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Comment Math. Helvetici 52 (1977) 259-295 Birkhàuser Verlag, Basel

Sur la théorie classique des invariants

Th Vust

(0.1.1) Le corps de base k est de caractéristique nulle.
On se donne un espace vectoriel N de dimension finie et un sous-groupe G du

groupe GL(N) des automorphismes linéaires de N. On note N' le dual de N. Soit

p et q deux nombres entiers positifs; on fait opérer G dans ©p(N')©©q(N) par

s.(Ç\ e,x\ ,xq) (V1^1),..., six1),...)

se G, g eN', x1 eN. Un problème de la théorie classique des invariants est de

décrire, par générateurs et relations, l'algèbre k[©p(Nr) © ©q(N)]G des fonctions
polynomiales sur ©p(N')©©q(N) invariantes par G.

Soit r un entier avec r^p et r^q; l'injection

(£\ x\ -* (£\ e,0,..., 0, x\ x\ 0,..., 0)

induit un homomorphisme k[u]: k[©r(N'©N)]G -> fc[©p(N')0©4(iV)]0; puisque
u possède une rétraction qui commute aux opérations de G, k[u] possède une
section; par conséquent, quitte à remplacer N par N'(BN, il suffit théoriquement
de résoudre le problème dans le cas où p 0. Dans la suite, on ne considérera
donc que le cas de l'opération de G dans ©q(N).

Dans son livre: the classical groups [10], chap. II et VI, H. Weyl traite les cas

classiques: G O(N), Sp (N), SL (N),... ; le problème des générateurs de
certaines de ces algèbres est aussi étudié dans l'ouvrage [2] de J. Dieudonné et J.

Carrel. On trouve d'autres exemples dans l'article [7] de C. Procesi.

Lorsque G O(N) est le groupe orthogonal de la forme quadratique usuelle
X (xt)2 sur N, l'algèbre k[©qN]o(N) est engendrée par les produits scalaires (x1, x1),

l^i^j^q, résultat dû à E. Study [8]. Cet exemple, entre autres, suggère à H.
Weyl ([10] p. 32 dernier paragraphe) "la possibilité d'associer à G un nombre fini
d'invariants typiques indépendants du nombre q d'arguments en question. Un tel
système devrait être formé d'invariants dépendants d'arguments typiques
u, v,... ; il devrait fournir un système de générateurs pour l'algèbre des invariants
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260 TH VUST

d'une quantité arbitraire d'arguments x, y, z,... si on substitue ces vecteurs x, y,

z,... dans toutes les combinaisons possibles (répétitions non exclues) aux
arguments typiques u, v,...". Dans le cas de l'exemple, un système d'invariants
typiques consiste en le produit scalaire (m, v). Plus loin, au chapitre II, théorème
(2.5.A), il démontre en utilisant une identité de A. Capelli que

a) si un système d'invariants typiques fournit (par substitution) un système de

générateurs de l'algèbre des invariants k[©n(N)]G pour n arguments (n dim N),
alors il fournit aussi un système de générateurs pour k[©q(N)]G, quel que soit
l'entier q, G désignant toujours un sous-groupe quelconque de GL(N).

Dans [2] chap. 2 §10, on démontre des renseignements du type a) en utilisant
la technique des développements de Young-Deruyts. De plus, au chapitres II (C)
et VI §1 de [10] on trouve que

b) il existe un ensemble de relations R entre les éléments d'un système

complet d'invariants typiques (i.e. qui fournit par substitution un système de

générateurs F(q) de k[ffiq(N)]G pour tout q) tel que les relations entre les

éléments de F(q), qeN, s'obtiennent aussi par substitution à partir de JR, ceci

lorsque G est l'un des groupes classiques.

Par exemple, l'idéal des relations entre les générateurs (x1, x1) de

k[©q(N)]o(N) est engendré par les det ((x1, x}))lGEl, où Ex désigne une partie de

{1,..., q} à n H-1 éléments; on prend alors pour R la relation det ((m1, v]))l=0, ,n-
]=0, ,n

De ces résultats se dégage l'idée que k[©n(N)]G, n dimN, "détermine"
entièrement k[©q(N)]G pour tout q. Le propos de ce travail est de donner forme
à cette idée.

(0.1.2) II faut aborder le problème intrinsèquement: on identifie le G-module
®qN avec le G-module Hom (Q, N), où Q est un espace vectoriel de dimension q

et G opère au but. On remarque ensuite que GL(Q) opère à la source dans

Hom (Q, N), que les deux opérations de G et GL(Q) commutent et par
conséquent que GL(Q) opère dans fc[Hom (Q, N)]G.

Il faut aborder le problème fonctoriellement: on considère la catégorie 33 des

espaces vectoriels de dimension finie et la catégorie SIff des variétés algébriques
affines dont l'algèbre des fonctions régulières n'est pas.nécessairement de type
fini; on note Hom (Q, N)/G(1) l'objet de Slff dont l'algèbre des fonctions

1 La variété Hom (O, N)/G est loin d'être le quotient de Hom (Q, N) par l'opération de G; c'est

par analogie avec le cas où G est réductif qu'on a choisi cette notation: la variété Hom (O, N)/G est

alors "l'espace des orbites fermées de G dans Hom (O, N)" (cf. [6]).
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régulières est k[Hom (Q, N)]G et 7r(Q):Hom (Q, N)-> Hom (Q, N)/G le mor-
phisme induit par l'inclusion des fonctions régulières; alors Hom N)/G est un
foncteur (contravariant) de 93 dans 2ïff et tt une transformation naturelle
Hom N)-> Hom N)/G.

(0.1.3) Soit F un foncteur (contravariant) de 93 dans Slff. Une présentation de

F est la donnée d'une suite de transformations naturelles entre foncteurs de 93

dans «ff

en sorte que, pour tout espace vectoriel Q, on ait une présentation au sens usuel:

1) Vt(Q) est un espace vectoriel de dimension finie, i 1, 2,

2) F(Q) est une immersion fermée,
3) F(Q) induit un isomorphisme F(Q)-> ^(Q)"1^);

autrement dit,

2') le comorphisme fc|T(Q)]:fc[Vi(Q)]-» k[F(Q)] est surjectif,
3') k[r(Q)] induit un isomorphisme /c[V1(O)]/(k[i^(O)](m2(O)))-> k[F(Q)],

où m2(Q) désigne l'idéal maximal de 0 dans k[V2(Q)].

(0.1.4) Soit I un ensemble fini et aeN1; on note

et on considère ®a comme un foncteur de 93 dans Sïff. Si I* est un ensemble fini
contenant / et a*eNJ\ on écrit i(I, I*) pour l'inclusion naturelle ®a*'' c->®a*.

Pour tout Q, on désigne par Q' le dual de Q.

Voici le résultat principal de ce travail:

THÉORÈME. Soit P un espace vectoriel, dimP^dimN. On suppose que
/c[Hom (P, N)]G est une algèbre de type fini; on se donne une présentation

Hom (P, N)/G ¦*> ®a(P)' A ®b(P)r (1)

de Hom (P,N)/G où aeN1, beNJ et g et r sont des morphismes (de 2lff)

GL(P)-équivariants. Alors, une telle présentation se prolonge fonctoriellement en
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une présentation de Hom N)/G. De manière précise, il existe deux transformations

naturelles TiHom N)/G-^®a(.)' et R*:®a(.)f-*®b\.)', fc*€NJ*
telles que

a)

b) J* est un ensemble fini contenant J, b% b et R*(P) i(J, J*)(P)°r,
c) la suite

Hom N)/G -^®a(.)'-*!* <g>b*(.)'

est une présentation de Hom N)/G.

Un tel prolongement n'est pas unique; on peut cependant en construire un qui est

canonique.

On donne quelques étapes de la preuve de ce théorème, ce qui permettra de

préciser certains points.

(0.2.1) LEMME. Soitf:<8>c(Q)'-*®d(Q)' un morphisme polynomial GL(Q)-
équivariant II existe alors une transformation naturelle <£:®c(,)'—>®d(«)' telle que

(0.2.2) On part de la présentation (1) et on considère le morphisme

g o tt(P) : Hom (P, N) - ®(1' A)(P)' -> ®a (P)\

D'après le lemme, il existe X:Hom(., N)-»®a(.y telle que X(P) g°7r(P); on
montre de plus que X Xf, où f e[®a(N)']G et Xt est la transformation naturelle
définie par

Xï(Q):Hom(Q,2V)-»®a(Q)'

u^to®a(u).

