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Harmonic analysis and centers of Beurling algebras

Joun LiukkoNeN! and RicHARD Mosak!

A weight function on a locally compact group G is a measurable locally
bounded function @ such that @ =1 everywhere and w(xy)=w(x)w(y) for all
x, y € G. The corresponding Beurling algebra L.(G) is the Banach algebra under
convolution of all functions f such that fw € L'(G). In case G is locally compact
abelian it is well known (cf. [3]) that the maximal ideal space AL,(G) may be
identified with the space of all complex characters y: G — (C—{0}, ) such that
|x(x)|= w(x) for all x € G. The study of the harmonic analysis of such algebras was
initiated in 1938 by A. Beurling [2] in the case G =R, and carried on in the case
of general l.c.a. G by Domar [3]. Among many other results, Beurling in the
special case and Domar in the general case show that if w is of non-quasianalytic
type (i.e., if ¥ log w(x")/n’> <o for all x e G), then L.(G) is (1) regular and (2)
Tauberian: that is, (1) the family of Gelfand transforms separates points from
closed sets in AL.(G), and (2) {fe LL(G) | f has compact support} is dense in
L.(G). Thus the abstract version of Wiener’s Tauberian Theorem (cf. [23, Ch. 2,
§2]) holds in L.(G).

Now one can ask similar questions about the center ZLL(G) of an arbitrary
Beurling algebra: what is its maximal ideal space; if ZL.(G) is involutive, when is
it symmetric; under what conditions is ZL,(G) regular and Tauberian; and so on.
In a previous paper [15], the authors have shown that to study the center ZL'(G)
of the group algebra, it is indispensable to study the more general context of the
algebras Z®L'(G) of L' functions invariant under a compact group B of
automorphisms, where G lies in the special class [FIA]z. Similarly in this paper
we consider the analogous algebras Z®L.(G) of B-invariant L, functions. For
most of our results we require that w be B-invariant. This has the effect of
requiring in the original context of ZL.(G) that » be invariant under inner
automorphisms. We first show (see §1) that the maximal ideal space of Z°L.(G)
can be identified with a space Xo(G) of B-invariant, w-bounded functions on G.
In §2, we introduce the notion of a rate of growth of  : 2(x) =1lim w(x")""" for all
x € G. We show that if w; and w, are B-invariant weight functions with corres-
ponding growth rates 2, and ,, then X5 (G)=%.(G) iff ,=0,. Thus the
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298 JOHN LIUKKONEN AND RICHARD MOSAK

possible maximal ideal spaces are parameterized by the B-invariant growth rates;
as a corollary we obtain that when w is symmetric, Z®L,(G) is symmetric iff
Q=1. In any case, the character space Xo(G)=2%"(G), the space of positive
definite characters, iff 2 = 1. In a slightly different vein, we prove that when w is
symmetric, then the involutive Banach algebra LL(G) is symmetric iff 2 =1. In §3
we extend some of Domar’s results: we show that if w is of non-quasianalytic type
and o is B-invariant, then Z®L_(G) is regular and Tauberian.

1. Centers and B-centers

We begin by recalling some terminology and results from [7, 13, 14, 15, 18,
19]. If G is a locally compact group, and B < Aut (G) a group of automorphisms,
then G is said to be an:

[IN]g group if G contains a compact, B-invariant neighborhood of 1;
[SIN]g group if the B-invariant neighborhoods of 1 form a neighborhood basis
at 1;

[FC]g group if each x € G has a precompact orbit under B;

[FIA]g group if B is precompact in the usual T,-group topology on Aut (G).

In each case the subscript B is omitted if B =I(G), the group of inner au-
tomorphisms. Grosser and Moskowitz have proved (cf. [7, 0.1]) that a group G is
[FIA]g iff it is both [FClg and [SIN]g. One can prove that [FC]g groups are also
[IN]g if B> I(G) [14, 2.2].

We shall talk of B-invariant functions and essentially B-invariant functions: if
f?(x)=f(B 'x), then the former are characterized by the condition f* =f on G,
for all B € B, and the latter by the condition f? = locally a.e. on G, for all B € B
(where the exceptional set may depend on B). If B is a group of measure-
preserving automorphisms, then B has a strongly continuous action on LP(G)
(1=p=w; for p=cc the topology in question is the weak-*-topology) induced by
the map (f, B) — f® of £°(G)x B — ¥°(G). (Here ¥” denotes the actual func-
tions, L? the equivalence classes.) If we denote by Z®(L?(G)) the subspace of
B-invariant elements, then it is clear that a function in ¥°(G) is essentially
B-invariant iff its equivalence class is in Z®(L?(G)).

The groups for which Z®(L'(G)) # (0) are precisely the [IN]g groups. This one
proves exactly as in [19], where the case B = I(G) is dealt with. Moreover, it is
shown there that if Z(L'(G)), the center of L'(G), is not (0), then Z(L'(G))=
Z"®(LY(G)), G is an [IN] group, and in particular G is unimodular. When
B> I(G), ZB(L'(G)) is a closed *-subalgebra of the center Z(L'(G)), and is a
commutative, semisimple Banach algebra.
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If G is an [IN]g group, B2 I(G), we let Go={xe G: the orbit B[x] is
precompact}. Then G, is an open, B-invariant subgroup of G, and G, is an
[FCls, group, where Bo=B|g,. Moreover, any essentially B-invariant £'-
function f vanishes a.e. on G — Gy (cf. [20, 1.2]), so the map f~ f|g, induces an
isometric isomorphism of Z®(L'(G)) onto Z®(L'(G,)). Consequently, in study-
ing Z®(L'(G)), we can always assume that G is an [FC]g group. We have already
observed in [15, 1.2] that we can in fact even assume that G is an [FIA]j group;
we shall next prove a refinement of that result. For the proof, and for later use, it
is convenient to recall that when G is an [FIA]g group, there is a way of
averaging out continuous functions, or classes in L?, over B-orbits in order to
make them B-invariant: if g is continuous, we put g*(x) = fp- g(8'x) dB, where
dB is normalized Haar measure on the compact group B~, and xe€ G; if
ge L?(G) (1=p=wx), we put g* =fp- g° dB (vector-valued integral), which clearly
reduces to the same thing if g is continuous. Then # gives a linear projection of
C.(G) onto Z®(C.(G)), and a continuous projection of L?(G) onto Z®(L"(G))
(1=p =), satisfying

" 0=¢6n (1= 00 ax)

for fe L*(G), ¢ € L?(G), or fe C.(G) and ¢ continuous. These results are
proved in [18, §1] for 1 =p <o, and for p = » are easy to prove by transposition.
Also, if fe L'(G) and ge Z®(L'(G)), then (f*g)*=f"*g.

