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Comment Math Helvetici 52 (1977) 329-356 Birkhauser Verlag, Basel

Slowly growing subharmonic functions I

M Essen, W K Hayman and A Huber

Dedicated to Albert PflUger on his 70th Birthday

1. Introduction

Let u(z) be subharmonic (s h and not constant in the open z-plane and let

B(r, u) supu(z) (1 1)
|z|-r

If B(r, u) grows sufficiently slowly then ît îs known that, for "most" values of
z reie, u(z) îs not much smaller than B(r) For instance if

B(r)=0(logr)2 as r-^oc, (12)

then Barry [3] showed that

\z\ r (13)

except for a set of r of small upper loganthmic density Further Hayman [5]
showed that if (1 2) holds, then for any positive e we hâve

M(z)>(l-e)B(r), \z\ r (14)

outside a séquence of disks \z-zn\<pm such that

(15)

Both thèse results fail if the condition (12) îs weakened Thus Barry [3]
showed that if

2-*+c», (16)

329



330 M ESSÉN, W K HAYMAN AND A HUBER

then there exists u(z) satisfying

B(r,u)=O{il,(r)} (1.7)

and

u(—r)-u(r)—>—», as r-»oo.

Further Piranian [6] showed under the hypothesis (1.6) that there exists u(z)
satisfying (1.7) but such that u(z) does not tend to +o° as z—»°° along any ray. On
the other hand if (1.4) holds outside a set of disks satisfying (1.5) then almost ail

rays through the origin meet thèse disks only on a bounded set, so that (1.4) holds
on such rays from a certain point onwards.

2. Statement of results

In this paper we consider in more détail the nature of the set of points where
(1.4) fails, when u(z) satisfies (1.7) for a given function i/r(r). When

<Mr) O(l0gr)2 (2.1)

our results are fairly complète.
The corresponding resuit for (1.3) under the hypothesis (1.7) with ip(r) \og r

has been obtained by Arsove and Huber [2], and our method is closely related to
theirs. However, the présent paper also contains converse results.

To state our theorems we make the following

DEFINITION. Let ^(r) be a positive increasing function of r satisfying (2.1)
and suppose that K is fixed, K> 1. Let cv be any nonnegative, nondecreasing and

convex séquence, such that cv 0, v < 0,

cv->™ as y—»+oo (2.2)

and

cv O{MK1)} as i/-»+oo. (2.3)

Then

^^-2^ + c-i (24)
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will be called a t//-sequence. (If cv 0, we define 8V 0.) In terms of i^-sequences
our results can be stated as follows.

THEOREM 1. Suppose that u(z) is a s.h. and non - constant function in the open
plane which satisftes (1.7). Then given K> 1, there exists ro= ro(K) where l<ro<
K, with the following properties. For a fixed positive s let Ev(e) be the set of ail
points z in the annulus

Av:r0Kv<\z\<r0Kv+\ (2.5)

such that

u(z)<(l-e)B(\z\). (2.6)

Then the capacities Cap (Ev) of Ev satisfy

where 8V is a $-séquence.

THEOREM 2. Suppose given numbers K>1, ro>l, £>0 o.nd e'>e, and a

{(/-séquence 8V. Let Ev be any sets in the annuli Av whose outer capacities satisfy for
ail large v

// 8V 0, (2.8) is to be interpreted so that Ev is empty.
Then there exists u(z) s.h. and non-constant in the plane, and satisfying (1.7)

and also (2.6) in U (Ev).

