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Semi-continuity of the face-function for a convex set

LARRY Q. ElFLER

Introduction

Throughout this paper, let K be a compact convex subset of a locally convex
topological vector space E. Given jc e K, set F(x) cl {y e K:[y, jc + e(x- y)]c K
for some e >0}. We call F the face-function on K since F(x) is the smallest closed
face of K containing x if F(x) is finite dimensional. If f:K -» R is continuous, we
define the lower envelope fe of / by fe =sup{g:g is a continuous affine function
on K satisfying g^/}. Following Klee and Martin [3], set Ke={xeK:fe is

continuous at x for each continuous function / : K —» R} and set Kt {x e K : F is

lower semi-continuous at x}. Klee and Martin proved that Ke c Kt in gênerai and

that K Ke Ki ii K is 2-dimensional. They left open whether Ke Xj. We show
that Ke Ki is K is finite dimensional and produce an infinité dimensional

example where K Kt^ Ke.

Lower semi-continuity of F

Let jc —> F(x) be the face-function on K defined above. We say that F is lower
semi-continuous at x if for each y e F(x) and for each neighborhood U of y,

{z g K:F(z) meets U} is a neighborhood of x. Note that F(x) is a compact convex
subset K for each xeK. If F is lower semi-continuous on K, then the set of
extrême points ex(K) of K is closed. If ex(K) is closed and if K is 2 or
3-dimensional, then Clausing and Magerl [1] hâve shown that Ke K and so

Kt K.
Let P(K) dénote the space of Radon probability measures on K and equip

P(K) with the weak* topologv. Given ixeP(K), there exists a unique point r(ii)
in K such that J gdfx g(r(/ut)) for each continuous affine function g on K. The

map r:P(K)-+ K is the résultant or barycentric map. If jcgK, we let Ôx dénote
the point mass measure at x. The map r is an open map of P(K) onto K if and

only if K Ke. See [2 or 5]. We say that r is open at fieP(K) if for each

meighborhood U of /u, in P(K), r(l/) {r(i/): i> e U} is a neighborhood of r(fi). We

say that r is A-open at fx e P(K) where 0< A < 1 if for each neighborhood U of /u,
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in P(K), Àr(L0 + (l-À)K is a neighborhood of r(/x). We first establish criteria for
determining when r is open at xi. Thèse results are of interest aside from their
application to the study of the lower semi-continuity of the face-function.

LEMMA 1. Let ixeP(K). Then r is open at /jl if r is k-open at /x for some

Proof. Assume that r is À-open at tt. Set x r(/x). If xa —» x, then there exist

ita —» it and yaeK such that Àr(^a) + (1-À)ya xa. But y« —> x. Hence, there
exist va^> il and za e K such that \r(va) + {\-\)za ya. Thus,

One obtains that r is À(2-À)-open at fi. Hence, r is p-open at ^ for each

0<p<l. This implies that r is open at /lu

LEMMA 2. Lef x 6 K. The following are équivalent.

(1) r is open af fi if r(/Lt) x and
(2) r is open at [x if r(fi) x and if /x is supported by 2 points.

Proof. We only need to show (2^> 1). Let U be a neighborhood of ju, where
r(/jt) x and /ut is supported by n points. We show that r(U) is a neighborhood of
x by induction on n. The resuit holds for n 2. So assume the resuit holds for
n^m. Fix /ul e P(K) such that r(/x) x and /x is supported by {xu xm+i}. Let
x =ZriV à,jc,. We assume each À, >0. Set yk (Akxk + Àk+iXk+1)/(Àk + Àk+i) and set

M-k=l!c=i1AIôXi+(Ak+Ak+1)ôyk-hir>+k1AlôXl. Suppose xa -* x. Then there exist

/4->ju,k such that r(jxk) xa. Set ^ =IiT=i (l/m + l)/Ltk. Then r(va) xa. Since

v<x -^ZîT-i (l/m + l)jLtk, we hâve lima sup ^«( V)> (m/m + l)Ak if V is an open set

containing xk. Thus, there exist /xa —> /x and zaeK such that
(m/m + l)r(jO + (l/m + l)za x«- Hence, r is open at jx by Lemma 1. By approx-
imating measures by measures with finite support, we see that r is open at fi if

THEOREM. Let xeK. The following are équivalent.

(1) /e is continuous at x for each fe CR(K)
(2) r is open at /x if r(fi) x
(3) r is open at fx if r(tt) x and i/ fi is supported by 2 points.

Proof. The implication (1) ^ (2) follows from Proposition 3.1 in Phelps [4, p.
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21]. The implication (2)^>(1) follows from the séparation form of the Hahn-
Banach theorem and taking limits in the hyperspace of P(K). See [2] for détails.
The implication (2<=>3) is simply Lemma 2.

COROLLARY. Assume K is finite dimenswnal Then Ke Kh

Proof. The inclusion Ke ç Kt was established in [3]. Let x e Kt. Suppose

IX e P(K) such that /x is supported by {y, z} and r(/x) x. We only need to show
that r is |-open at jjl by Lemma 1 and the above theorem. Set x Ay + (1-A)z
where 0^ A < 1. We may assume y^ z and 0< A < 1. Let U be a neighborhood of
/ll in P(K). Set fl —\r(U) + \K. Assume il is not a neighborhood of x. Then there
exist xn-*x such that xn£û and dim F(xn) q where q is least possible. By
taking subsequences, we may assume that there exist yn, zneF(xn) such that

yn —» y and zn —> z since lim sup F(xn) 3 F(x) 3 {y, z}. Set wn Ayn + (1 - A)zn. We

may assume vvn^xn. Set en max{e:xn + e(wn-xn)e K}. Then dimF(jcn +
en(wn-xn))< dim F(xn) q. But, wner(L7) for n large. If en > 1 and if wner([/),
then

1

wn +—— {xn + en(xn - wn)}

Hence, en < 1 for n large. Thus, xn + en(wn - xn)-* x and xn + en(wn - xn) e O

which is impossible by the minimality of q.

Example 1. Let K be the convex hull of {{el\ ±l):0< 0<tt}U{(1, ±i)} in C2.

Then K is 4-dimensional and ex(K) is closed. The face-function is not lower
semi-continuous at (1,0) since F(l,0) is a square and F(e10, 0) is an interval if
O<0<tt.

Example 2. Let X {0,1,|, i,...} and equip X with the usual metric from R.

Let K dénote the closed unit bail in the space of real Radon measures on X, Le.,

the dual of CR(X). Equip K with the weak* topology. Then K is a compact
convex set. Given jllgX, set ||/x|| /x+(X) + jll"(X). If ||/li||<1, then F(jut) K. If
||fi||= 1, then F(^) is the closed convex hull of {sgn (jll(x)) • 8X :xeX}. One easily

checks that the face-function is lower semi-continuous on K and so K Kb The

zéro measure 0 is not in Ke by criterion (2) in the theorem since \[8A + (-l)Si]
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