Il existe enfin F:Hom(.,N)/G->®a(.)' en sorte que r(P) g et que le

diagramme

Hom(.,N)/ \*
Hom(.,N)/G-L- ®a(.)'

est commutatif. On a alors la

PROPOSITION. Pour tout Q, F(Q) est une immersion fermée.
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Remarque. La forme fe[®a(N)']G sous-jacente à la définition de F est
exactement un "système complet d'invariants typiques pour n arguments" (cf.
(0.1.1)). En effet, pour tout Q, les fonctions polynomiales

Hom(Q, N)-*k

engendrent fc[Hom (Q, N)]G; on a là un formalisme intrinsèque pour le procédé
de substitution.

EXEMPLE. On désigne par t e S2(NY c <g>2(N)' la Q-forme bilinéaire
symétrique non dégénérée positive sur N telle que O(N) est égal au sous-groupe
d'isotropie GL(N)t, Ft la factorisation de Xt à travers rr et P un espace vectoriel
de même dimension que N. On démontre alors (et il est classique) que

Hom (P, N)IO(N) > S2(P)f -* 0

est une présentation.

(0.2.3) Après les succès précédents, on est tenté par l'affirmation suivante:
soit R:<8>a(.)r-*®b(.y une transformation naturelle telle que R(P) r; alors

est une présentation. Dans le cas de l'exemple, cela impliquerait que
Hom (Q, N)/O(N) est isomorphe à S2(Q)r pour tout Q; or tel n'est pas le cas (cf.
(0.1.1)). On voit donc que les idées et techniques de la proposition (0.2.2) sont
insuffisantes.

Soit alors Q un espace vectoriel, dim Q^dim P; on se donne une application
linéaire surjective v:Q—> P. On a la situation

Hom (P, N)/G 8 r(P)> <8>a(P)' P R(P)> ®b(P)'
U'V) <8>V)

Hom (Q, N)/G -^^ ®a

^=1

GL(Q).Im®a(t/)
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On introduit un nouveau foncteur Vap de 33 dans Sïff, sous-foncteur de ®a(.)\ en

posant

((Q) si
Vap(Q) \ 1

IGL(Q). Im<g>a(t>') si

Avec les notations ci-dessus, on a la

PROPOSITION La suite

Hom N)/G p

est une présentation de Hom N)/G

EXEMPLE Lorsque G O(N), cela signifie que Hom (Q, N)/O(N) est

isomorphe au cône Cn(Q)<^ S2(Q)' des formes bihnéaires symétriques sur Q dont
le support est de dimension ^ n

(0 2 4) Le théorème (0 1 4) est conséquence immédiate des deux propositions
précédentes et de la

PROPOSITION Le foncteur Vap admet une présentation du type

Vap

où cr(a, p) est un multundice ne dépendant que de a et p

Sa démonstration est technique et se fait en exhibant JRap, il serait intéressant
d'avoir une preuve procédant d'arguments "abstraits "

EXEMPLE La suite

4-1

CAO)C >S2(QÏ ^^ > S2{ A OJ

* "î1 t n + l ^ n + 1 \
Hom (O, Q') (Q)> Hom l A O, A O'

est une présentation de Cn(Q) En conclusion, avec les notations de l'exemple, la
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suite

est une présentation de Hom N)/O(N).
Les autres exemples classiques peuvent se traiter selon le même esprit (cf. [9]).

(0.2.5) Remarque. Lors des démonstrations, on utilise la théorie des

représentations du groupe symétrique; c'est essentiellement pour cela qu'on
suppose le corps de base k de caractéristique nulle.

(0.3.1) Deux points de vue s'offraient pour la rédaction de ce travail: le point
de vue algébrique où l'on traite le foncteur /c[Hom N)]G et le point de vue
géométrique où c'est du foncteur Hom (.,N)/G dont il s'agit. Outre des avantages

subjectifs, la première façon est directe et élémentaire; la seconde par
contre permet des définitions simples (celles des variétés Va,P(Q) et des mor-
phismes Xt(Q) par exemple). On a choisi celui-ci pour l'introduction et celui-là

pour l'exposé.
Ce travail se compose de deux parties très largement indépendantes, les §§1-3

d'une part, et les §§4-5 de l'autre.
Au §1, on étudie les transformations naturelles entre les foncteurs S*®a,

aeN1. Au §2, on démontre un "demi théorème de présentabilité" pour un type
de foncteurs. Au §3, on applique les résultats du paragraphe précédent au

foncteur fc[Hom N)]G.
Le §4 est consacré à des rappels et preuves de résultats relatifs à l'algèbre du

groupe symétrique. Au §5, on démontre la proposition (0.2.4).

(0.4.1) Conventions. Le corps de base k est de caractéristique nulle.

Lorsqu'on parlera d'espaces vectoriels, sans autre précision, il s'agira toujours
d'espaces vectoriels de dimension finie.

(0.4.2) Notations.
83: la catégorie des espaces vectoriels de dimension finie.
93: la catégorie des espaces vectoriels (non nécessairement de dimension finie).
91: la catégorie des algèbres commutatives (non nécessairement de type fini).
Q: un espace vectoriel.
Q': le dual de Q.

S*(Q): l'algèbre symétrique de Q.

®*(Q): l'algèbre tensorielle de Q.
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Sn(Q): la puissance symétrique neme de Q.

®n(0): la puissance tensorielle neme de Q.

fc[Q]= S*(O'): l'algèbre des fonctions polynomiales sur Q.
Soit <p:Qi-*Q2 une application polynomiale; on note k[cp]: k[Q2]-^ k[Qi]

l'homomorphisme induit par <p et défini par fc[<p](p) p°<p, p£k[Q2].
Soit i/f : S*(Qi)-> S*(Q2) un homomorphisme; on note i/>+ la restriction de ^ à

l'idéal maximal de S*(Qi) engendré par Qlt
I,J,K: des ensembles finis.
Soit a, teN1; on désigne par ab l'élément de N1 défini par (ab)(i) a(i)b(i),

iel; on note |a| Z,€ia(î); on écrit a^b si a(i)^b(0 pour tout /eJ.

§1. Transformations naturelles entre les S*®a

(1.1.0) On considère la catégorie 83 des espaces vectoriels de dimension finie
et la catégorie S des espaces vectoriels non nécessairement de dimension finie.
Dans ce paragraphe on s'intéresse aux transformations naturelles (dans S) entre
certains types de foncteurs de 83 dans 93.

(1.1.1) Soit Q un espace vectoriel et A un foncteur covariant de 83 dans 93.

L'espace vectoriel A(Q) est muni naturellement d'une structure de GL(Q)-
module: s.x A(s)x, se GL(Q), xeA(Q). Lorsqu'on parlera du GL(Q)-module
A(Q), il s'agira toujours de cette structure. Lorsque A=®* ou S*, on a la

structure habituelle de GL(Q)-module sur ®*(Q) ou S*(Q); on remarque en

passant que ces deux derniers GL(Q)-modules sont semi-simples (cf. [2] chap. 2).
Soit A et B deux foncteurs covariants de 83 dans 83. Pour signifier que v est une

transformation naturelle (dans S) de A vers B, on écrira souvent v:A-> B. Si v

est une telle transformation, il est clair que la valeur v(Q) e Hom (A(Q), B(Q))
de v en l'espace vectoriel Q est un homomorphisme de GL(Q)-modules (on

parlera aussi d'application linéaire GL(Q)-équivariante).

(1.1.2) On désigne par I l'ensemble {1,..., r}. Soit aeN1. Pour tout espace
vectoriel Q, on note

<8>û(o)=e®û(0(o).

On définit ainsi le foncteur ®a.
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(1.1.3) EXEMPLE. Soit aeN1, neN. Il est bien connu qu'on a un isomor-
phisme naturel

s»®« _> © (sd(1)®a(1))® • • • ®(sd(r)®a(r)).