LEMMA (1.1). Let G be an [FCls group, B> I(G), and let K denote the
intersection of the compact, B-invariant neighborhoods of 1 in G. Then K is a
compact B-invariant (normal) subgroup of G, and G'= G/K is an [FIA]g- group,
where B' is the (precompact) group of automorphisms induced by B. Let w: G —
G/K denote the canonical projection.

(i) If f is a measurable, essentially B-invariant function on G, then there is a
measurable, essentially B'-invariant function f' on G' such that f=f'oar La.e. If f is
also continuous (resp. in £"), then f' may be chosen continuous (resp. in £') so that
f'em = f everywhere (resp. a.e.).

(ii) If f is continuous and B-invariant, or fe ZPLY(G), then for f' chosen as in
(i), we have

fi(x)= L f(xk) dk.

Equality holds everywhere if f is continuous, and a.e. if fe Z°L'(G).
(iii) The map f~> f' induces an isometric isomorphism of Z°L?(G) onto
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ZP'L?P(G’) (1=p=w), and a homeomorphism for the weak*-topologies o(L", L")
if p=oco.

Proof. The assertions that K is a subgroup and B’ is precompact are proved in
[7, 2.5]. If f is continuous the remaining assertions are evident, and for fe
ZPL'(G) the results follow from [15, 1.2] and its proof. Now without loss of
generality assume f is uniformly bounded (replace f by f/(1+]f])). For any
compact subset C of G there is a ge Z°L'(G) such that g|cx =1: take g(x)=
h*(w(x)), where h is the characteristic function of B'[w(C)]. Thus fg€ Z?L'(G)
so the assertions hold for fg. Therefore f is locally almost everywhere K-periodic
so assertion (i) follows from [23, Ch. 3, §6.5]. Assertion (ii) follows from the Weil
formula [23, Ch. 3, §4.5] and the fact that K is compact. These last results also
show that |f'ear|, =||f|l, for 1=p < and f'€ ¥7(G/K), proving (iii) for this case;
for p = one applies [23, Ch. 3, §3.9, Corollary].

We turn next to weight functions and Beurling algebras. We shall say that two
weight functions w; and w, on G are equivalent if there are constants ¢, d >0
such that for all xe G,

cwz(x) = w1(x) < dwa(x).

In this case w; and w, define the same Beurling algebra LLG)=
{fe L'(G):f|f(x)| @(x) dx <=} where w = @, or w,, and the norms | ||, and || ||.,,
are equivalent, so for virtually all of our purposes w; and w, are interchangeable.
In particular, as Reiter remarks [23, p. 83], if o is a weight function and w, is its
upper semicontinuous envelope,

w1(x) =1im sup w(xy),
y—1

then w, is a weight function on G, and 0(x) < wi(x)=< 0:(Dw(x) for all xe G, s0 @
and w; are equivalent. On the other hand, if N is a normal subgroup of G, and w,
is defined by w,(x)=inf {w(xk):k € N}, then w, is a locally bounded, submultip-
licative function on G [23, p. 85], and thus is a weight function if it is measurable
(in particular, if w =w; is upper semicontinuous). Now if N is compact, and
c=sup {w(k): k € N} then for all xe G and ke N we have w(x)<w(xk)o(k™") =<
cw(xk), so

w2(x) = w(x) = cw(x). (1)

In particular, if w is upper semicontinuous then w, is a weight function equivalent
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to w. We collect a number of technical results on weight functions in the following
lemma.

LEMMA (1.2). Let G be a locally compact group, o a weight function on G
with upper semicontinuous envelope wi; if N is a normal subgroup let w,(x)=
inf {w,(xk): k € N}.

(i) If o is symmetric (0(x)=w(x™") for all xe G), then so are w, and w,.

(ii) If B is a subgroup of Aut(G), and w is B-invariant (0® = w for all B € B),
then so is wy; if N is B-invariant, then w, is also B-invariant.

(iii) If N is compact, and |y =1, then w and w, are constant on cosets of N,
and thus w; = w,.

Proof. Straightforward.

Because of the above lemma, we assume henceforth without loss of generality
that all weight functions we consider are upper semicontinuous.

If G is a locally compact group, B a group of measure-preserving automorph-
isms, and w a weight function on G, we can define the B-invariant Beurling
algebra Z®(LL(G)) as ZB(L'(G))NLL(G)={fe L'(G):f* =f for all Be B, and
Ifllo <}. Then we have: Z®(L.(G))# (0) if and only if G is an [IN]g group: the
necessity has already been noticed for Z®(L'(G)), while if G is an [IN]z group
then the characteristic function of a compact, B-invariant neighborhood of 1 is in
ZB(LL(G)). If B=1I(G), then Z®(LL(G))= Z(LL(G)) is just the center of L.(G);
we call it a central Beurling algebra. If B > I(G), Z®(LL(G)) < Z(L4(G)), and thus
Z®(L.(G)) is a commutative, semisimple Banach algebra.

PROPOSITION (1.3). Let G be an [IN]g group, B> I(G), and let w be a
weight function on G.

(i) There is an [FIAlg group G', with B' > I(G'), and a weight function ' on
G', such that ZB(LL(G)) and Z® (LL(G")) are canonically isomorphic as Banach
algebras.

(i) If w is B-invariant, then Z®(C.(G)) is || |..-dense in Z®(L4(G)).

