677, |v| =26},

whereas

Js—sol=5¢1/2
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is disjoint from the rectangle
Sts0 = 2Ry 5, (X0 = 50 8in h(so0), yo+ 5o cOs h(s0)).

Now there exists a constant C, such that we can find, for every choice of t=1 and
so€[—e¢, €], a function ¢ € A(R?), with ¢(x, y)=1 on R,,,, ¢(x, y)=0 outside S, ,,
and ||¢|lar? = Co. These functions can be used for a partitioning of the unit, and
this shows that

leiam,=<Ct™ "2, t=1,

for some C, follows if we can find a constant C; such that

”eitf“A(Kt,so) = ”enf“A(Rt,sd = Cl’ (3.4)

for t=1, soe[—¢, €]
Using the properties of the tangent plane of z=f(x,y), we obtain for
(x’ y) e Rt,S(),

d(x, y) = f(x, y) = f(xo— S0 sin h(so), yo+ so cos h(so))
— (x — X0+ So sin h(so))f x(xo— So sin h(So), Yo+ So cos h(so))
—(y — yo— So cos h(so))fy(xo— So sin h(So), yo+ So sin h(so))
= ((x — xo) sin h(s0) = (y — o) cos h(so)+ s0)”
8:.s,(x — X0+ 50 sin h(se),y — yo + o cos h(so)),

where g, is bounded uniformly in ¢t and s, as well as all its partial derivatives.
Hence by the affine transformation

&= ((x — xo) sin h(s)— (y — yo) cos h(s)+ so)t*
1 = (x — %) cos h(s)+(y—yo) sin h(s),

we obtain as in the earlier sections

le* N, = €™ ack,s, = lexp (i€ huulét™ Mllacs)

where S =[-2,2]X[—2¢,2¢], and where h,, is uniformly bounded in ¢ and s, as
well as all its partial derivatives. Hence (3.4) holds.

In the proof of our claim that t—¢“? t=1, is a minorant, it suffices to
consider the case when k=1 or 2. We first observe that there is a non-empty
open subset 2, of 2 where the maximal rank of the Hessian is attained at every
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point. We form a function g € 9 (R?) with support contained in (2, and satisfying

JJ Ydxdy=1.

R2

e is considered as a pseudomeasure on R?, vanishing outside (2. Arguing as in
Section 1 we find that (3.2) holds with K =supp (¢), m(t) =1, if for some C

e |lprrery = Ct™*72, (3.5)

for t=1. But on Supp (¢), the minimal rank of f is k, and hence (3.5) follows
from the following lemma, easily deducible from the results in Littman [10] (cf.
[11] and [4] p. 295).

LEMMA 3.6. Let K be a compact subset of an open set U< R". Yy € P(K), and
h e C*(U). For some 8 >0 we assume at every point of U that at least k eigenvalues
of the Hessian of ¢ have absolute value =38. Then there exists a constant C such
that, if e~ ™" is defined as 0 outside K,

e ™" lorrcrny = Ct™*.

The constant C depends on K, U, ¢, k, 8, and of the bounds of the partial
derivatives of h of all orders.

Remark. Theorem 3.3 has extension possibilities to the case when (2 is an
open non-empty subset of R" and k is the maximal rank of the Hessian of the
real-valued function f e C™(£2). By the same arguments as in the later part of the
proof of Theorem 3.3, we find from Lemma 3.6 that t— "2 t=1, is a minorant.
The function is also a majorant in all cases when the first part of the proof can be
copied, i.e. if we have a local representation corresponding to the local developa-
bility, now by a k-parameter family of (n — k)-dimensional affine manifolds.