L'espace vectoriel S*®a(Q) est muni d'une graduation de type N1, sa

composante homogène de degré deNf, [S*®a(Q)]d, étant isomorphe à

Sd(1J®a(1)(Q)®- • -®Sd(r)®a(r)(Q). On note ^d(Q) le composé des applications
canoniques

» [S*®û(Q)]d ^ S*®a(Q)

et cri(Q) le composé de

^> [S*®a(Q)]d -

On obtient ainsi deux transformations naturelles /nd et vda telles que jnd°crd est la

projection de S*®a sur sa composante homogène de degré à e Nf.

(1.1.4) Soit O et V deux espaces vectoriels et /: V-> S*®a(Q) une application

linéaire, a e N1. Pour d e N1, on pose

De cette manière, on a une décomposition canonique de / en

x

Si V est un GL(Q)-module et / est GL(Q)-équivariant, alors les fd sont aussi

GL(Q)-équivariants.

(1.1.5) EXEMPLE. Soit neN. On note r(Q) la représentation usuelle de

l'algèbre k[<5(n)] du groupe ©(n) des permutations de {1,..., n} dans ®n(Q).
Soit xefc[@(n)]; l'application r(.)(x) qui à tout espace vectoriel Q fait
correspondre T(Q)(x)eEnd(®n(Q)) est une transformation naturelle de ®n vers ®".
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(1.1.6) A ce propos, on rappelle le résultat fondamental suivant (cf. [1] §67,

[2] chap. 2 §2, [10] chap. IV §4): le commutant de Im r(Q) dans End (®n(Q)) est

engendré par l'image de la représentation de GL(Q) dans ®n(Q). D'après le

théorème de densité ([4] chap. 17 §3) on a donc

EndGL(Q) (®n(Q)) T(O)(fc[@(n)]).

D'un autre côté on a

HomGL(Q)(®n(Q),®m(Q)) (0) pour mïn.

En effet, si a :®n(Q)-*®m(Q) est une application linéaire, a^O, on a, pour
l'homothétie seGL(Q) de rapport A

et

on doit donc avoir m n si on veut que a soit GL(Q)-équivariant.

(1.1.7) PROPOSITION. Soit v:®b -» S*®û, aeN1, beNJ, wne transformation

naturelle. Alors v est somme de transformations naturelles du type

1, x€fc[©(|ad|)].

Preuve, a) II suffit de faire la démonstration lorsque Card(/)= 1, i.e. lorsque
=®n, «gN.
Soit Q un espace vectoriel. On considère la décomposition

donnée en (1.1.4); de la définition de v(Q)d résulte que v(.)d est une transformation

naturelle ®n -> ®|ad|. Une telle transformation n'est différente de 0 que si

n \ad\ (cf. (1.1.6)).
b) II suffit donc de démontrer que toute transformation naturelle /x :®n —> ®n,

neN, est de la forme t(.)(x), xek[(B(n)]. On se donne un espace vectoriel P,

dim P^n. On sait que EndGL(P) (®n(P)) T(P)(k[©(n)]) (1.1.6) et que la

représentation t(P) est injective (cf. [10] chap. IV). On note x l'élément de
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] tel que t(P)(x) fx(P) On vérifie facilement qu'on a alors t(Q)(x)
fi(O) lorsque dim Q ^ dim P Lorsque dim Q > dim P, on prend v e fc[©(n)] tel que
T(O)(y) /ut(O), on a alors comme avant r(P)(y) ix(P), d ou r(P)(y) t{P)(x)
et enfin y x par injectivité de r(P) On a donc ijl t(.)(x) ce qui achève la

démonstration

(12 1) Le cas particulier des transformations naturelles de <8>a vers S*<8>h

lorsque beNJ est la fonction b(j)= 1, je/, admet un traitement intrinsèque très

agréable
Soit a gN1 et N un espace vectoriel A tout élément t e®a(N)' on associe une

transformation naturelle \t ®a ~* S*(.®N') de la manière que voici pour tout
espace vectoriel Q, on pose

XÀO)

(w€Hom(O, N))
On désigne par e S*(N®N')^>k Thomomorphisme qui prolonge l'application

Via Tisomorphisme S*(N®N')~ k[Hom (N, N)], £ devient l'homomorphisme
d'évaluation au point lN€Hom(N, N)

(12 2) PROPOSITION Soit p ®a -* S*(.®N') une transformation naturelle,
aeN1 // existe a/ors um unique f€®a(N)' fe/ que ^ xf, de manière précise,

t f°v(N)
Preuve Soit Q un espace vectoriel et xe®a(Q) On interprête l'élément

i(Q)(x) comme une fonction polynomiale sur Hom(O, N) II s'agit de calculer

[v(Q){x)]{u) pour tout ueHom(O, N) Puisque v est une transformation
naturelle pour un tel u on a le diagramme commutatif

k[\\omiO \)]
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Or

[e o v(N)o®a(u)](x) [Xe°V(N)(Q)(x)](u)

d'où l'affirmation

(13 1) LEMME DE PROLONGEMENT Soit Q un espace vectoriel et

f ®b(Q)->S*®a(Q) une application linéaire GL(Q)-équwanante, aeN\ beNJ
II existe alors une transformation naturelle <p ®b —» S*®a telle que ç(Q) f

Preuve II suffit de démontrer la proposition lorsque Card (J) 1, i e lorsque
(g)b <g)n? n € N On considère la décomposition

donnée en (1 1 4), où f ®n(Q)-»®MI(Q) est une application linéaire GL(Q)-
équivanante II reste donc à prouver que, pour toute application linéaire GL(Q)-
équivanante g ®n(Q)-»®m(Q), il existe une transformation naturelle y ®n -»
®m telle que y(Q) g, cela résulte immédiatement de (1 1 6)

(13 2) Remarque Le prolongement <p de / n'est pas unique On peut cependant

trouver un prolongement canonique de / de la manière que voici
On se ramène comme avant au cas d'une application linéaire GL(Q)-

équivananteg <8>n(Q)-* <8>n(Q) Le noyau de t(Q) k[<ë(n)]-+ End (®n(O)) est

un idéal bilatère de l'algèbre semi-simple fc[©(n)], il admet donc un
supplémentaire canonique E, on note alors xeE l'élément tel que t(Q)(jc) g et
on prend t(.)(x) comme prolongement canonique de g

(1 4 0) On considère maintenant les foncteurs du type S*®a comme prennant
leurs valeurs dans la catégorie % des algèbres commutatives (et non plus seulement

dans S) et on s'intéresse aux transformations naturelles (dans W) entre

ceux-ci

(14 1) La proposition (117) fournit une description de toutes les transformations

naturelles S*®b-»S*®a, quant à (13 1), il donne immédiatement le
résultat suivant

LEMME DE PROLONGEMENT Soit Q un espace vectoriel et

f S*®b(Q)^>S*®a(Q) un homomorphisme GL(Q)-équivanant, aeN1, beNJ II
existe alors une transformation naturelle (dans 91) <p S*®b—»S*®a telle que
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(1.4.2) On note encore \,(Q) le prolongement de \,(Q) ®U(C>) -* S*{Q(S)N')
à S*<8>a(Q), te®a(NY (cf (12 1)); on a donc une transformation naturelle (dans
flh *, :S*®a ->S*(.®N'). La proposition (12 2) donne la

PROPOSITION. Soif r : S*<8>u — S*(.®N') une transformation naturelle
(dans ?l i, a € Nz. // existe a/ors m h unique f€®u(\)' re/ <jue r- \,, de manière
précise, t - e • ^(

§2. Les foncteurs A,

(2.1 0) On se donne pour tout ce paragraphe un espace vectoriel .V

Soit A un sous-foncteur de S*(.®N') et peN On considère la propriété
d'extension E{p) que voici

Soit P un espace vectoriel de dimension p, toute transformation naturelle
*:S*®U -> S*(.®N'), aeN1, telle que Im \(P)c A(P) a son image dans A, î.e.,

pour tout O, Im ^(O)CA(O). Autrement dit, notant i ^rinclusion" A —>

S*(.® N'), si Im ^(P)c A(P), alors \ se factorise à travers t en une transformation

naturelle y : S*®" —> A.