Proof. (i) is a straightforward modification of [15, Corollary 1.5]. Assuming
ZBLL(G) # (0) we set G’ = Go/K, where G, is the open subgroup {x € G:B[x] is
precompact} and K is the compact subgroup formed by the intersection of all
compact B-invariant neighborhoods of 1. We take w'(X)=inf {w(xk): k€ K} for
each x € Gy.

To prove (ii) we must observe first that if w is invariant under B, then it is also
invariant under its closure B™. For if x € G is fixed, then by upper semicontinuity
{ye G:w(y)=w(x)} is closed and contains B[x]. Since B> Bx is a continuous
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map of Aut(G)— G, we conclude that w(Bx)=w(x) for all Be B~ and x€G.
Now replacing x by B~'x we see that 0® = w for all 8 B™. Now to prove (ii) we
may assume by (i) of the proposition that G is an [FIA]g group. Then for any
fe C.(G), we have easily that [|f*||, <||f|l.. Since C.(G) is || ||l,-dense in L (G)
[23, p. 83], # extends uniquely to a norm-reducing linear map of L,(G) into
Z®(L.(G)), and one proves that this extension is the identity on Z®(LL(G)) (so
that # is a projection of L.(G) onto Z®(L.(G))) (cf. [18, 1.4]). Consequently if
ge ZB(LL(G)) and fe C.(G) satisfies ||g—fll. <e, then f*e Z®(C.(G)) and
lg—fI=lg"-Ml=lg-fll<e.

We shall prove next that the maximal ideal space of Z®(LL(G)) can be
identified, for [FClg groups and B-invariant weight functions, with a set of
functions on G. The suggestive terminology in the next definition is chosen in light
of Lemma (1.5).

DEFINITION (1.4). Let G be an [FClg group, B> I(G). A continuous,
non-zero, B-invariant function ¢ on G is a B-spherical function (central spherical

function, if B =I(G)) if the linear map

fr jf(x)¢(x) dx = Ly(f)

is multiplicative on Z®(C.(G)). If w is a weight function on G, the set of
w-bounded B-spherical functions (those satisfying |¢(x)|=w(x) on G) will be
denoted by X5(G), or simply X,(G) if B=I(G).

We remark that although the definition is phrased for [FClg groups instead of
[FIA]s groups, the apparent generality gained is only formal, in view of (1.1).

LEMMA (1.5). Let G be an [FIA]g group, B> I(G). If ¢ is a continuous,
non-zero function on G, then the following are equivalent:

(i) ¢ is a B-spherical function.
i) For all %, ye G, $(x)¢(y)=fa- $(x - By) dp.
(iii) The function ¢, defined on the semidirect product G = G X, B~ (holomorph)
by $(x, B)=¢(x), is a spherical function with respect to the compact subgroup
{1}x B~, in the sense of [6].

Proof. See [18, 4.4].
If G is an abelian group, and B =(1), then Lemma (1.5) shows that the

“central spherical functions” in the sense of (1.4) are exactly the complex
characters of G, that is, the continuous, non-zero homomorphisms of G — C.
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These homomorphisms have been discussed by Mackey in [17]. On the other
hand, if say G=R" and B =S0O(n), then the B-spherical functions on G are
exactly the functions

ér(x)= J e T4 (xeR")

SO(n)

where L €e Homg (R, C) [9, p. 422].

In previous papers [15, 18] we have used X°(G) to denote the set of non-zero
extreme points of the continuous, positive-definite, B-invariant functions ¢ on G
satisfying 1= ¢(1) (=|o|lc)- If G is an [FC]g group with B = I(G), it follows from
results of Hulanicki [11] that X®(G) is precisely the set of bounded (=1-
bounded) B-spherical functions on G, ¥%(G)=%7(G): one only needs to know
that any ¢ € X7(G) is constant on cosets of K (Lemma 1.1) so that G can be
assumed to be an [FIA ] group, and then [11, Th. 4.2] applies (cf. also [15, 1.3]).
Later on (in §2) we shall consider conditions on @ which imply that X5(G)=
X®(G); this equality means, therefore, that all the w-bounded B-spherical func-
tions are actually bounded (hence positive-definite).

The next proposition is well-known when G is abelian and B is trivial (see,
e.g. [8, Prop. 6.2]).

PROPOSITION (1.6). Let G be an [FClg group, B> I(G), and let w be a
B-invariant weight function on G. Then the map ¢ — L, is a bijective, bicontinuous
map of ¥5(G) onto the maximal ideal space AA of A= Z"(L.(G)), where the
former has the topology of uniform convergence on compacta, and the latter has the
Gelfand topology.

Proof. In view of 1.1 and 1.3 we may assume that G is an [FIA]g group. Now
the Banach space dual of L,(G), for any weight function o, is the space L;(G) of
equivalence classes (modulo locally null functions) of functions ¢ such that
ldlle.o = ||/ |l <= [23, p. 84]. Using the projection #:L.,(G)— A and the dual
projection # : L5(G)— Z”L%(G) we can check easily that the dual space of A
may be identified with Z®L;(G). Now any w-bounded B-spherical function ¢ is
certainly in Z®(L3(G)), and by (1.3.ii) L, € AA. Conversely, if e Z®(L3(G))
and L, € AA, and if foe A satisfies L,(fo) =1, then for all fe A

Ly(f)=Ly(fo*f) = Ls (),

where ¢ = fo* ¢ (here f3(x) = fo(x~")). But ¢ is w-bounded and continuous [23, p.
85], and one checks easily that ¢ is B-invariant, hence ¢ € X£5(G). The bicon-
tinuity of the map ¢ — L, is proved as in [8, Th. 2.1], using (1.3.ii) together with
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the facts that for any fe L.(G) the map x — f* is continuous from G — L.(G)
[23, p. 84], and that (in view of the properties of the #-operator) weak *-
convergence of a net (L,,) on A, ¢,€ Z°(LI(G)), is the same as weak *-
convergence on L,(G).

LEMMA (1.7). Let A be a commutative Banach algebra, and let A, be a
closed subalgebra. Suppose that there is a continuous linear projection P of A onto
Ay satisfying P(fgo) = P(f)go for all fe A, go€ Ao. Then each multiplicative linear
functional hoe A(A,) has the form ho=h | A, for some he A(A).