4. In this section we study the case when {2 is a C” surface in R>, of non-
vanishing Gaussian curvature. We restrict ourselves to the situation when {2 is the
graph of a real-valued function g, defined and infinitely differentiable on some
open subset U of R®. Then the Hessian of g has rank 2. f is a real-valued C”
function on (2. We can thus think of f as a C” function on U. For every (x,y)e U
and A e R, R, (x, y) denotes the rank of the Hessian of the function f—Ag on U,
and

k = Max Min R,(x, y). 4.1)

(x, y)EU AER
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Since the Hessian of g has rank 2, the subset of U where the maximum in (4.1) is
attained is an open set U,. It is easy to see that k <1 if £ has positive Gaussian
curvature. k =2 for instance if U=R? g(x, y)=x>-y? f(x, y)= xy.

THEOREM 4.2. In the sense precised in Section 3 t—t**, t=1, is both
majorant and minorant, if k=0 or 2. If k=1, t—1t>°, t=1, is a majorant and
t—t"?, t=1 is a minorant, and there are examples when the first function is a
minorant and other examples when the second function is a majorant.

Proof of Theorem 4.2. Let us first consider the case when k =0. Then there
exists a function A on U such that

fox = A8, fey = A8xys fiz = Agyy

for every (x, y)e U. Since the Hessian of g has rank 2, A € C*(U). Taking the
partial derivatives, we obtain

Ay&ux = Ax8xys Ay8ry = A8y

and since the system has non-vanishing determinant, we find that A is constant on
every component of U. Hence

f(x, y)=2ag(x, y)+ Ax+ By +C,

on every component, for properly chosen constants A, B and C, which shows that
f is, on every component, restriction of a linear function on R>. It follows from
this that the function with constant value 1 is a majorant, and it is trivially a
minorant.

We continue with the cases k=1, 2. Let C be a compact subset of U, and K
the corresponding compact subset of 2. We have

lelaco=<lle|acc (4.3)

where in the left hand member f is considered as function on K <R?, and in the
right hand member f is considered as function on C = R?. This is seen by choosing
extrapolations of f to the left, which only depend on (x, y). Hence it follows from
Theorem 3.3 that t—t is always a majorant. Furthermore, choosing U =R?,
f(x, y)=x? g(x,y)=x>+y>, we have a case when k =1, and since the maximal
rank of f is 1, it follows as above from Theorem 3.3 that t— ' is a majorant.
As for the majorant properties claimed in the theorem, it only remains to
prove that t—t>°, t=1, is a majorant when k =1. It suffices to show that

t"%le || acs), t=1, (4.4)
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is bounded for every fixed square S < U with sides parallel to the coordinate axis.
Here the norm in (4.4) is interpreted in the same sense as the right hand member
of (4.3). By a partitioning of the unit we find that it suffices to show the existence
of a constant C such that

le™ |l (5.9 = Ct, (4.5)

for every square S,, ,, < S with center xo, yo, with side length t~'%, and with sides

parallel to the coordinate axis. At every (xo, yo) there exists a Ao such that the
Hessian of f—Aog has rank =1. By the assumptions on g, the values of A, are
uniformly bounded in S. Thus, for every (xo, yo) we have a representation

f(x, y)— Aog(x, y)= A+ Bx+ Cy + D(E(x — xo) + F(y — y0))°
+ Gt,xg,yo(x — X, Y )70)»

(x’ Y) € St,Xo,ym

where A, B, C, D, E, F are uniformly bounded, and where G,,,,, has uniformly
bounded partial derivatives of all orders, and where

G ixoy0(& M) = O((E2+1%)*?),

as (£, m)—0, uniformly. Thus, by the same arguments as in the earlier proofs,

|4 Susq. e = llexp (it(D(E(x = x0) + F(y = ¥0))* + Girx0,3o(X — X0, ¥ = Yol (51000)
=|lexp (it'>(D(E£ + Fn)® exp (itGx, 5,(t & 7 0))acs)»

where S, is the square with corners (£3, £3). By the submultiplicativity of the
norm in A(Sy),

e |as.ore = llexp it > D(EE+ Fn)lacsy - lexp (itGixo.yo(t €170 4 cs0-

The first factor is < Ct"’®, for some constant C. This is seen from Theorem 3.3, or
from Theorem 1.1, or by a direct estimate. The function in the exponent of the
second factor is uniformly bounded and so are all its partial derivatives, hence the
second factor is bounded. Thus (4.5) is proved, and we have shown that t— ¢>/° is
a majorant, if k=1.