On considère ensuite la condition de finitude f (p).

Soit P un espace vectoriel de dimension p; l'algèbre A(P) est de type fini.

Dans ce paragraphe on va décrire les sous-foncteurs de S*(.®N') possédant
les propriétés E(p) et F(p) pour un entier p^dim N, puis démontrer que ces

foncteurs admettent une présentation d'un type particulier. Au paragraphe
suivant, on démontrera que le foncteur S*(.®N')G possède E(p), p^dim N.

(2.1.1) Voici un autre exemple. Soit / {1, r}, a e N1 et f€®a(N)\ On
considère la transformation naturelle

décrite en (1.4.2); géométriquement Xt(O) est le comorphisme du morphisme
polynomial
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(u' désigne l'application transposée de u). On note At le sous-foncteur Im Xt de

S*(.®N'). Il est évident que At possède F(p) pour tout p. De plus

(2.1.2) LEMME. Le joncteur At possède la propriété E(p) pour tout p ^ dim N.

Preuve. Soit x: S*®b -* S*(.® N') une transformation naturelle, b e NJ;
d'après (1.4.2) il existe sG®b(N)' tel que x Xs> Soit P un espace vectoriel de

dimension p^dimN; on suppose que Im ^s(P)c At(P) Im Xt(P)- Puisque le

GL(P)-module S*®a(P) est semi-simple, il existe un homomorphisme
/:S*®b(P)-^S*®a(P) GL(P)-équivariant tel que Xt(P)°f= X*(P). On désigne

par cp : S*®b -» S*®a une transformation naturelle telle que <p(P) / (cf. (1.4.1)).
On note <î>(Q):<8>a(Q)'-^®b(Q)' le morphisme polynomial défini par

fc[#(Q)]=<p(Q). Par hypothèse, on a

Pour m e Hom (P, N), on a donc

<P(P)o®«(u')(t)=®b(u')(s),

d'où

et enfin

puisqu'il existe des éléments surjectifs dans Hom (P, N).
Un calcul semblable montre ensuite que, pour tout espace vectoriel Q,

$(Q)°X,(Q) X5(Q), i.e. que Xt°<P=Xs X> d'où l'affirmation.

(2.2.1) LEMME. Soit V un sous-GL(Q)-module de dimension finie de

S*®a(Q). Il existe alors beNJ et une application linéaire surjective GL{Q)-
équivariante ®b(Q)-» V.

L'assertion provient de (1.1.3) et de la semi-simplicité des GL (Q)-modules en

question.

(2.2.2) Soit L une sous-algèbre de type fini de S*(P®Nr); on suppose que L
est stable par GL(P). Il existe alors aeN1 et un homomorphisme GL(P)-
équivariant surjectif g : S*®a(P)-+ L. Soit en effet V un sous-GL(P)-module de



Sur la théorie classique des invariants 273

dimension finie de L qui engendre L; puisque P<8>N' est GL(P)-isomorphe à

F©- • -©F, il résulte de (2.2.1) qu'il existe aeN1 et une application linéaire
surjective GL(F)-équivariante gi:<8>a(F)—» V. On prend pour g le prolongement
de g!.

(2.2.3) PROPOSITION. Soit A un sous-foncteur de S*(.®N') vérifiant E(p)
et F(p) pour un entier p ^ dim N. Soit F un espace vectoriel de dimension p et

g:S*®a(P)-»A(P)

un homomorphisme GL(P)-équivariant surjectif, aeN1 (cf. (2.2.2)). Il existe alors

une transformation naturelle et une seule

telle que y(P) g; pour tout Q, y(Q) est surjectif; il existe de plus f e®a(N)' tel que
A At.

COROLLAIRE. Soit A un sous-foncteur de S*(.®N') vérifiant E(p) et F(p)
pour un entier p ^ dim N. Alors A vérifie E(q) pour tout q ^ dim N et F(q) pour tout

Cela résulte de la proposition et de (2.1.2).

Preuve de la proposition.
a) On note t : A -* S*(.<8)N') l'injection canonique. Alors t(P)°g: S*®a(F)-^

S*(P®N') est un homomorphisme GL(F)-équivariant; d'après le lemme de

prolongement (1.4.1) il existe X- S*®a "* S*(.®N') telle que *(P) i(P)°g. Ce

prolongement est en fait unique: en effet, si \i en était un autre, on aurait
Xi(N) x(N) puisque dim N^dimP, d'où x Xi d'après (1.4.2).

Comme A possède la propriété E(p), \ se factorise à travers i en une
transformation naturelle y:S*<S>a-*A telle que y(P) g; de l'unicité de x
résulte ensuite l'unicité du prolongement y de g, d'où la première affirmation.

b) L'homomorphisme y(Q) est surjectif lorsque dim Q^dimF.
On se donne une application linéaire surjective u:P-*Q. Par fonctorialité

A{u) est surjectif; par suite A(u)°y(P) y(Q)°S*<8>a(u) est surjectif; il en est

donc de même de y(O).
c) L'homomorphisme y(Q) est surjectif lorsque dim Q^dimP (^dim N).
Soit V un sous-GL(Q)-module de dimension finie de A(Q); il faut prouver
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que V est contenu dans Im y{Q). D'après (2.2.1) il existe beNJ et une application

linéaire GL(Q)-équivariante /:<8>b(Q)-> S*(Q®N') dont l'image est V; du
lemme de prolongement (1.3.1) résulte qu'il existe <p:®b —> S*(.®Nr) telle que

Q) f-

On se donne une application linéaire surjective v :Q —> P. On a la situation

^^ >S*(P®N')
®%)| "^ A(Q)L^* |s>®i)

|a v

^

®b(P) ff(P)
|— > S*(P®Nf)

^A(P)

On voit alors immédiatement que Im <p(P)<= A(P).
Maintenant, puisque y(P) : S*<8)a(P) -> A(P) est surjectif et puisque le GL(P)-

module S*®a(P) est semi-simple, il existe une application linéaire GL(P)-
équivariante m:®b(P)-» S*®a(P) telle que y(P)om y(P). On prend
/ut,:®b-»S*®a telle que n(P) m ((1.3.1)). On a la situation

S*<g>a(Q)

et il reste à démontrer que la face supérieure de se diagramme commute. On
considère alors /-y(Q)°jLi(Q):®b(Q)—» S*(Q®Nf): c'est un homomorphisme
de GL(Q)-module dont l'image est contenue dans le noyau de S*(i;®l); du

lemme (2.2.4) ci-dessous, résulte que cet homomorphisme est identiquement nul.
On a donc /= y(Q)°fi(Q), d'où V Im/c:Im y(Q); l'assertion c) est démontrée.

d) On désigne par t e®a(N)' l'élément tel que x Xt (cf. (1.4.2) et la partie a)

de la preuve). Puisque x L°y les foncteurs Im ^ A, et Imy A coïncident;
cela termine la démonstration de la proposition.

(2.2.4) LEMME. Soit P, Q deux espaces vectoriels avec
dim N et v:Q-*P une application linéaire surjective. Soit V un GL(Q)-module
(non nécessairement de dimension finie) et f:V-*S*(Q®N') une application
linéaire GL(Q)-équivariante. Si Im/cKer (S*(u® 1)), alors /=0.

Preuve. L'homomorphisme S*(i?®l) s'interprète géométriquement comme
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l'application linéaire

et Ker(S*(u®l)) comme l'idéal de Imu* dans S*(Q®N'). Comme
dim P^dim N, GL(Q) • Im u* Hom (Q, N); il résulte de là que (0) est le seul

sous-GL(Q)-module de S*(Q®N') qui est contenu dans Ker(S*(i>® 1)). Enfin,
puisque Im/ est un sous-GL(Q)-module, on a bien / 0.