Proof. Let hoe A(Ay) and let M, =ker hy. Then M, is a regular maximal ideal
of Aoy. Let e be a relative identity for M, in A,. Then it is routine to check that
M'={fe A|P(fg)e M, for all g A}is a closed ideal in A with relative identity e.
It follows that there is a regular maximal ideal M in A with relative identity e
such that M>M'> M, and MN Ay=M,. Let he A(A) correspond to M. Then
h | Ao = hy, since ker (h | Ag)=MN A= M,.

The next proposition generalizes [18, 5.8] where the case w = 1 is considered.

PROPOSITION (1.8). Let G be an [FIA]g group, B> I(G) and let » be a
B-invariant weight function on G. A function x is in ¥5(G) iff

x=¢”‘=J_ ¢° dp

B

for some ¢ €X,(G), and the map ¢ — ¢* is a continuous and proper map of
%X.(G) onto X5(G).

Proof. For any ¢ € X,,(G), it is clear that ¢™ is still w-bounded and L .« agrees
with L, on Z®(C.(G)). Now ¢*(1)=¢(1)=1, and so ¢* is a B-spherical
function. Conversely, consider A =Z(LL(G)), Ao=Z®(L.(G)) and the projec-
tion P=#:A — A,. If y€X2(G), then by 1.7 there is a ¢ € X,(G) such that
L,=Ls|Ao. But then L, =L4«| A, also, and ¢*€X5(G), so ¢ = ¢*. Further-
more, it is easy to see that ¢ — ¢*:%X,(G)— X¥5(G) is continuous in the respec-
tive Gelfand topologies, and extends to a continuous map at infinity if G is not
discrete. (The one point compactifications are X,(G)U{0} and X5(G)U{0}, re-
spectively.) Hence # is a continuous, proper map of X,(G) onto x2(G).

EXAMPLE (1.9). Let G=R", B=SO(n) and let » be a radial weight
function on R" i.e., one satisfying w(Bx)= w(x) for all xeR", Be SO(n). We
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shall determine the w-bounded B-spherical functions on R". First, any complex
character of R" is of the form

Guo(x)= ¢TI0 (xR,

where u, v eR", and u + x denotes the ordinary inner product. If we define w, on
[0, ) by wo(|x]) = w(x) (xeR"), then w, satisfies wo(r+s)=< wo(r)wo(s) for all
r,s=0, so a=lim,.r 'logwe(r) exists and a=inf{r ' log we(r):r>0} (cf.
(2.1)). Now ¢,,, is w-bounded iff ||v| ||x|| |cos 8] <log wo(||x|)) for all xeR", 0=6 =<
2w, i.e. iff |v]| = a. Thus X,(R") is identified with R" x{veR":|v]||=a}<R" xR".
By (1.8), every y e X5(R") is of the form

X(x) = Xu,v(x) = J e_i(“ * Bx+iv - Bx) dB

SO(n)

for u,veR", |v||=a Taking the Laplacian we get Ax,,(x)=
(Jol?—2iu - v = |ul?)xus(x), so that if x,,=xu. then |v|f—2iu-v—|ulf=
Jv'|P—2iu’ - v'—|u’|’. It follows immediately from Corollary 3.3, p. 401 of [9],
that the converse is true: if [|o|*—2iu - v —|ul* =|o'|>— 2iu’ - v'~|Ju'|} then x,., =
Xuw,o- ThUs Xu, = Xu, does not always imply (u, v) =(Bu’, Bv’) for some B; in
contrast, if @ =1 (so v=0), then y, = x. iff u=Bu’ for some B.

Other useful functorial properties of the set Xo(G) are given in the next
proposition.

PROPOSITION (1.10). Let G be an [FIA]g group, B = I(G), and let H be a
closed B-invariant subgroup of G.

(i) Every B-spherical function on G restricts to a By spherical function on H,
where By is the group of restrictions {By : B € B}.

(ii) If H is open and  is a B-invariant weight function on G, then the
restriction map of X5(G) onto X5(G) is surjective, continuous, and proper.

(iii) Every B’-spherical function on G/H lifts to a B-spherical function on G.
Here B’ is the induced group of automorphisms {8'€ Aut (G/H) | B € B}.

Proof. (i) and (iii) follow from the characterization (ii) of B-spherical functions
in Lemma (1.5). For (ii), let A=2Z"LL(G), and let Ao=ZP=(L, (H)). A, is
isometrically embedded in A via the map f~ ¢, where f®(x)=f(x) for xe H
and f¢(x) =0 for x € G — H. Also, the restriction map P: A — A, given by Pf=fy
satisfies P(f*g)= Pf*g if g is supported in H. Now the result follows from 1.7,
using the same proof as in 1.8.
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2. Growth of B-spherical functions and symmetry

If G is an [FC]g group, B> I(G), and w is a weight function on G, then
Z®(L.(G))< ZB(L'(G)), so every multiplicative linear functional on the latter
algebra restricts to one on the former. We may ask whether there are any other
multiplicative linear functionals on Z®(LL(G)); i.e., whether every ¢ € X5(G) is
bounded and hence positive definite by Hulanicki’s result [11]. More generally,
we seek to parameterize the family of character spaces {¥-(G)}; it turns out (see
2.3) that X£5(G) is determined by the rate of growth 2 of w. (See 2.1 below for
the definition of 0.) Thus X2(G) =¥2(G) iff 2 = 1. Furthermore, if o is symmet-
ric, LL(G) and ZBL.(G) are * stable, under the usual involution. We will see
in (2.5) and (2.6) that L.(G) and ZPL,(G) are symmetric iff 2= 1.

PROPOSITION (2.1). Let G be an [FC]  group, and let o be a weight
function on G. For x € G, set 2(x) =lim,_,.. w(x")"'", the rate of growth of . Then

(i) 2 is a continuous weight function which is homogeneous (2(x")= Q(x)"
forn=0,1,2,...). If o is symmetric, so is ().
(i) 1=02=o0, and Q= o iff v is homogeneous.
(iii) If P is the periodic subgroup of G (see [7]), then Q2(xk)= Q(x) for all xe G
and keP.