Theorems 1 and 2 show that the sets where u(z) satisfies (2.6) for some

positive e can be very precisely characterized in terms of i/f-sequences. Taking for
instance e 1 we obtain a characterisation of the sets on which u(z) remains
bounded. Thus our problem is reduced to a problem in the theory of séries,

namely the characterisation of (^-séquences. Clearly if cn 0 for n<n0, cno>0 in
the définition of a i/f-sequence, then

ôn 0, n<n0, 6^=1, 0<ôn<l, n>no. (2.9)
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Conversely if 8n is any séquence satisfying (2.9) then we may define bn inductively
by

bn=0, n<n(), (2.10)

&no>0, (2.11)

n

6n fcn-i + Sn Z ^v, n>n0 (2.12)

and then define cn 0, n < n0

n

cn= Z bv, n>n0. (2.13)

Then evidently bn is positive and non-decreasing for n > n0, since 5n < 1, so that
cn is non-decreasing and convex. Further (2.2) evidently holds and so does (2.4).
Thus ôn is a i/f-sequence if and only if the séquence cn defined in the above way
satisfies (2.3).

If ip(r) \ogr we can give a simple criterion for this to happen. The corres-
ponding functions u(z) are said to be of polynomial growth and are the smallest

non-constant subharmonic functions. The following theorem is a restatement of
the main resuit of Arsove and Huber [2]. It expresses the fact that U Ev is thin at

infinity.

THEOREM 3. The séquence 8n satisfying (2.9) is a tjj-sequence with i/r(r)

log r if and only if

(2.14)

COROLLARY. Let u be as in Theorem 1 with \\t{r) log r. Then the sets Ev

satisfy

This is the famous criterion of Wiener [8].
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For gênerai i/f-sequences, 1 e those with i/>(r) (log r)2 we hâve only a less

précise resuit

THEOREM 4 // ôv is a ijj-sequence and A >è then

Is£<°o (2 15)
1

COROLLARY If Ev are the sets in Theorem 1 then

g^Cap

Setting ôn l/{n(l + log n)}2, n > 1, and usmg Theorem 3, we see that Theorem 4

and îts corollary fail for A \ even for functions of polynomial growth

2 1 Some conséquences and examples To îllustrate the above results we give
some examples and simple conséquences of Theorems 1 to 4, before embarking
on the proofs of thèse latter results

EXAMPLE 1 Take i^(r) (log r)a, Ka<2 and for any integer t, set cn

(n + r)a, n > max (0, -t), cn 0 otherwise Then

1 + cn_2 fl 2r + (q
[n n

^ _+ O(n

It is clear from (2 10) to (2 13) that if 8n is a i^-sequence, then so is any séquence
ôn, such that 8n < ôn, for large n We deduce that if

3,n

then £„ is a i^-sequence for ijf(r) (log r)a, but not for any function i^(r), such that

In the above example (2 14) fails, so that the correspondmg exceptional sets

are no longer thin at 00 In fact it follows from Theorem 3 that whenever \\f{r)
tends to înflnity more rapidly than log r, then ^-séquences will not m gênerai
satisfy (2 14) and so the correspondmg exceptional sets will not be thm at 00

However if ij/(r) (log r)a, so that cn O(na), we deduce from the convexity of cn
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and (2.13) that

nbn<c2n O(na), (2.16)

and, if cw/n—»<», that

Cn
(2.17)

If cjn does not tend to oo, then cn O(n) and (2.17) follows from (2.14).
The order condition (2.17) cannot be further sharpened as the next example

shows.

EXAMPLE 2. Suppose that l<a<2 and let en be any séquence of positive
numbers, such that en-*0 as n—»°o. Then there exists a i//-sequence 8n corres-
ponding to i^(r) (logr)a, such that

8n ^ enno-2

for infinitely many n.

If a l, we choose an increasing séquence of positive integers nk, k

0, 1, 2,..., enk <2"fc, fc 1, 2. We then set 8^= 1, 8n ejn, for n nk, where
k ^ 1, and ôn 0 otherwise. Then

enk<n0+l.
k=0 k l

and so 8n is a i/f-sequence in view of Theorem 3 and (2.9).

If a > 1, we define an increasing séquence nk, k 0, 1, 2, such that nk+i/nk
and set fcn 0, n < n0,

We then define cn, 8n by (2.12) and (2.13), and note that
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so that ôn is a i/f-sequence with i/^(r) (log r)a. Also for n nk

Ôn (bn - bn-i)/cn (bn - bn-JKcn-! + bn)

(l + o(l))(nk)a"2/(nk.1r-1.