(2.3.1) Soit meN et aeN1. On se donne un espace vectoriel M de

dimension m. Pour tout espace vectoriel Q, on considère

S*®a(u) : S*®a(Q) -> S*®a(M)

où u : Q—> M est une application linéaire de rang maximum. On note L,m(0) le

plus grand sous-GL(Q)-module de S*<8>a(Q) qui est contenu dans Ker (S*®a(u)):
c'est un idéal de S*<8a(Q) qui est indépendant du choix de u. On a L,m(Q) 0

lorsque dimQ^m. Géométriquement, la,m(Q) est l'idéal de la sous-varié té

GL(Q). Im#(®a(u')) de ®a(Q)' formée des formes multilinéaires de support de

dimension*^ m (pour toute partie E d'un espace vectoriel, on note É l'adhérence
de E pour la topologie de Zariski). On désignera par Ca,m(Q) le quotient
S*®a(Q)/ îa,m(Q) et par 0a,m(Q) ou encore 0(Q) l'homomorphisme canonique
S*®a(Q)-* Qm(O); Qm est un foncteur covariant de SS dans 91 et 0 une
transformation naturelle S*®a -» Ca,m.

(2.3.2) LEMME. Soit peN, p^dimN; roure transformation naturelle

x:S*<8>a->S*(,®N'), aeN1, se factorise à travers 0:S*®û-»Ca>p en une

transformation naturelle x '- QP "^ S*(.

Preuve. Soit Q un espace vectoriel de dimension ^p et v:Q-*P une

application linéaire surjective. On a la situation suivante:

t«.P(Q)<—• Ker(S*(®"(o)))

S*(Q<g>N')

>s*(P®N').

Le sous-espace ^(O)(UP(O)) est un sous-GL(Q)-module de S*(Q®N') contenu
dans le noyau de S*(t>®l). D'après le lemme (2.2.4), un tel sous-espace est
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nécessairement réduit à (0). L'homomorphisme x(O) se factorise donc lorsque
dim Q^p. Comme CatP(Q) S*<8>a (Q) lorsque dim Q^p, l'affirmation est
démontrée.

(2.3.3) Soit a un idéal de S*<8>a(P); on suppose que a est stable par GL(P); il
existe alors £>eNJ et un homomorphisme GL(P)-équivariant r\S*®b{P)->
S*®a{P) tel que l'idéal engendré par Im r+ est égal à a (r+ désigne la restriction
de r à l'idéal S*®b(P)+ formé des éléments de S*<8)b(P) de degré strictement
positif). Soit en effet V un sous-GL(P)-module de dimension finie qui engendre a.

D'après (2.2.1), il existe beNJ et une application linéaire surjective GL(P)-
équivariante rx:®b(P)—» V. On prend alors pour r le prolongement de rx.

(2.3.4) Dans l'énoncé ci-dessous, l'usage du mot "présentation" est abusif: on
n'exige pas ici que la première algèbre (resp. le premier foncteur) "qui présente"
soit une algèbre de polynômes (resp. prenne ses valeurs dans les algèbres de

polynômes).
En outre, si L est une sous-algèbre de type fini de S*(P®N') stable par

GL(P), il résulte de (2.2.2) et (2.3.3) qu'il existe une présentation de L (dite
GL(P)-équivariante) du type

où r et g sont des homomorphismes GL(P)-équivariants.

PROPOSITION. Soir peN,p^dimN, et y : Ca,p -> S*(.®N') une transformation

naturelle (dans SI), aeN1. Soit P un espace vectoriel de dimension p et

S*®b(P) A S*®a(P) QP(P) -î^> Im y(P)

une présentation GL(P)-équivariante de Im y(P), fceNJ. Alors, il existe une

transformation naturelle p : S*®b —» Ca,p telle que p(P) f; pour une telle transformation,

la suite

S*®6 U Qp À Im y

est une présentation du foncteur Im y.

Preuve

a) D'après (1.4.1), il existe une transformation naturelle p:S*®b->S*®a
a,ptelle que p(P)=r; alors p 6°p est une transformation naturelle S*®6 —» Cc

telle que p(P) F.

b) L'idéal de Ca,P(Q) engendré par Im p(Q)+ est égal à Kery(Q) lorsque
dim Q *s dim P.
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On se donne une application linéaire surjective m:P->Q. Par fonctorialité,
Ca,p(w)(Ker y(O); par conséquent, si Im p(P)+ engendre l'idéal

bKery(P), Im (Ca,p(u)°p(P)+) Im (p(Q)°S*(g>b(u)+) engendre l'idéal Kery(Q);
comme u est surjectif, l'assertion b) est démontrée.

c) L'idéal de Cap(Q) engendré par Im p(Q)+ est égal à Ker 7(0) lorsque
dim Q > dim P (s* dim N).

On se donne une application linéaire surjective v : Q -» P. Puisque y(P)°p(P)+ 0,
le sous-espace Im (y(Q)°p(Q)+) est un sous-GL(Q)-module de Ker (S*(v ® 1)).
Du lemme (2.2.4) résulte alors que y(Q)°p(Q)+ 0 i.e. que Im p(Q)+<=
Ker 7(0).

Réciproquement, soit V un sous-GL(Q)-module de dimension finie de

Ker y(O); il faut démontrer que V est contenu dans l'idéal engendré par
Im p(Q)+. Puisque le GL(Q)-module S*<8)a(Q) est semi-simple, il existe c€NK et
une application linéaire GL(Q)-équivariante m :®c(Q)-> S*®a(Q) telle que
Im(6(Q)<>m)=V (cf. (2.2.1)). On note fi :®c ~> S*®a une transformation
naturelle telle que n(Q) m (cf. (1.3.1)). Par fonctorialité, Im (0(P)oji,(P))c
Ker f(P).

Pour tout espace vectoriel M, on pose

Qp(M)(p

(produit dans l'algèbre Ca,p(M)).
Par hypothèse, l'image de (p • 6)(P) est égale à Ker y(P). Par semi-simplicité

des GL(P)-modules en question, il existe une application linéaire GL(P)-
équivariante n :®c(P)-^<8>b(P)<8>S*®a(P) telle que (p • 6)(P)°n 0(P)°ix(P).
Utilisant une généralisation facile de (1.3.1), on voit qu'il existe

telle que v(P) n. La situation est la suivante:

®C(O);

S*(P®N')
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où leb flèches verticales représentent les morphismes induits par v. Il faut
démontrer que le triangle du haut est commutatif.

On pose a d(Q)°ii(Q)-(p - 0)(Q)°v(Q): c'est une application linéaire
GL(Q)-équivariante ®C(Q)-* CajP(Q) dont l'image est contenue dans

KerQp(i)). Or, Ker Ca,p(u)-Ker S*®a(i>)/L,P(Q); comme L,P(O) est par
définition le plus grand sous-GL(Q)-module de S*®a(Q) qui est contenu dans

KerS*®a(u), (0) est le seul sous-GL(Q)-module de CafP(Q) qui est contenu
dans Ker Ca,p(t?). On a donc a=0 et par conséquent Im (0(Q)°fji(Q))= V est

contenu dans l'idéal de Ca,p{Q) engendré par Im p(Q)+. L'assertion c) est ainsi
démontrée.

(2.4.1) Le théorème que voici résume les paragraphes 1 et 2 de ce travail; il
est conséquence immédiate des propositions (2.2.3), (2.3.4) et du lemme (2.3.2).

THÉORÈME. Soit A un sous-fondeur de S*(.®Nr) vérifiant les conditions

E(p) et F(p) pour un entier p ^ dim N. Soit P un espace vectoriel de dimension p et

S*®b(P) A S*®a(P) ^ A(P)

une présentation GL(P)-équivariante de A(P), a€NJ, beNJ. Alors

(i) il existe deux transformations naturelles y : S*®a -> A et p : S*®b -» S*®a
telles que

1) y(P) g, P(P) r,

2) y se factorise à travers 6 : S*®a —> Ca,p en une transformation naturelle

y ' Qp -» A,
3) la suite

où p 6°p est une présentation de A;
(ii) toutes transformations naturelles y et p satisfaisant 1) satisfont aussi 2) et

3);
(iii) il existe te®a(N)f tel que A At.