Proof. Since o is submultiplicative, the limit defining {2 exists and equals
inf {w(x™)"" |n=1} (see e.g., footnote 4 in [4, §4.2]); also Q2(x*)=Q(x)* for
k=0,1,....If o is homogeneous then clearly 2 = w; if @ is symmetric so is (2.
To see that (2 is submultiplicative, fix x € G. If C, denotes the conjugacy class of
x, then x™'C, is a precompact subset of the commutator subgroup of G, and the
latter is periodic (i.e., consists of elements which are contained in compact
subgroups of G). Thus it follows from [7, Th. 3.11(2)] or [14, 2.1] that x ' C, is
contained in a compact normal subgroup K of G. Therefore every y € G com-
mutes with x modulo K, so for each n (xy)" = x"y"k, for some k, € K. Therefore

o((xy)")'"" = w(x")"0(y")"" (sup {w(x): x e K"

and in the limit we see that 2(xy)=2(x)Q(y).

Now if w; is the upper semicontinuous envelope of w, we have noted (see
remarks before (1.2)) that w(x)=<wi(x)=w;(1)w(x); thus Q(x)=inf w(x")"",
which shows that  is upper semicontinuous. Since 2(1)=1 and 2=1, O is
continuous at 1. Hence (2 is also continuous on G: for if p=Ilog (2, we have
p(1)=0 and

—-p(yx ) =p(x)-p(y)=p(xy™™).
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Now for any compact subgroup K of G, w is bounded on K, so Q|x = 1. Thus by
(1.2), Q(xk)=1(x) for all xe G, ke K. Since P is the union of the compact
subgroups of G, (2 is constant on cosets of P.

PROPOSITION (2.2). Suppose G €[FC]g, where B > I(G), and w is a weight
function on G. Then

(i) X.,(G)=Xa(G), where Q is the rate of growth of w.
(ii) If w is B-invariant, ¥o(G) =Xo(G).

Proof. For the proof, we may assume that G €[FIA ;.

(i) Since 2 = w, we know Xo(G)< X,(G). Now suppose that x € G, and that u
is the unique central probability measure supported in the closure C, of the
conjugacy class of x (so that w(f)=f*(x) for all fe C.(G)). As in the proof of
(2.1), x 'C; is contained in a compact, normal subgroup K of G, so u is
supported in xK. Therefore the n-fold convolution power u" of w is supported in
x"K for every n. It follows by Lemma 1.5(ii) that if ¢ € X,(G) then

o))" =Ko, ™ =(o|, ") =(w, u") = w(x") sup {w(x): x € K}.

Thus |¢(x)|=< w0 (x")"""(sup {w(x)]| x € K})''" for all n, and |d(x)|=£(x). This
shows ¢ € Xn(G).
(i) Immediate from (i) and 1.8.

Proposition 2.2 and Theorem 2.3 below parameterize the possible character
spaces Xo(G), for B-invariant o, by the B-invariant rates of growth (2.

EXAMPLE. Suppose o is a weight function on R. Then 2(x)=e** for x =0,
and 2(x)=e ?* for x=0, where a=log (1), B=log 2(—1). The equality
X.,(R)=ZXq(R) thus asserts that the complex character x(x)=e " is in X, (R) iff
—B=<Imz=<a. In view of 1.6, this means that z is in the common domain of
absolute convergence of all the bilateral Laplace transforms Jf(x)e " dx (fe
L.(R) iff -B=Im z=<a, a fact which was already observed by Beurling in [2].

THEOREM (2.3). Let G be an [FClg group, B> I(G), and w; be weight
functions on G with rates of growth (2; (i=1,2). Then

(1) X.,(G)=Z%,,(G) iff 2,=1>.
(ii) If w; and w, are B-invariant, then IE,(G)=I52(G) iff = Q,.

Proof. From (2.2 we see that it suffices to prove the following two assertions:
(i) X0,(G)=%0,(G) implies 2, = {2,, and (ii) if £2; and (2, are B-invariant, then
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X4,(G)=%4,(G) implies X,(G) =X%4,(G). If P is the periodic subgroup of G [7,
3.16] then P is B-invariant and {2,, {2, are constant on P-cosets (2.1). Further-
more P contains the compact subgroup K, intersection of all the compact,
B-invariant neighborhoods of 1 in G, so by the discussion at the beginning of §1,
G'= G/P is [FIA]p- for the induced group of automorphisms; G’ is also abelian
and aperiodic [7, 3.16]. Using (1.10(iii)) we see that we may replace G by G’ and
assume that G is an aperiodic abelian group (which we shall write additively) and
B is precompact. We shall write X,(G), ¥2(G) (i=1,2) for X0,(G), X6.(G),
respectively.

Suppose now that £, and (2, are B-invariant, and ¥7(G)=X2(G); we shall
prove that X,(G)=X%,(G). If not, then there exists ¢ in X.(G), say, but not in
X>(G); so for some x € G, |p(x)|> 2,(x). Choose ¢ such that |¢(x)|>c> Q2,(x),
and let Bo={B€ B :|¢(Bx)|=c}. Then B, is a closed neighborhood of the
identity in B™, since the evaluation map B+~ Bx of Aut(G)— G is continuous.
Hence for any neN,

|o[" (nx) = J |6(B(nx))| dB = L_ |6 (Bx)|" dB

g

= [ l6(or ap=c" 1B,

where |Bo|>0 is the measure of B,. But |¢| is also an w-bounded complex
(actually, a real-valued) character of G, so by (1.8) |¢[*€ ¥7(G) =%5(G); hence
|o[* (nx) = 0Q,(nx) = Q,(x)". Therefore 2,(x)" =c" |Bo|, so 2,(x)=c, a contradic-
tion. Thus X}(G) =X3(G) implies X,(G) = X,(G).

‘Now (without assuming B-invariance of w; and w,) suppose X:(G)=X.(G);
we shall show that £2,(x)= ,(x) for each xe G. In fact, if p is a continuous,
non-negative, homogeneous subadditive function on G, then [5, B.3.1, p. 219]
implies that for each x € G there is an algebraic homomorphism L : G — R such
that L <p and L(x)= p(x). Furthermore since L <p it is easy to check that L is
continuous. Setting p =log 2 we get 2(x)=sup {|d(x)|: ¢ € X£o(G)} for each con-
tinuous homogeneous weight function 2 on G. Since X,(G)=X,(G) it follows
that 2, = (),.