We now choose the séquence nk inductively, by setting no=l, an^ if ^k-i has

already been defined we choose nk so large that

<t^ï and nk>knk-1.

Thus we hâve for ail large k

ônk>snknl~2

as required.
Similarly we hâve

EXAMPLE 3. If i/f(r)/(logr)-»oo, there exists a i/f-sequence 8n such that

lim nôn oo.
n—>oo

We set

so that Bn increases with n and Bn—><» as n-»oo. We choose a séquence nk which
tends to o° with n and is such that

as fc—»o°.

Then we define frn 0, n<n0 and

bn Bnk, nk<
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We deduce that cn < nbn < nBn for n > 1, so that

and cn is a «//-séquence. On the other hand for n nk, we hâve

£„ — ~— ——tt~ ;

cn cn-! + bn

so that

as

If we combine the resuit of example 3 with Theorem 2, we deduce that if
i^(r)/log r-»oo? we can find u(z) s.h. in the plane and satisfying (1.7) and (2.6) with
any fixed e on a séquence of sets Ev, in Kv <|z|<Kv+1, such that

Cap Ev exp {*>(log K + o(l))}

for infinitely many v. In particular Cap Ev can be exponentially large for a

séquence of v. On the other hand if i(/(r) O(log r) it follows from Theorem 3

that ttôn^0, so that in view of (2.7) we have

v °Cap.

Thus in this case

and so

in view of Theorem 3. Thus Cap Ev is exponentially small for ail large v.

In view of Theorem 4 the sum (2.15) converges for À >\ but not in gênerai for
À =è, even when i/r(r) log r. However we can obtain a fairly précise estimate for
the partial sums of the séries in this case.
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THEOREM 5. Suppose that 8n is a ty-sequence with ip(r) (\ogr)a, where
1 < a. Then

X g as n->oo.

We note that the resuit remains valid for a>2, when (2.1) is not satisfied. We
write av bv — bv u and deduce that for n ^ rc()

no Ho

We note that

lOg- log
b >bn-an "*V bj bn'

Thus

n i n »

X T^log^, I -slog —. (2.19)
no+l ^v t?no no+l ^v ^Mo

Using (2.16), (2.18) and (2.19) we obtain

where Ku K2, K3 are positive constants and this is Theorem 5. Example 1 shows

that for any a equality is possible in Theorem 5. In particular the constant

a(a-l) cannot be replaced by any smaller quantity.
We hâve seen that the exceptional set Ev need not always be small. However it

is small compared with the annulus Av. The following resuit is an immédiate

conséquence of the case À 1 of Theorem 4, Corollary.

THEOREM 6. For ail 0 in [0, 2tt] apart front a set of capacity zéro the ray
arg z 6 meets \J Ev in a bounded set.

In fact let Fv be the radial projection of Ev onto the circle |z| |. Then

A Cap Ev

r0K
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where A is a constant. Thus Theorem 4 shows that

If Gn UT=n Fv, we deduce from the subadditivity of capacity that

as n

Thus Cap Gn-*0, and if G fl» i Gn, then Cap G 0. Clearly arg z 0, meets

U Ev in a bounded set, unless \eie e G.

Theorem 6 sharpens a previous resuit of Hayman [4], where the exceptional
set had measure zéro. An example of Ahlfors and Heins [1, p. 344] shows that the

présent resuit is best possible. We also obtain an improvement of (1.5).

THEOREM 7. For every p> 1 we can include (J (En) in a séquence of disks

\z- zk\<pk, such that

oo

Z{log(|zk|/Pk)rp <oo.

Our proof of Theorem 7 is similar to that of Theorem 5 in Essén and Jackson

[4]. We set ri (4K2y\

h(r) min{(log+(r1/r)rp, 1}, r>0.