§3. Lefoncteur S*(.®N')G

(3.1.1) Dans ce paragraphe, on se donne un espace vectoriel N et un

sous-groupe G de GL(N).
Soit Q un espace vectoriel; sur Q®Nr on considère les opérations usuelles de

GL(Q) et G; ces deux opérations commutent. L'algèbre S*(Q®N') est donc
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munie d'une structure de GL(Q)-module (semi-simple) et d'une structure de
G-module. On désigne par S*(Q<8>N')G la sous-algèbre des invariants de G dans
S*(Q®N'). On considère S*(.®N')G: c'est un foncteur de 93 dans % sous-
foncteur de S*(.®N').

(3.1.2) PROPOSITION. Le foncteur S*(.®N')G possède la propriété E(p) de

(2.1.0) pour tout entier p^dim N.

Preuve. Soit P un espace vectoriel de dimension p 22= dim N. Soit a e N1 et
X'.S*®a-^ S*(.®N') une transformation naturelle. On suppose que Im^(P)c
S*(P®Nf)G. On sait qu'il existe te®a(N)' tel que X Xt ((1.4.2)). Pour
démontrer que Im ^r(Q)c S*(Q®N')G quelque soit l'espace vectoriel Q, on va
procéder géométriquement.

L'homomorphisme Xt(Q) s'interprète comme le comorphisme du morphisme
polynomial

X,(Q):Q'®N-Hom(Q,N)-*®a(Q)'

(cf. (2.1.1)). Maintenant il est clair que, pour que Im Xt(Q)Œ S*(Q®N')G9 il faut
et il suffit que le morphisme Xt(Q) soit constant en restriction aux orbites de G
dans Hom (Q, N) (le groupe G opère dans Hom (Q, N) "au but").

Par hypothèse, on a

Xt(P)(soU) Xt(P)(u) se G, u g Hom (Q,N)

i.e.

d'où fe[®a(N')]G puisqu'il existe u tel que ®a(u') est injectif.
Un calcul semblable montre ensuite que si f e[®a(N')]G, alors Xt(Q) est

constant en restriction aux orbites de G dans Hom (Q, N), ceci quelque soit Q,
d'où la conclusion.

(3.1.3) Supposant que l'algèbre S*(P®N')G est de type fini, dim F p^
dim N, i.e. que S*(.®N')G vérifie la condition F(p) de (2.1.0), on peut appliquer
les résultats du paragraphe précédent à S*(.®N')G. En particulier, le théorème
(2.4.1) fournit la "moitié" de (0.1.4), le théorème (5.1.2), qu'on démontrera plus
loin au paragraphe 5, en étant l'autre moitié.
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(3.1.4) Remarques
1) La condition de finitude F(p) du foncteur S*(.®N')G est étudiée dans [3].
2) D'après (3.1.3), si S*(.<8>N')° vérifie F(p) pour un entier p^dimN, il

existe fe®a(N)' tel que S*(.®N')G At. Il n'est pas difficile de voir que le

sous-groupe d'isotropie GL(N)t est égal au plus petit sous-groupe observable de

GL(N) contenant G (cf. [3]).
Réciproquement, soit 1e<8>a(N)'. On suppose de plus que GL(N)t est réductif;

alors, pour que At soit égal à S*(.®N')GL(iV)t, il faut et il suffit que les deux
conditions suivantes soient vérifiées:

a) At(N) est intégralement clos;
b) lmXt(N) est fermée dans ®a(JV)'.

Ces conditions sont clairement nécessaires (cf. [6]); elles sont suffisantes comme il
résulte d'un lemme de R. W. Richardson (cf. [5] lemme 1.8 ou [9]) et de (2.2.3) et
(1.4.2).

§4. Opérateurs d'antisymétrisation

(4.1.1) Dans ce numéro on rappelle quelques résultats classiques relatifs aux
représentations des groupes finis.

Soit H un groupe fini. On note k[H] l'algèbre du groupe H; c'est une algèbre
semi-simple. On fait opérer H dans k[H] par multiplication à gauche. Tout
H-module irréductible est isomorphe à un sous-H-module de fc[H]. Les sous-H-
modules de k[H] sont les idéaux à gauche de k[H]\ ceux-ci sont de la forme
k[H]e, où e est un idempotent (e2 e). Les sous-ff-modules irréductibles de

k[H] sont donc les idéaux minimaux à gauche.
On note h le cardinal de H. L'endomorphisme

•x#=-

de k[H] est un projecteur d'image le centre de k[H], Si e est un idempotent non
nul, e# n'est pas nul. De plus, si k[H]e est minimal, la composante isotypique de

k[H] de type k[H]e est égale à k[H]e^; c'est aussi l'un des composants simples
de k[H].

Soit (et)ierune famille d'idempotents de k[H] telle que les (k[H]et)l&I forment
un système de représentants des classes de H-modules irréductibles; alors
Card (I) est plus petit ou égal au nombre de classes de conjugaison des éléments
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de H, et pour tout H-module V,

V=0 ef • V,
tel

ef • V étant la composante isotypique de V de type k[H]et.

(4.2.1) Soit E un ensemble fini. Un diagramme de Young(2) sur E consiste en
la donnée de deux relations d'équivalences aR et ac sur E vérifiant:

1) quels que soient x, y g E, uaR{x, y} et ac{x, y}" entraine x y,
2) quels que soient jc, yeJE, il existe zeE tel que "aR{z,x} et ac{z, y}" ou

"aR{2, y} et ac{z, x}."

Les classes d'équivalence suivant aR (resp. ac) sont les lignes (resp. les colonnes)
de a. On note pR : E —> E/aR et pc'-E-^ E/ac les projections canoniques.

(4.2.2) LEMME. 1/ existe wn ordre (nofé <) sur E/ac tel que, pour x, y e E, la

relation "pc(y)<pcW entraine "il existe zeE tel que pR(z) pR(x) et pc(z)
Pc(y)."

Preuve. On choisit sur J5/ac un ordre satisfaisant la condition

Pc(y) < Pc(x) 3> Card (pcVc(y)) ^ Card (p^

Un tel ordre convient. Soit en effet x, yeE tels que Card (pë1 Pc (y)) ^
Card (pëVcU))- Si PR(x)^pR(pë1pc(y))? d'après la condition 2) de la définition
des diagrammes sur E, pour tout y'epc1pc(y)? il existe z'eE tel que

et Pc(z') pc(x);

par conséquent Card (pc1pcM)>Card (pë1pc(y)) ce qui est contraire à

l'hypothèse. On a donc pR(x)epR(pë1pc(y)), d'où l'existence de zep^pdy) tel

que pR(x) pR(z).

(4.2.3) On note ©(E) le groupe des permutations de E. Le groupe @(£) opère
dans l'ensemble des partitions de E; il opère aussi dans l'ensemble des diagrammes

de Young sur E:

(w-o:)R{x, y} & otAw"1 • x, w'1- y}
x, yeE, weS(£).

(w-a)c{x, y}<^>ac{w • x, w -y}

2 Cette définition m'a été proposée par J. L. Koszul.
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On dira que deux diagrammes ai et a2 sur E sont de même type s'il existe
w 6 ©(E) tel que w - a1 a2; il faut et il suffit pour cela qu'il existe wi e ©(E) tel

que (wi • ai)jR =(«2)r (ou (wi • a1)c (cc2)c)' Si T(E) désigne l'ensemble des

types de diagrammes sur E, on déduit de là que Card (T(E)) est égal au nombre
de décompositions de l'entier Card (E) en somme d'entiers positifs.

Soit a un diagramme sur E. On pose h(a) Card (E/aR) et on dit que h(a)
est la hauteur de a. Ce nombre ne dépend que du type de a ; on peut donc définir
la hauteur de t pour te T(E) par h(t)= h(a) où a et.

Par un raisonnement semblable à (3.2.2), on prouve qu'on a

h(a) max (Card (pëVcM))-
xeE

(4.2.4) Soit a un diagramme sur E. On note R(a) (resp. C(a)) le sous-groupe
de ©(E) formé des permutations qui laissent invariantes les lignes (resp. les

colonnes) de a. On introduit alors les éléments

et S«= X P
q&C(a) peR(a)

de l'algèbre fc[©(E)] du groupe ©(E) (e(q) désigne la signature de q e ©(E)). On a

visiblement les formules:

Aw.a=wAaw~1, Sw.a=wSaw~1, we<&(E)

qAa Aaq e(q)Aa, q e C(a),

pSa Sap Sa, peR(a).