LEMMA (2.4). Let G be an [FC]™ group, and let w be a weight function on G
with rate of growth Q=1. Then for any compact set AcQG,
lim, . (sup {w(x):xe A"H" =1.

Proof. A is contained in a compact, I(G)-invariant subset with non-empty
interior (cf. [14, 2.2]), so by passing to an open, normal subgroup we may assume
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that G is compactly generated. Let K be a compact subgroup of G such that G/K
is abelian. If w’(%)=inf{w(xk)|ke K} (xe G), then by inequalities (1) before
(1.2), 0'(X) = o(x)=<sup {w(k): k € K}w'(x). Thus we may replace w by ' and G
by G/K, and assume that G is abelian. There is a finite set F={x;,...,x}< G
such that A>c FA,...,A"cF" 'A. Since F is finite, given ¢>1 there exists
b>0 such that w(x")=<bc" for all n=1 and all xe F. Now te F*~' implies
t=x7'-- xg-where a;,...,axeNand } a;=n—1. For any y € A we then have

w(ty)=w(x7) - 0(xHo(y)
= b*c" (sup {w(x):x € A})

Hence

(SUP {w(X):x € A"})l/n < bk/nc(n—l)/n(sup {w(x):x c A})l/n -,

which proves the lemma.

THEOREM (2.5). Let G be an [FClg group, B> I(G), and let v be a
B-invariant weight function on G, with rate of growth (). Then the following are
equivalent:

i =1
(i) X5(G)=%"(G)
(iii) The maximal ideal space of Z®(LL(G)) equals that of Z®(L'(G)).

If w is symmetric, these conditions are equivalent to

(iv) ZB(LL(G)) is a symmetric * algebra; i.e., every complex homomorphism of
ZPL.(G) respects the involution.

Proof. The equivalence of (i), (ii), and (iii) follows from 1.6, 2.2, and 2.3. Now
suppose that w is symmetric so that L.(G) is involutive. For each ¢ € ¥5(G), let
$* be defined by ¢*(x)=¢(x 7). Then it is easily verified that ZEZLL(G) is
symmetric iff ¢ = ¢* for each ¢ € X5(G) =%5(G) iff Z°Lo(G) is symmetric. If (ii)
holds, then by Hulanicki’s result [11] each ¢ € X2(G) is positive definite, so equals
¢*; hence (iv) holds. Conversely, if (iv) holds, we may assume without loss of
generality that o = (2. Now {2 is constant on P cosets, where P is the periodic
subgroup of G; thus X5(G/P)c X5(G) by 1.10(iii) and it is enough to prove
(iv) = (ii) in the case G = G/P is locally compact abelian.

So assume G is abelian. By 1.8 it is enough to prove Xo(G)=X(G) (= G). Fix
Y €Xa(G); by taking |¢| we may assume ¢ has positive values. For any fe
ZP(C.(G)), fyeL'(G), so for all ¢eG, we have (f*4)(¢)=(f* ¢o)=
(f*, (Yd)*). But Y eXo(G), so (Pd)*€Xa(G), so by the symmetry of
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Z%(La(G)), we have (f*, (yb)*)=(f, W) =(f, ¥) = (fb) (¢) =[(f¥)*] (¢). By
the semisimplicity of L'(G) we have f*¢ = (fy)* for all fe Z®(C.(G)). Fixing x
and choosing f so that f*(x)=1, we get ¢(x)"'=y¢(x™ ") =(x) and Y(x)=1.

The following extends a result of Pytlik [22], in case G € [FC] .

THEOREM (2.6). Let Ge[FC] and let w be a symmetric weight function on
G with rate of growth ). Then L,(G) is a symmetric *-algebra (see [24, 4.7] iff
0=1.

Proof. Suppose that 2=1. To prove that L.(G) is symmetric, we may show
that whenever fe L.(G), then the spectrum of f*#f lies in [0, »). By [12, Prop.
2.5] this will follow if we show that whenever f=f*e L,(G), then v, (f) =|T;,
where v, (f) =lim,_... |f*|s* and T is the left regular representation of L.(G) on
L*(G). Given >0, there exist ge LL(G) and he C.(G) such that f=g+h,
lgll. <e. After [1], we make the following calculations:

f™=(g+h)™= Zn: Z g h @ s . % gPIy (@)

m=0 p,q

where p=(py,...,px) and q=(qi, - - ., gx) range over sequences of non-negative
integers such that )’ p;=m, ) q;=n—m, and no p; or ¢; is zero except possibly p;,
gk, or both. Now if g, # 0, then

g(p,)* h@% ... % g(p")* h(q")(s)

= || g(0) - Gltmdhay BV -y xRV () dty < - di,
g 4

where a1 =t " t,, A2=1tp,11" " tpipy - +» Ok =lptersper41° ** tmy and h,(2) =
h(a™'t). (If p,=0, set a;=1 and delete g(#) and dt from the integral, for
i=1,...,p1.)

If S =supp (h), then supp (h,, *h® % - - -k hy *h% ) a; 8% - - - @ S%; if A is
a compact, I(G)-invariant set containing S and 1, then q;8%:--aS%c
ap- - @A "=t -+ 1,A"" since Sa=a(a"'Sa). Therefore if q.# 0 then

”g(Pl)* h(ql)* ook g(Pk)* h(qk)”w

= J lg(pl)* v *h(qk)(s)l w(s) dsSj S . J' Ig(tl)l .o lg(tm)l
G G G

X J |ha, * R @ V% -« - s by * h%7D(s)| w(s) dsdt, - - - db,,
ter tmAPT™
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<(sup o) [+ [ls@low - gl ot

x”ha,* h(ql_l) .. hak *h(qk—l)lll dt, - - dt,,

= (sup ) (A" ZITI (R T gl

n—m

where the last inequality uses the Schwarz inequality and u denotes the Haar
measure on G (the details of the computation are in [1]). If g, =0, we can obtain
the same inequality by observing that

“g(pl)* hadx ... *h(q"“)*g(p")”w Sng(pl)* RV ... % h(q"“)Hw |lgllf,“-

Since 1=<sup~=®=<supa~®, and lim (sups-w)"’" =1 (Lemma 2.4), the proof
that v,(f)<||T;| is completed as in [1]. But T is a * representation and so
automatically || T;||= v, (f).