The discussion of the minorant properties can be performed as the corres-
ponding parts of the proofs of Theorems 2.1 and 3.3. We fix ¢ € 2(R?) with

L= Y(x,y)dxdy=1,

and Supp (¢) included in the set U, (the open set where k is attained). u is the
measure on {2 for which the projection into the xy-plane is the Lebesgue measure
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multiplied by ¢. Arguing as before we find that it suffices to show that

lle™ dpllpmms = Ct ™72, (4.6)

t=1, for some constant C. But the left hand member is the supremum of the
absolute value of

L exp (—itf(x, y) —iux —ivy —iwg(x, y)¥(x, y) dx dy,

as (u, v, w) € R>. The rank of the Hessian of the exponent is =k on U,, and the
rank of the Hessian of g is 2. Using Lemma 3.6 one sees directly that (4.6) holds.

Now it only remains to give an example when k=1, and t—t>'°, t=1, is a
minorant. We take U=R?, f(x, y)=x*+x’—y>+y>, g(x, y)=x>+y2 It suffices
to prove that

e laky,  t=1,

has a positive lower bound, if S is the closed square with corners (+1, = 1), and

K={(x,y), g(x, y))| (x, y) € S}

By the usual arguments it suffices to show that for some ¢ € @(R?) supported by S
and with

L P(x, y)dxdy=1,

L exp (—itf(x, y) — iux — ivy — iwg(x, y))¥(x, y) dx dy ‘ =S,

for some C, when (u, v, w)eR’, t=1. We choose ¥(x, y) of the form ¢(x)¢(y),
where ¢ € @(R), and find that we have to prove that the product of

Alt,u, w)= Un exp (—it(x*+x>)— iux —iwx?)ep(x) dx

and
B(t, v, w)= HR exp (—it(—y>+y’) —ivy —iwy*)e(y) dyl

is <Ct™'°. By Lemma 1.6 there exists a constant C, such that
A(t,u, w)=GCot™"?,  B(t, v, w)=Cot .
By the same lemma, we have, for some constant C;

Al u,w)=Cyit ", if tw=0,
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and
B(t,v,w)=Cit7'%, it tw=0,
and hence
A(t,u,w) - B(t, v, w)= CoCyt'®
is proved. This concludes the proof of Theorem 4.2.

5. Here we collect some minor observations, which may illuminate the earlier
theorems.
A. Let I' be the graph of the function g, defined by

e x>1
g(x)= 0, —1=x=1
e+ x<—1

If x is considered as parameter on I, and f on I' is defined by

277V x>1
f(x)=10, -1=x=1
e x<-—1.

Then f is locally at each point of I' the restriction of a linear function on R>.
Hence there exists a constant C such that

”eitf”A(F) = C7 t= 19 (51)

although f itself is not the restriction of a linear function on R>.

B. We shall now give a set I'< R? and a function f on I such that (5.1) holds
while f is not even locally a restriction of a linear function on R>.

Let I'= G U H, where

G={(xy)|lx|=1,y=gx)}

where g is real, ge C™([—1, 1]), g(0)=0, g’ positive, g"(0)# 0, and where
H={(x,0)||x|=1}.

Let

e, (x,y)eG

flxy)= {1, (x,y)e H.
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Then there is no neighborhood of (0,0) where f is the restriction of a linear
function. But it is easy to prove that

lelaqm=3 for every teR.
C. Let us now change the setup of Example B so that H instead is defined by
H={(xy)||x|=1,y=h(x)}

where h is real, he C*([—1, 1]), h(0) = h’(0)=0, h"(0) # 0. Then we have instead

lle™llacry—>°, (5.2)

as t—»oo,

We shall show this by an indirect proof. If the norms in A(I') of " are
bounded, as t—, we can find a sequence (t,)7, tending to infinity, and extensions
(g,)7 of e to R® such that (g,)7 converges weakly* in B(R?), where B(R?®) is
considered as the dual of the Banach space X of Fourier transforms of functions
in Co(R?). We denote the limit function by F.