Then h(r) increases with r and

1

A
p-1

Let Gv be the set EJ{2r0Kv+2), i.e. the set of ail points Ç z/(2r0Kv+2), where z
lies in Ev. Then, in view of (2.5), Gv lies in the annulus

2r1<|||<i (2.20)

Also

log lëaTâ)=log I^fi:/ > log
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It now foilows from a resuit of Essén and Jackson [4, Lemma 1, p. 339] that
there exists a constant Ax depending only on A, i.e. on p and K, such that G can
be included in the union of a set of disks

\z-zvk\<rlk, k=l, 2,..., (2.21)

with

{/ fc^1'4"2 \ 1 —i

1Og(c^~Ë/j +2~"- (2'22)

From the Corollary of Theorem 4 with A 1, we see that

In particular

Cap Ev
as i/->oo,

so that for v>vQ and ail k we hâve h(rvk) < 1, i.e. rv>k < ri/e. We may then assume

that |zv,fc|^ *\ in (2.21), since otherwise the corresponding disk does not meet the
annulus (2.20) in which Gv lies and can be omitted from our covering. Thus (2.22)

yields for v > v0.

Since the disks with centres 2r0Kv~*~2zvM and radii 2r0Kv+2rv,k cover Ev, we deduce

Theorem 7 from (2.23).
In a later paper we hope to consider the case (1.6). Hère the situation is more

complicated and our results are less complète.

3. Results on ^//-séquences; Proof of Theorem 3

We proceed to investigate further the nature of the séquences ôn. We write

bn cn-cn_! (3.1)

an bn- bn-t cn- 2cn-x + cn_2. (3.2)
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Since cn is convex and increasing, bn > 0, an ^ 0. Since cn 0 for n < 0, we deduce
that an bn 0, n < 0. Also it follows from (2.2) that bn cannot be zéro for ail n,
so that bn is finally positive. Thus

bn->b as n-»oo, where 0<6<°o. (3.3)

We hâve

cn=ih (3.4)
V — 1

so that cn/n increases with n and

~—»b as n^-oo. (3.5)
n

Suppose first that b is finite. Then

oo

I an b. (3.6)
1

Also if n n0 is the first integer for which cn and so an and bn are positive, we
hâve, since cjn increases,

nan nof nobV * fnan nof nob

^ ^ Cn0

This proves (2.14) in this case. We note that if 8n is a i/r-sequence with i/> log r,

then cn O(n) so that b must be finite and the above conclusions hold.
To complète the proof of Theorem 3, suppose that 8n satisfies (2.9) and (2.14)

and define bn, cn by (2.10) to (2.13). Then (2.12) gives

since bn is increasing. Thus

|O) in view of (214)

Thus bn O(l), cn O(n) in this case, so that 8n is a i^-sequence with i^(r) log r.

This proves Theorem 3.
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3 1 We hâve shown that if b îs fimte in (3 5) then (2 14) holds This also implies
(2 15) For if 1 < A < 1 we define

p=l/A q p/(p-l) 1/(1 — A), so that l<c/<2<pOc

Then ît follows from Holder's înequahty that

v a v 1/ -i/p (y Y/p(y
1 1 \ 1 / V

1

<oo

Thus (2 15) holds in this case

We proceed to prove (2 15) in the more difficult case when b îs infinité We

note that in view of (3 4) and since bn increases

2n

nbn < X K s c2n O{^(K2")} O(n2),
n + 1

in view of (2 1) and (2 3) Thus

*>n O(n), (3 7)

and so

^->0, as n^oo (3 8)

if b is infinité If b îs fimte (3 8) follows immediately from (3 5) so that (3 8) holds

in any case The înequahty (2 15) is contamed in the following somewhat more

précise

THEOREM 8 Suppose that ax > 0, 0 < an < n, n > 1 and set

bn L aV9 cn X bV9 n >
1 v-l

Then for \ < À ^ 1 we

where the constants AUA2 dépend only on À

Before proving Theorem 8 we deduce Theorem 4 from Theorem 8 Let 8n be
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the ^-séquence of Theorem 4 and define an,bn by (3.1) and (3.2). Then an cannot
be zéro for ail n. We suppose that m +1 is the first positive integer such that
am+i>0 and define