(4.2.5) Voici le résultat principal de la théorie des représentations du groupe
symétrique (cf. [1] §28, [2] chap. 2, [10] chap. IV).

PROPOSITION.
(i) Soit a un diagramme de Young sur E; il existe une constante non nulle

À(a)€Q (ne dépendant que du type de a) telle que e(a) \(a)AaSa soit un
idempotent de k[a(E)]; de plus k[a(E)]e(a) est un idéal minimal.

(ii) Soit «i et a2 deux diagrammes sur E; pour que les idéaux engendrés par
e(ai) et e(a2) soient isomorphes, il faut et il suffit que ax et a2 soient du même type.

(4.2.6) Soit (at)teT(E) un système de représentants pour les types de diagrammes

sur E; alors les idéaux (fe[©(E)]e(at))ieT(E) constituent un système de
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représentants des classes de ©(E)-modules irréductibles: on sait en effet que
Card (T(E)) est égal au nombre de classes de conjugaison des éléments de @(E)
(cf. (4.2.3)), nombre qui est plus grand ou égal au nombre de classes de

©(E)-modules irréductibles.
D'après (4.1.1), on a donc V ©teT(E) e(af)# • V pour tout ©(E)-module V;

de plus, comme e(at)# est proportionnel à Zaet£(c*)> on a aussi

V= 0 2. e(a)- V

(4.3.0) D.ans ce numéro, on se donne un ensemble fini E et un nombre entier
m. On désigne par m l'ensemble des parties de E à (m + 1) éléments. Pour toute
partie F de E, on pose

®F {we ©(E) | w(jc) x, xé F},

puis

Am(E)= £ S e(q)q= £ AF.
Fem qeSF Fem

On dira que l'élément Am(E) de k[©(E)] est Vopérateur d'antisymétrisation
relativement aux parties de E à (m + 1) éléments; c'est visiblement un élément
central de fc[@(E)] qui est nul si Card(E)<m +1. On désire évaluer Am(E) en

fonction des e(a)#.
On suppose dans la suite que 0^m<Card(E).

(4.3.1) La démonstration du lemme suivant m'a été communiquée par J. L.
Koszul.

LEMME. Soit a un diagramme sur E et Fem. Alors AaAFSa est égal à

Card (C(a)H©F)AaSa si les m + 1 éléments de F appartiennent à des lignes
distinctes de a et est égal à 0 dans le cas contraire.

Preuve.

a) On suppose que les éléments de F appartiennent à des lignes distinctes de

a, autrement dit que la restriction Pr\f de pR à F est injective.
Soit we<BFnC(a); on a alors e(w)AawSa AaSa (cf. (3.2.4)).
Soif vv€©F, mais w£C(a); alors e(w)AawSa 0. En effet, il existe xeF tel
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que pcM5epdw • x), et on peut de plus choisir xeF en sorte que pc(w • jc)<
PcM, où < est un ordre sur E/ac satisfaisant la condition du lemme (3.2.2); il
existe donc zeE tel que Pr(z) pr(x) et pc(z) pc(w • x). On a zéF puisque

Pr\f est injectif. On se trouve alors dans la situation classique (cf. [1] lemme
(28.11), [2] p. 17, [10] lemme (4.2.A)) d'une permutation w de E et de deux
éléments x et z de E tels que x, z appartiennent à une même ligne de a et w • x,

w • z z appartiennent à une même colonne de a : on a w w • x, z) w(x, z) avec
(w • x, z)e C(a) et (x, z)eR(a). Par conséquent on a enfin

AawSa Aa(w - x, z)w(x, z)Sa -AawSa.

Puisque AaAFSa =J,W(=<TFe(w)AawSa, on a bien démontré que si les éléments
de F appartiennent à des lignes distinctes de a, alors AaAFSa
(Card(C(a)n©F))AaSa.

b) On suppose qu'il existe deux éléments x et y de F dans une même ligne de

a. La transposition (x, y) appartient à ©Ffl R(a); on a donc

AFSa (AF(x, y))((x, y)Sa) -AFS«

d'où AaAFSa 0.

(4.3.2) PROPOSITION. Soit a un diagramme sur E. Alors Am(E)AaSa est un

multiple entier strictement positif de AaSa si h(a)>m et est égal à 0 si h(a)^m.

Preuve. Puisque Am(E) est un élément central de fc[(5(E)], on a

Am(E)AaSa=AaAm(E)Sa= £ AaAFSa.
Fem

Si h(a)>m (resp. h(a)^m) l'ensemble des Fem dont les éléments appartiennent

à des lignes distinctes de a est non vide (resp. est vide); l'affirmation provient
donc directement du lemme (3.3.1).

Remarque. Soit (at)teT(E) un système de représentants des types de diagrammes

sur E. On peut énoncer la proposition précédente en disant que Am(E) est

combinaison linéaire des e(af)#, h(t)>m.

§5. Le fondeur Cûm

(5.1.0) On reprend les notations du paragraphe 4, à ceci près que, pour
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E {1,..., n}, on écrira @(n), T(n), Am(n)y... pour ©({1,..., n}), T({1,..., n}),

(5.1.1) On désigne par /l'ensemble {1,..., r}; on se donne aeN1 et m€N.
On désigne par M un espace vectoriel de dimension m. On rappelle que, pour

tout espace vectoriel Q, on notait en (2.3.1) L,m(O) le plus grand sous-GL(Q)-
module de S*®a(Q) contenu dans le noyau de

S*®a(u) : S*<8)a(Q) -* S*<8>a(M)

où u: Q—» M est une application linéaire de rang maximum; on notait ensuite
Ca,m(Q) le quotient S*<8>a(Q)/la,m(Q) et 0(Q) l'homomorphisme canonique
S*®a(Q)->Ca,m(Q).

De plus, pour tout deN1, on a introduit en (1.1.3) l'application linéaire

dont l'image est la composante homogène de degré d de S*®a(Q);
géométriquement, le prolongement de jLta(O) à S*®|ad|(Q) est le comorphisme du

morphisme polynomial

®JCr®'-®JCr,
d(r)

On pose enfin

Pa,m(O)= © M
del(m)

où J(m) est l'ensemble des deN1 tels que |d|^m + l; on définit ainsi une
transformation naturelle pa,m •®<r(a'm)-^> S*®a, où a(a, m) est l'application

cr(a, m) : I(m)-> N

d *-> \ad\.

On écrira encore pa,m(Q) pour le prolongement de pa,m(Q) à S*®<r(flfm)(Q).
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(5.1.2) Le but de ce paragraphe est de démontrer le résultat que voici:

THÉORÈME. La suite

est une présentation de Cû>m.

Il résulte immédiatement des propositions (5.2.4) et (5.4.4) ci-dessous.

(5.1.3) On note Va,m(Q) la sous-variété fermée de ®a(Q)' définie par
k[Va,m(O)] Ca,m(O); on a (cf. (2.3.1))

On désigne ensuite par ra,m(Q) le morphisme ®a(Q)'-^ ®<r(û'm)(Q)' défini par
fc|>a,m(Q)]= Pa,m(Q)\

ra,m(Q)= e r(Q')(Am(\ad\)oMda(Q).
del(m)

La version géométrique du théorème (5.1.2) est:

EXEMPLE 1. a n e N, m 1. Alors

et

rn,i(o):®n(oy-^
t ^

où A!(p)e fc[©(p)] est l'opérateur

p(p -1)/2 id - X transpositions de ®(p).

EXEMPLE 2. a 2. Dans ce cas

r2,m(Q) e r(Q')(Am(2d))o A^(Q)
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En théorie classique des invariants des groupes O (M) et Sp (M) on est amené
à considérer les sous-variétés V2,m(Q)nS2(Q') et V2,m(Q)n A2 (O') de S2(Q') et
A2 (O') respectivement; la restriction de r2,m(Q) à S2(Qf) et A2 (O') fournit donc

une présentation de ces variétés. Un examen soigneux (et fastidieux) devrait
donner des résultats équivalents à ceux de [9],

EXEMPLE 3. a (l,...,l)eNn, m^ n. Alors ®a(Q')-Hom (Q, N), où N
est de dimension n, et

Va,m(O) -{v € Hom (Q, N), rang (v)^ m}.

