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Semi-continuity of the face-function for a convex set

LArRrRY Q. EIFLER

Introduction

Throughout this paper, let K be a compact convex subset of a locally convex
topological vector space E. Given x€ K, set F(x)=cl{ye K:[y,x+e(x—y)]c K
for some £ >0}. We call F the face-function on K since F(x) is the smallest closed
face of K containing x if F(x) is finite dimensional. If f: K — R is continuous, we
define the lower envelope f, of f by f, =sup {g:g is a continuous affine function
on K satisfying g=f}. Following Klee and Martin [3], set K,={xe K:f, is
continuous at x for each continuous function f:K — R} and set K;={xe K:F is
lower semi-continuous at x}. Klee and Martin proved that K, < K, in general and
that K = K, = K| if K is 2-dimensional. They left open whether K, = K;. We show
that K, =K, is K is finite dimensional and produce an infinite dimensional
example where K =K, # K.,.

Lower semi-continuity of F

Let x — F(x) be the face-function on K defined above. We say that F is lower
semi-continuous at x if for each ye F(x) and for each neighborhood U of y,
{z € K:F(z) meets U} is a neighborhood of x. Note that F(x) is a compact convex
subset K for each xe K. If F is lower semi-continuous on K, then the set of
extreme points ex(K) of K is closed. If ex(K) is closed and if K is 2 or
3-dimensional, then Clausing and Magerl [1] have shown that K, =K and so
K, =K.

Let P(K) denote the space of Radon probability measures on K and equip
P(K) with the weak® topologv. Given u € P(K), there exists a unique point r(u)
in K such that | gdu = g(r(w)) for each continuous affine function g on K. The
map r: P(K)— K is the resultant or barycentric map. If x € K, we let §, denote
the point mass measure at x. The map r is an open map of P(K) onto K if and
only if K=K,. See [2 or 5]. We say that r is open at ue P(K) if for each
meighborhood U of u in P(K), r(U)={r(v):v € U} is a neighborhood of r(n). We
say that r is A-open at u € P(K) where 0 <A <1 if for each neighborhood U of
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in P(K), Ar(U)+(1—-2A)K is a neighborhood of r(w). We first establish criteria for
determining when r is open at u. These results are of interest aside from their
application to the study of the lower semi-continuity of the face-function.

LEMMA 1. Let we€ P(K). Then r is open at w if r is A-open at u for some
0<A<l.

Proof. Assume that r is A-open at u. Set x =r(u). If x, — x, then there exist
e — p and y, € K such that Ar(u,)+(1—A)y, =x,. But y, — x. Hence, there
exist v, — p and z, € K such that Ar(v,)+(1—A)z, = y,. Thus,

Xa =~)‘(2—/\){r(2’j’_”)t +(12—_)\;V">}+(1—A)22,,.

One obtains that r is A(2—A)-open at w. Hence, r is p-open at u for each
0<p<1. This implies that r is open at pu.

LEMMA 2. Let xe K. The following are equivalent.

(1) r is open at w if r(u)=x and
(2) ris open at w if r(u)=x and if w is supported by 2 points.

Proof. We only need to show (2=>1). Let U be a neighborhood of u where
r(n)=x and u is supported by n points. We show that r(U) is a neighborhood of
x by induction on n. The result holds for n =2. So assume the result holds for
n=<m. Fix u € P(K) such that r(u)=x and u is supported by {x1, ..., X.+1}. Let
x =Y Lixi. We assume each A; > 0. Set y = (AXie + Aes1 X+ 1)/(Ax + A+1) and set
i = Y521 Aiby, + (A + As1)8y, + 3725 A8, Suppose X, — x. Then there exist

m+1

@i — pi such that r(ug) = x.. Set v, =Yr-1 (1/m+1)pk. Then r(v,) = x,. Since
Ve = Yhot (1/m+ 1)y, we have lim, sup v,(V)=(m/m+1)A, if V is an open set
containing xx. Thus, there exist u,—>u and z,€K such that
(m/m+1)r(u,)+(1/m+1)z, = x,. Hence, r is open at u by Lemma 1. By approx-
imating measures by measures with finite support, we see that r is open at u if

r(p)=x.

THEOREM. Let x € K. The following are equivalent.

(1) f. is continuous at x for each fe Cr(K)
(2) ris open at p if r(p)=x
(3) ris open at w if r(u)=x and if w is supported by 2 points.

Proof. The implication (1) = (2) follows from Proposition 3.1 in Phelps [4, p.
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21). The implication (2) = (1) follows from the separation form of the Hahn-
Banach theorem and taking limits in the hyperspace of P(K). See [2] for details.
The implication (2 <& 3) is simply Lemma 2.

COROLLARY. Assume K is finite dimensional. Then K, = K.

Proof. The inclusion K, < K; was established in [3]. Let xe K;. Suppose
u € P(K) such that u is supported by {y, z} and r(un) = x. We only need to show
that r is 3-open at w by Lemma 1 and the above theorem. Set x =Ay+(1—A)z
where 0= A =1. We may assume y# z and 0 <A <1. Let U be a neighborhood of
w in P(K). Set 2 =3r(U)+3K. Assume {2 is not a neighborhood of x. Then there
exist x, — x such that x,€ {2 and dim F(x,)=q where q is least possible. By
taking subsequences, we may assume that there exist y,, z, € F(x,) such that
y. — y and z, — z since lim sup F(x,) 2 F(x) 2{y, z}. Set w, = Ay, +(1—-1)z,. We
may assume Ww,# X,. Set &, =max{e:x,+e(w,—x,)€ K}. Then dim F(x,+
en(W, — x,))<dim F(x,) = q. But, w, € r(U) for n large. If ¢, =1 and if w, € r(U),
then

€ 1

w, + Xn+ (X, — Wy)} = x, € ().
1+e, 1+s,,{ n b=

Hence, &,<1 for n large. Thus, x,+&,(W,—x,)— x and x,+e¢&,(w,—x,)€
which is impossible by the minimality of q.

Example 1. Let K be the convex hull of {(e”, £1):0= 6 = m}U{(1, £i)} in C.
Then K is 4-dimensional and ex(K) is closed. The face-function is not lower
semi-continuous at (1, 0) since F(1,0) is a square and F(e”,0) is an interval if
o<f=m.

Example 2. Let X={0, 1,3%,3, ...} and equip X with the usual metric from R.
Let K denote the closed unit ball in the space of real Radon measures on X, i.e.,
the dual of Cgr(X). Equip K with the weak® topology. Then K is a compact
convex set. Given pe K, set ||u]|=un " (X)+p (X). If ||u||<1, then F(n)=K. If
lw||=1, then F(u) is the closed convex hull of {sgn (un(x)) - 8, : x € X}. One easily
checks that the face-function is lower semi-continuous on K and so' K = K. The
zero measure O is not in K, by criterion (2) in the theorem since 8, +(—=1)8,]=
0 and 3[81/, +(=1)81/n+1]— 0.
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