Then it follows from (3.7) that an O(n) and so an' O(n). Thus if 8 is a suitable
constant and we set a" Ôan', we hâve

Also if

we clearly hâve 6'n'= ôbn+m, C= 8cn+m. Thus

Thus (2.15) follows from Theorem 8 and we obtain a bound for the séries,

depending on the first integer m, for which am+1 cm+1-2cm + cm_i>0, and on
the constants implicit in (2.1) and (2.3).

3.2. To prove Theorem 8 we need a subsidiary resuit. We dénote by
A3, A4 • • • constants depending on A only.

LEMMA 1. //À =5 + 2e, where 0<e<^ tfien we haue, wifh the hypothèses of
Theorem 8,

^ cN

We write t A-e =5 + e, p= 1/t, q pl(p- 1). Then

: L K= 2, (n-r+l)ar.



Slowly growing subharmonic functions I 343

Thus we hâve, for 1 < m < n,

t a\^ t *> t {(n-r+l)ar}1/p(n-r+l)-1/p

| |£ (n-r+ 1)-"'J

Suppose now that cn<2cm. We deduce that

Further

since an < n. Thus

We now set mo N and if mk has already been defined, we define mk+i to be the
smallest integer m such that cm > 2cmk. If mk+1 < 2N, we define nk mk+1 - 1. If s

is the smallest integer fc, for which mk+1>2N, we define ns =2N. Thus

Also in view of (3.9) we hâve

<4A4NeÉ (2kcNrf<4A4(—V

This proves Lemma 1.
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3.3. We can now complète the proof of Theorem 8. We set mk=2k, fc

0, 1, 2,... and consider the sums

We write

Bk - bmk, Ck cmk,

and consider in turn the cases

(i) Ck>\Bk+lmky (ii) Ck<iB

We dénote sums over k in the ranges (i) and (ii) by 2' and 2" respectively.
In case (i) we hâve, using Hôlder's inequality

mk+i — 1 / \t mk + i-l
< Y aA <r< Y n'-r-'Yn1'*— L \ / — ^k L ûn-^k Lan

Thus

£'<rk<4£ mk-2t 4Ë 4^=^. (3.10)
k=O k O

In case (ii) we note that

C >m B -4mk+1 Ç =8C
wtk

Thus

As we remarked after (3.4), cn/n increases with n. Thus if k kv are the positive
integers for which case (ii) holds, we deduce that kv+2^kv + 2, so that

mK
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Thus we prove by induction, separately over even and odd v, that

Ct^2(W2)-i Çhi > ai2ivf2)-\ v>\.
mki mkx

Now we deduce from Lemma 1 that for k kv in the case (ii) we hâve

On summing over v we deduce that

£"crk<A2ar. (3.11)

On adding (3.10) and (3.11) we deduce Theorem 8. Since we deduced Theorem 4

from Theorem 8, the proof of Theorem 4 is also complète. The corollary of
Theorem 4 is an immédiate conséquence of (2.15) and (2.7). Thus it remains to
prove Theorems 1 and 2.

4. Proof of Theorem 1

Suppose that u(z) is s.h. in the plane. We replace u(z) in \z\ < 1 by the Poisson

intégral of the values of u(z) on \z\ 1 and leave u(z) unaltered for |z|> 1. The

resulting function has the same asymptotic behaviour as u(z) and is harmonie and

in particular finite at z 0. By subtracting a constant if necessary we may arrange
that m(0) 0. We further assume that u(z) has order zéro. Thus u(z) has a

représentation of the form (see e.g. [5])

(4.1)u(z) jlog

where /ut is the Riesz mass of u and the intégral is taken over the open plane. Let
n(t) be the mass in \z\< t. Since u(z) is harmonie in \z\< 1, n(\) 0. We define