Let ¢ € 2(R) have support in the set where g”#0, and let u be the measure
on G for which the projection on the x-axis has density function ¢. Then, by
Lemma 1.6, u € X, for its Fourier-Stieltjes transform g is given by

it u)= L exp (—itx —iug(x))y¥(x) dx, teR.

Thus
0=1lim fi(t, 0)= lim (g,, p) =(F, u)= L F(x, g(x))¢(x) dx.

Varying ¢, we find that F vanishes in a neighborhood of (0, 0) on G. By a similar
argument we find that F takes the value 1 on H in a neighborhood of (0, 0). The
continuity of F gives a contradiction.

6. Let 'cR" be compact, and let a« be a C” function from I" to R™. We are
interested in the problem to determine those functions a which give a
homomorphism of A(R™) into A(I') in the sense that ge A (R™) implies that

goacA(l). Let (a1, az, ..., a,) be the representation of a by its real-valued
components. Then the following theorem holds.

THEOREM 6.1. a gives a homomorphism of A(R™) onto A(I') if and only if
lle™ |l teR, (6.2)

is bounded as t—, for every i=1,2,...,m.
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Proof of Theorem 6.1. If a gives a homomorphism, the closed graph theorem
shows that

lg ° allac= Cllgllamm,

for some constant C. Choosing g such that ge A(R™), g(x) =e™™, x € I', where x;
is the i-th coordinate of x, we find that (6.2) is bounded. Conversely, if (6.2) is
bounded for every i, ||g ° allar) is uniformly bounded for all g which are bounded
continuous characters on R™, and it follows from this directly that a gives a
homomorphism.

Theorem 6.1 shows that, with arbitrary m, and with I" chosen as in Theorem
1.1 or 2.1, or as in Example C of Section 5, then only linear functions a give
homomorphisms. The same holds if I' is a compact subset of the manifold 2 of
Theorem 3.3 or 4.2, but now assumed that a can be extended to a C™ function on
£). On the other hand, in Example A of Section 5, all locally linear functions «
give homomorphisms, and in Example B of the same section, @ need not even be
locally linear.

Results can be obtained, in a similar way, concerning homomorphisms of
spaces A,(R™) into A(I'). Here ¢ >0, and A,(R™) is the Banach space of Fourier
transforms of functions ge R™ with norm

[ asbiisoiay

By duality we can also find results on the Fourier coefficients of a™(v), where v is
a pseudo-measure in the dual of A(I'), and a* is the adjoint of a homomorphism
A (R™)— A(I), given by a. It should be observed that the dual of A(I") coincides
with the space of pseudo-measures supported by I, if I' is of spectral synthesis.
This is the case for instance if I" is given as in Theorem 2.1 (cf. [3] and [4]).

We conclude by some remarks and state a few open problems.

§1. Precise estimates for |le”|aqs, when I' is an interval and f has weak
differentiability properties, have been given by Leblanc [7, 8].

§3. It would be of interest to determine the differentiability conditions needed
to have the conclusion of Lemma 3.6. The extensions of Theorem 3.3 to higher
dimensions deserves to be explored. At present it is not known whether the
theorem holds without change for higher dimensions.

§4. In Theorem 4.2, the gap between ¢t and t/°
the possibility of high-dimensional generalizations.

§5. In Example C, the exact rate of growth of (5.2) is not known. It has
connections with the following problem: For positive weight functions  on R®

is not yet explored. Nor is
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such that w(x)=1+|x|"?, xeR? we have in the class of measurable functions g
with g/w € L' a natural way of defining its Fourier transform ¢ to vanish (or take a
constant value) along a given curve with positive curvature (simply by applying
smooth measures on the curve, and observing that their transforms are O(|x|™"/%)).
Then the problem is to decide for which o the class contains an element g with g
taking the value 0 on G and 1 on H, if G and H in the example have (0,0) as

only common point.
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