Conversely, if LL(G) is symmetric, then so is ZL.(G) (see [24, Corollary
4.7.3)). We have ZC.(G)= ZL,(G) < ZL§(G), and  is central, since it is defined
on cosets of the periodic subgroup P and G/P is abelian (see (2.1)(iii).) Hence by
(1.3) ZL.(G) is || ||a-dense in ZL H(G). Thus ZL(G) is symmetric, and 2 =1 by
2.5.

3. Regularity and non-quasianalyticity

When G is a locally compact abelian group, it is a classical fact that the
Banach algebra L'(G) is a regular Tauberian algebra: that there are enough
functions in L'(G) so that the Gelfand transforms separate points from closed sets
in the maximal ideal space G, and that {fe L*(G): f has compact support in G} is
dense in L'(G). When G is an [IN]gz group, B 2 I(G), then Z®(L'(G)) is also a
regular Tauberian algebra; this follows from [15, 2.4 and 2.6], using (1.3). Now if
w is a weight function on G, then Z®(L), G))< Z®(L'(G)), and we may ask for
conditions on o that ensure that the Gelfand transforms of functions in the
B-invariant Beurling subalgebra still separate points from closed sets in X°(G)
(the maximal ideal space of Z®(L'(G))). When G is a locally compact abelian
group and B =(1), Domar has proved [3, 2.11] that a necessary and sufficient
condition is that o be of non-quasianalytic type:

Z log wz(x )<o<>

n=1 n
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for all x e G; furthermore, he proves that in this case, L,(G) is automatically a
Tauberian algebra [3, 1.52]. We prove the direct parts of these assertions in the
case of Z®(LL(G)), using his results.

THEOREM (3.1). Let G be an [FIAlg group, B> I(G), and let w be a
B-invariant weight function on G. If w is of non-quasianalytic type, then

() If X< U<X®(G), K is compact, and U is open, then there exists fe
ZB(L.(G)) such that 0=f=<1, f=1 on %, and f=0 on X%(G)— A

(i) If F={feZ"® (Li,(G)):fAhas compact support on X°(G)}, then F is dense in
Z®(Lu(G)).

Proof. The proofs of Propositions 2.4 and 2.6 in [15], replacing || |l; by || ||,
show that it suffices to prove the proposition when G is a compactly generated
group and B = I(G). In this case, let K be a compact, normal subgroup such that
G/K is abelian [7, Th. 3.20]. We recall some results from [15, 2.3]. X(G) is the
union of open and closed equivalence classes W(¢)={YcX(G): ¥|x = ¢|x}. For
each ¢ € X(G), if S=S(¢)={xe G:¢(xk)#0 for some k € K}, then S is an open
subgroup containing K (so /K is abelian), and [k |¢(xk)|* dk has a constant value
¢#0 on S. Moreover, the map A = A~ ¢ is a homeomorphism of the dual group
(S/K)” onto W(s), where A~ (x)=0 if xe G—S, A"(x)=A(x) if xeS (%= xK).
We may assume therefore that ¥ < U < W(¢) for some ¢ € X(G). Also, we may
assume that o is upper semicontinuous, so the equation w’(%) = inf {w(xk) | k € K}
defines a weight function on G/K, and by restriction on S/K, which is also of
non-quasianalytic type. By Domar’s result in the case of abelian groups [3, 2.11]
there exists ge L. (S/K) satisfying 0=g=<1, gA)=1if A" ¢pe X, and g(A)=0 if
A" peW(p)—U. If we set f=c 'g~ ¢, then f is central: for g~ is constant on
K-cosets and G/K is abelian, and ¢ is central. Furthermore fe L.(G), for ¢ is
bounded, and

Il = |, lg( w0 dx= (supo) [ g0l ') di < *

Finally, f vanishes on ¥(G)— W (¢), while for A~¢ € W(d) (A €(S/K)") we have
f(/\”d)): g(A): these assertions are proved at the end of the proof of [15, 2.4].
This proves (i).

We have already noted (in (1.6)) that the Banach space dual of Z(L.(G)) is
Z(L;(G)). To prove (ii) it therefore suffices to show that the only ¢ € Z(L;(G))
satisfying ¢ L & (under the pairing (f, ¢) = L,(f)) is ¢ =0. For each ¢ € X(G), let
F,={ge LL(S(¢)/K):§ has compact support in (S/K)}. If ge %,, then f=
c ‘g™ is in %, since as above f vanishes outside of W(¢) and f(A~¢) = g(A) for
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all A €(S/K) . Therefore g€ %, implies (g ¢, ¢)= c(f, ¥)=0. By Domar’s result
[3, 1.52] for the case of abelian groups, %, is dense in LL(S/K), and inequalities
(*) then imply that (g, ¢) =0 for all ge L} (S/K). Since ¢ vanishes indentically
on G—S, (g ¢, ¢)=0 for all ge LL.(G/K). Now we can let ¢ vary over X(G);
since Z(L'(G)) is semisimple with maximal ideal space X(G), we conclude that
g ¥ =0 (ae.) for all ge L,(G/K). In particular, if E< G is compact, we may
choose ge C.(G/K) such that g(x)=1 for all xe E; then y/(x)=(g ¢(x)=0 a.e.
on E, so =0 locally a.e. This completes the proof.

Remark. Let us assume that G is an [FIA] group, and consider the condi-
tions

(i) w is of non-quasianalytic type;

(ii) Z(L.L(G)) is regular as an algebra of functions on X(G).
As we have mentioned, Domar proves in [3, 2.11] that (i) and (ii) are equivalent if
G is locally compact abelian (in that case Z(L.(G)) is just LL(G), and X(G) is
just G). He also proves [3, 1.41] that (ii) implies the condition

(iii) X(G) is the full maximal ideal space of Z(LL(G)).