(4.2)

N(r)=— M(re'9)dfl<B(r, u). (4.3)

The Jensen formula gives

2"
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Also ît follows from (4 1) that

log (4 4)

We start by proving a resuit which îs a simple conséquence of (1 5)

LEMMA 2 With the hypothèses of Theorem 1, we can choose, r0 ro(K), such

that on the circles |z| rv r0Kv, we hâve

u(z)X\-ev)B(rt),

where e^-^O as v—>°°

Tt follows from (1 S) that if Fie) îs the set of ail r> 1 such that

n(z)<(1 -e)B(r)

at some point on |z| r then

dr

(4 5)

<oc

Choose ev 1/v and let pv be so large that if Fv îs the part of F{ev) in r > pv then

we hâve

dr logK
7<~~

Let F= Uv-i Fv Then

f-<logK
Jf Y

Let Fo be the set of ail r0, such that 1< ro< K and r0Kv belongs to F for some v

Clearlv

f dr f dr
<\ogK
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Thus there exists r0 in the interval (1, K) and not belonging to F(, and so for this

r0, r0Kv does not belong to Fv for any v, î.e. (4.5) holds with r^ r(,/CM, provided
that r^ > pv.

This proves Lemma 2.

4.1. We now return to the représentation (4.1) and suppose that z lies in the
annulus A, given by (2.5). We write

bv n{rv), cv £ b^, a, =bv-bv-i. (4.6)

We note that

qv-n cv+i - 2cv + cy_i _.
<V (4./)

is a i//-sequence in this case. In fact

ué y r, i
r< -N(r,+i)=O{i//(K'+2)} (4.8)

^ t log K )r^ i log K

in view of (4.3) and (1.7). Thus, in view of (2.1), cv O(vz) and so cv satisfles

(2.3) with (log rf instead of ^(r). This in turn implies (3.7) and (3.8), so that

cl + - tu~c,_2= O{(//(K")}. (4.9)

in view of (4.8). Thus (2.2) to (2.4) are satisfied. Next we show that

B(r)=B(r. u) (log K 4- o(l))cv+1, ;v-»<fv+1. (4.10)

uniformly as r-»oo. In fact it follows from (4.8), (4.9) and (4.3) that

in this case. In the opposite direction we note that

log K
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On the other hand we deduce from (4.3) and Lemma 2 that

2tt Jo

Thus for rv<r<rv+x we hâve

This proves (4.10). We deduce

LEMMA 3. We hâve, uniformly as y—»oo, for z in Av

u(z)= [
JA

We write

[
JAV

Then for rv^\z\^rv+1 we hâve, using (3.8) and (4.6),

Iv{z)slog(l+—

(4.11)

(4.12)

(4.13)

Using (4.10) and Lemma 2, we deduce that for |z| rv, rv+1 we hâve

Since uv(z) is harmonie for rM < |z| < r,,+1 it follows that this inequality remains
valid in the whole annulus Av. Next we note that on \z\ rv+2 we hâve, in view of
(4.9), (4.10)

and further

—-l) f
rv I JA
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Thus for \z\ rv+2 we hâve

x (4 14)

and since uv{z) îs subharmomc this înequahty remains vahd in \z\< rv+i and so in
Av Thus

<rv+1 (4 15)

Also

f f
log|z-£|d/m(£)- (i/logK + O(l))d/x(£)

log \z — Ç\ diji(i;)— vav+i log K+ O(av+i)

i) (4 16)

On combimng (4 15) and (4 16) we deduce (4 11)

It follows from Lemma 3 that if u(z) îs any function subharmomc in the plane
which satisfies (1 2) then the size of u(z) îs given m the annulus Av with great
précision by (4 11) In particular u(z) îs much smaller than cv+ï log K if and only
if the intégral on the nght hand side of (4 11) îs large and négative

4 2 In order to complète our proof we need another subsidiary resuit, whose

statement îs almost the définition of capacity

LEMMA 4 Let /n(£) be a positive measure of total mass (i0 distnbuted over a

compact set F If G is the plane set where

V(z) =j log |z-É| d/t(£)<C (4 17)

then tht outer capacity Cap G of G satisfies

CapG<exp(C//x0) (4 18)
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Conversely given any relatively open subset G of the annulus Av of (2.5), there

exists a unit measure jjl, distributed on G and such that

(4.19)

at every point of G.

We recall some facts concerning capacity.(1) Let Ebea compact set and yu a

unit measure distributed on E. Consider the energy intégral

log\a-b\dii(a)dn(b).

If Vo is the maximum value of I(/x) for ail such measures, then

In particular if I(fx) —oo for ail such measures /ll, then Cap E 0.

Suppose now that CapE>0. This is always the case if E has interior points.
Then there exists a unit measure /jl such that the conductor potential

I log|z - a\ dfx(a)

satisfles

in the whole z plane with equality at ail points of E with the exception of the

irregular boundary points of the unbounded component of the complément of E.
The outer capacity of more gênerai sets is defîned as follows. If G is open then

Cap G is deflned to be the upper bound of capacities of compact sets contained in
G. Finally, if E is any bounded set, Cap E is deflned to be the lower bound of

capacities of open sets containing E.

Suppose now that G is the set of Lemma 4. Let Fo be a compact subset of G,
which is the union of a finite number of closed disks, so that the complément of Fo

is regular for the problem of Dirichlet. Let V0(z) be the conductor potential of Fo.

1 See e.g. Tsuji [7 p.p. 54 et seq.].
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Then, for z in Fo,

V0(z) J log \z - f | d*(£) Vo log Cap Fo,

where v is a unit measure distributed on Fo.

Consider now, with the notation of Lemma 4,

in the unbounded component Go of the complément of Fo. Then V0(z) is

harmonie outside Fo except possibly at °° and so m(2) is s.h. at the finite points of
Go. Also near 00

w(z) log|z|-log|z| + o(l),

so that u(z) is harmonie at 0° and m(oo) 0. Thus w(z) is s.h. in Go including 00.

Also as z approaches any finite boundary point % of Go we hâve

lim V(z) < C and lim V0(z) log Cap Fo.

This shows that

— C
lim m(z)< log Cap Fo.

Since w(oc) 0, we deduce from the maximum principle that

This inequality holds for every compact subset of G, which consists of the union
of a finite number of closed disks. Any compact subset Fx of G is contained in
such a set Fo and so

Now (4.18) follows from the définition of outer capacity.

Conversely let G be a relatively open subset of Av, let Fn be a séquence of
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compact sets, each of which is regular for the problem of Dirichlet and such that

F^Fn+xClG,

Cap Fn-* Cap G.

If G does not meet \z\ rV9 so that G is open, we may take for Fn the union of a

finite number of closed disks. If G meets |z| r,,, then there exists an open plane
set Go, such that

GonA, =G.

We construct the Fn as above corresponding to the set Go. Then

F'n=FnDAv

is bounded by a finite number of arcs of circles so that Fn is still regular for the

problem of Dirichlet. Also

F^c=F'n+1 and UK=G,

so that Cap F^-»Cap G as required.
Let Vn(z) be the conductor potential of Fn and let

vn log Cap Fn

be the value of Vn(z) on Fn. Then Vn+i(z)-Vn(z) is s.h. in the unbounded

complementary domain Gn of Fn, equal to vn+1-vn on the boundary of Gn, and

zéro at <*>. Thus

On the other hand Vn+Ï(z) — Vn(z) is harmonie in Gn+i and does not exceed

vn+1~vn on the boundary of Gn+i. Thus

Vn+1(z)-Vn(z)<i;n+1-i;n

in Gn+i, and also in Fn+U since Vn+I(z) vn+u Vn{z)>vn in Fn+1. Thus

Vn(z)~vn



Slowly growing subharmonic funetions I 353

is a decreasing séquence of subharmonic funetions and so tends to a subharmonic
limit V(z)- V(), where

Vo lim vn log Cap G.