We do not have a proof of the equivalence of (i) and (ii) in general, although we
have just shown that (i) implies (ii). Nevertheless it is easy to see that either one
implies (iii). For as we know already (2.5)(iii) is equivalent to the condition
“0 =1, where (2 is the rate of growth of w. Now (2 < w, and (2 is homogeneous,
so (i) implies

Z log (Zz(x )= Z log .(l(x)<oo
n=1 n n

b

hence log 2 =0. On the other hand, if P is the periodic subgroup of G, then G/P
is abelian. Easy computations show that if (ii) holds then L. {G/P) is regular on
(G/P) = %(G), where o'(x) = inf {w(xk) | k € P}. So by Domar’s result, (ii) implies
that o' is of non-quasianalytic type; but, 2(x)<w'(x) for xe€ G, since Q is
constant on cosets of P (2.1), so 2 is also of non-quasianalytic type. As before
this implies 2 = 1. At the same time we mention that a similar method also proves
the equivalence of (i) and (ii) in case G contains a compact, normal subgroup K
such that G/K is abelian.

COROLLARY (3.2). Let G be an [IN]g group, B> I(G), and let w be a
B-invariant weight function on G satisfying

ool n
Z ngz(x )

n=1 n

<
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for all xe G. Then ZB(LL(G)) is a regular, Tauberian Banach algebra, and in
particular Wiener’s Tauberian theorem holds: any closed, proper ideal is contained
in a regular maximal ideal.

Proof. It is easy to see that the weight function o' defined in (1.3) is of
non-quasianalytic type when w is, so we may assume by (1.3) that G is an [FIA]p
group. In the remark we have shown that non-quasianalyticity of w implies that
its rate of growth 2 =1, so by (2.3) and (1.6) the maximal ideal space of
Z®(Ly(G)) is just X%(G). Now the corollary follows from (3.1).

We conclude by remarking that the condition of non-quasianalyticity is actually
strictly stronger than that of having rate of growth (2 =1; the following example
of a weight function satisfying the latter condition but not the former has been
kindly suggested by the referee (another example is given in [16], p. 453).
Consider the function u defined for t=0 as follows: u(t) =exp (#/logt) for t=e,
u(t)=u(e) for 0=t=e. Then u(t+s)=u(t)u(s) for s, t=0 (if g(¢) =log u(t), then
g(#)/t is decreasing, so g is subadditive by [10, Th. 7.2.4]). From the definition
o (x)=u(|x|) one obtains a (radial) weight function on G =R" with the desired
properties.

REFERENCES

[1] Z. Anusiak, Symmetry of L,-group algebra of locally compact groups with relatively compact
classes of conjugated elements, Bull. Acad. Polon. Sci. 18 (1970), 329-332.
[2] A. BEURLING, Sur les integrales de Fourier absolument convergentes et leur application a une
transformation fonctionelle, IX congres des mathematiciens scandinaves, Helsinki, 1938.
[3] Y. DoMAR, Harmonic analysis based on certain commutative Banach algebras, Acta. Math. 96
(1956), 1-66.
[4] 1. GELFAND, D. Raikov, and G. SHiLov, Commutative Normed Rings, Chelsea, New York, 1964.
[5] R. GiLes, Mathematical Foundations of Thermodynamics, Pergamon Press, Oxford, 1964.
[6] R. GopeMENT, Introduction aux travaux de A. Selberg, Seminaire Bourbaki, 1956/1957, exposé
144.
[7] S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew.
Math. 246 (1971), 1-40.
[8] A. GUICHARDET, Analyse harmonique commutative, Dunod, Paris, 1968.
[9] S. HeLGASON, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
[10] E. HiLLe and R. PHiLLIPS, Functional analysis and semigroups, A.M.S. Colloquium Publication
#31, 1957.
[11] A. HuLaNicki, On positive functionals on a group algebra multiplicative on a subalgebra, Studia
Math. 37 (1971), 163-171.
[12] A. HuLANICKI, On the spectrum of convolution operators on groups with polynomial growth, Invent.
Math. 17 (1972), 135-142.
[13] E. KaNIuTH, Zur harmonischen Analyse klassenkompakter Gruppen, Math. Z. 110 (1969),
297-305.
[14] J. LiuxkoNeN, Dual spaces of groups with precompact conjugacy classes, Trans. Amer. Math. Soc.
180 (1973), 85-108.



Harmonic analysis and centers of Beurling algebras 315

[15] J. Liukkonen and R. Mosak, Harmonic analysis and centers of group algebras, Trans. Amer.
Math. Soc. 195 (1974), 147-163.

[16] Y. LyusicH and V. MATSAEV, On operators with a separable spectrum, Matem. Sb. 56 (1962),
433-468.

[17] G. Mackey, The Laplace transform for locally compact Abelian groups, Proc. Nat. Acad. Sci.
U.S.A. 34 (1948), 156-162.

[18] R. Mosak, The L'- and C*-algebras of [FIAlg groups and their representations, Trans. Amer.
Math. Soc. 163 (1972), 85-108.

[19] R. Mosak, Central functions in group algebras, Proc. Amer. Math. Soc. 29 (1971), 613-616.

[20] R. Mosak and M. Moskowitz, Central idempotents in measure algebras, Math. Z. 122 (1971),
217-222.

[21] M. NamMARK, Normed Rings, Noordhoff N.V., Groningen, 1964.

[22] T. PYTLIK, On the spectral radius of elements in group algebras, Bull. Acad. Polon. Sci. 21 (1973),
899-902.

[23] H. REITER, Classical harmonic analysis and locally compact groups, Oxford, 1968.

[24] C. RickART, General theory of Banach algebras, Van Nostrand, Princeton, 1960.

Dept. of Mathematics
Tulane University

New Orleans, La 70118
US.A.

Dept. of Mathematics
University of Rochester
Rochester, N.Y. 14627
U.S.A.

Received April 28, 1975.






	Harmonic analysis and centers of Beurling algebras.