If z0 is any point of G then zoeFn for large n, and so Vn(zo) vn for large n.

Thus V(zo)= Vo.

Next the function V(z) is harmonie in the exterior of G, and so by the Riesz

représentation theorem there exists a measure n of total mass ^0, say, distributed
on G and such that

V(z) f log|z-f|d/i(f) + h(z),
Je,

where h(z) is harmonie in the open plane Also near ^

uniformly in n, and so

V(z) log|z|+—— as

Thus

h(z) O(k>g|z|) as z^oo,

i.e. h(z) c const. Thus ixo=l, c 0,

V(z) f

and V(z)= V0 logCap G on G. This proves (4.19) and complètes the proof of
Lemma 4.

4.3. Proof of Theorem 1. Suppose now that Ev(e) is the set defined in
Theorem 1. We recall the définitions (4.6) and (4.7), so that 8V is a v|/-sequence. It
follows from (2.6), (4.9) and (4.10) that we hâve for z in (J Ev
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In view of Lemma 3 we deduce that for z in Ev

Now Lemma 4 shows that

av+\

This yields (2.7), and complètes the proof of Theorem 1.

4.4. Proof of Theorem 2. We proceed to prove Theorem 2. We suppose
given the i^-sequence 8V defined from the quantities cv satisfying (2.2) and (2.3) in
accordance with (2.4). We define

Let Ev{e) be the sets defined in Theorem 2. In view of the définition of outer
capacity we can include Ev in relatively open subsets Gv of Av whose capacities
differ by arbitrarily little from those of the Ev, Thus we may assume without loss

of generality that the Ev are reiatively open subsets of Av and that (2.8) is still
satisfied, provided that 8v>0.

Suppose now that 8V > 0 so that av > 0. Then, in view of Lemma 4 we can find
a mass distribution ju,v in Av of total mass aV9 such that

Vv(z) | log \z - av log Cap Ev (4.20)

on Ev. We write n Ya Mv, and

>=Z [log
v l J

We note that uo(z) is subharmonic in the plane and harmonie in \z\<r0. In fact if
n(r) is the total mass X Pv in |z|<r, then n(r) 0 for r<ro, and

V

2] av cv-cv_i.
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Again

N(rv)= t [* -^-^logxÉ n(rJ<cv_1logK=O(A (4.21)

in view of (2.3) and (2.1). Thus, after changing r0 is necessary, we may apply the

analysis of section 4.1 to the function uo(z) and deduce from (4.10) that the

intégral for uo(z) converges and

B(r, Uo)-N(r) as r-*oo. (4.22)

Since (4.9) is satisfied by our séquence cv, we deduce from (4.21) and (4.8) that

N(r) (log K + o(l))cv, rv<r< rv+1.

On combining this with (4.22) we see that (4.10) still holds with our original
choice of r0. From this, (2.3) and (4.9) we see that

B(r, Mo) O(c+1) O(c) O{ijj(Kv)} O{i^(r)}, rv<r< rv+1.

Thus the function uo(z) satisfies (1.7).
Next we deflne Iv(z), uv{z) by (4.12) and (4.13) with uo(z) instead of u(z) and

deduce that (4.14) still holds. This shows that the upper bound implied by (4.11)
still holds, so that for z in Av

J
< log '-I

On combining this with (4.20) we deduce that in E

uo(z) < av{log Cap Ev - log Kv+2

in view of (2.8). From this, (4.9) and (4.10) we deduce that for large r

Since e'>e, we deduce that for some ro>0, z€ [JE,

uo(z)<(l-e)B(r,Uo).
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If we now set u{z) mo(z) —max (B(rQ, u0), 0), (2 6) îs satisfied for ail z in (J Ev

This proves Theorem 2
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