Puisque Am(p) 0 pour p < m +1, on a

comme enfin

Am(m + 1)=

on peut se restreindre dans la somme précédente aux d e Nn tels que |d| m + 1 et

/) 0ou 1.

\
„

I morphismes
m + 1/

®a(Q')-> Am+1

• • • AX,(m+i,

(cf. [9] théorème 3 §2).

(5.2.1) LEMME. L'idéaJ Ker r(M) de fc[©(n)] est engendré par Am(n).

Preuve. D'après [10] lemme (4.4.B), pour que e(a) e Ker t(M), il faut et il
suffit que h(a)>m. Comme

n)]= 0 (l fc[@(n)]e(a))
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on a

Kerr(M)= 0
h(t)>m

L'affirmation résulte donc immédiatement de (4.3.2).

(5.2.2) LEMME. Soit u\Q->M une application linéaire de rang maximum;
alors, le plus grand sous-GL(Q)-module de ®n(Q) contenu dans Ker®n(w) est

égala Im r(Q)(Am(n)).

Preuve. Si dim Q^dim M, alors Am(n) e Ker t(Q) (cf. (5.2.1)), d'où l'affirmation

dans ce cas.
On suppose donc dim Q>dimM et on note V le plus grand sous-GL(Q)-

module de <8>n(Q) contenu dans Ker<g)n(u). Le groupe ©(n) opère dans V. Il
résulte de là que l'ensemble E des xek[(S(n)] tels que Imr(Q)(x)c V est un
idéal bilatère de fc[@(n)]; de plus, on voit facilement que E Ker r(M\ et que, si

x est un générateur central de E, alors Im r(Q)(x) V. La conclusion provient
alors du lemme (5.2.1).

(5.2.3) LEMME. Soit F un sous-foncteur de ®n; il existe alors un idempotent x
de k[©(n)] tel que F(Q) lmr(Q)(x) pour tout espace vectoriel Q.

Preuve.

a) Pour tout Q, F(Q) coïncide avec le sous-espace F'(Q) de <8>n(Q) engendré

par GL(Q) • Im F(m), où u : N—? Q est une application linéaire de rang maximum
et dim N=n.

En effet, si dim Q^dim N, F(u) est surjective et l'affirmation est évidente. Si

dim Q > dim N, pour toute application linéaire surjective v : Q —» N, on a

F(N) F(v)(F(Q)) F(v)(F'(Q)) (*)

puisque

F(N) F(v)(F(Q)) F(t;)(Im F(u)) c F(v)(F(Q)) <= F(N)

où u est une section de v.

Maintenant, on désigne par V un supplémentaire de F'(Q) dans F{Q) stable

par l'opération de GL(Q); la projection correspondante de F(Q) sur F'(Q) est la

restriction à F(Q) d'un opérateur de la forme r(O)(y), yek[©(n)] (cf. (1.1.6)).
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Du fait que F est un sous-foncteur de ®n et de (*) résulte qu'on a le diagramme
commutatif

F(N)

où r(N)(y):F(N)—» F(N) est un isomorphisme. Par conséquent, V
Kerr(Q)(y)c: KerF(u)cKer®n(u). On prend enfin zek[©(n)] tel que
Im t(Q)(z) V (cf. (1.1.6)); on a

®n(t>)°T(Q)(z) r(N)(z)o®n(D) 0

d'où t(N)(z) 0, puisque ®n(t>) est surjectif, et ensuite z 0, puisque t(N) est

injectif (cf. (5.2.1)). On a donc V 0 ce qui démontre a).

b) Puisque F(u) ®n(u)|F(N), ueHom(N, Q), on voit que l'assertion a)
signifie que le sous-foncteur F de ®n est entièrement déterminé par sa valeur F(N)
en N, dim N= n. L'affirmation du lemme provient immédiatement de là puisque,
d'après (1.1.6) encore une fois, il existe un idempotent xek[©(n)] tel que
Im t(N)(jc) F(N).

(5.2.4) On considère la graduation naturelle de type Nr de S*®a(Q); puisque
l'idéal Ker S*®a(w), m : Q—? M, est gradué, il en est de même de ta,m(Q)-

PROPOSITION. La composante homogène de degré d, deN1, de L,m(O)
coïncide avec Vimage de ju,a(Q)°T(Q)(Am(\ad\)).

Preuve.

a) On pose n \ad\. Par définition, la composante homogène de degré d, {\)d
de la,m(Q) est le plus grand sous-GL(Q)-module contenu dans Ker S*®a(w)fl
Im /uta(O). Le lemme (5.2.3) appliqué au sous-foncteur Ker \ida de ®n montre qu'il
existe un idempotent x e fc[©(n)] tel que Ker ixda{Q) Im t(Q)(x) (voir aussi la

remarque (5.4.2)). On a donc une décomposition naturelle de ®"(Q) en

®n(O) Ker ^(Q)0Ker r(Q)(x). (*)

b) On a jLL^(O)(Ker®n(u)) KerS*®û(M)nimiLt^O). En effet, si Vc
Ker S*®a(u)nimnda(Q), il existe Wc Ker t(Q)(jc) tel que ^da(Q)(W)= V; puisque

®n(M)(W)c=KeriLta(M)nKerT(M)(jc), on a bien WcKer®n(w). L'autre
inclusion est tout aussi banale.
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c) De b) résulte que l'image par iida(Q) du plus grand sous-GL(Q)-module
(û)d de ®n(Q) contenu dans Ker®n(u) est égale à (l)d. On a donc (î)d
Im(jLta(Q)°a) où a est un endomorphisme GL(Q)-équivariant de ®n(Q) dont
l'image est (a)d. D'après (5.2.2), on peut prendre pour a l'élément r(Q)(Am(n)),
d'où la conclusion.

(5.3.1) Pour poursuivre la preuve de (5.1.2) il est nécessaire d'en savoir un
peu plus sur les opérateurs Am(E); pour cela, il est utile d'introduire une nouvelle
notion.

Soit E un ensemble fini. Une décomposition p de E en blocs consiste en la
donnée de trois relations d'équivalence /3B, Pr et pc sur E vérifiant:

1) quels que soient x, y e E, "j3R{x, y} et /3c{x, y}" entraine x y ;

2) quels que soient x, y eE, "j3c{x, y}" entraine "j3B{x, y}";
3) quels que soient x, yeE tels que j3B{x, y}, il existe z' et z"eE tels que

0R{x, z'}, (3R{y, z"}, Pc{x, z"}, 0c{y, z'}.

Les classes d'équivalence suivant pB (resp. j3R, pc) sont les blocs (resp. les

lignes, les colonnes) de p. Il résulte immédiatement de la définition que les

colonnes d'un même bloc ont le même nombre d'éléments.
On note pc '. E —» E/pc et pR : E —» E/j8R les projections canoniques.
Soit /3 une décomposition de E en blocs. On note K(j8) le sous-groupe de

<&(E) formé des permutations w telles que

a) quels que soit xeE, &R{x, w • x},
b) quels que soient x, y eE tels que j8c{x, y}, alors j3c{w • x, w • y} et

j3B{x, w • x}.

De manière plus imagée, K(j8) est le produit des groupes de permutations des

colonnes d'un même bloc. Le groupe K(/3) opère de manière naturelle dans E/pc-

(5.3.2) Pour toute partie Et de E on pose

Fem

où AF et m sont comme en (4.3.0). On note m l'ensemble des parties V de jE//3c

telles que Card(V)^m + l, et xti un domaine fondamental pour l'opération de

K(p) dans m.

LEMME. Soii j3 une décomposition de E en blocs. L'opérateur Am(E) est
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combinaison linéaire des éléments

Z wAm(pc\V))w-\

Preuve.

a) Pour tout Vem, on note m(V) l'ensemble des Fem tels que pc(F)c: V. La
famille (m(V))Vem constitue un recouvrement de m; il est clair que l'intersection
de deux éléments de ce recouvrement est vide ou appartient encore à ce

recouvrement. Pour peN, on désigne par m(p) l'ensemble des Vem tels qu'il
existe p éléments distincts deux à deux Vi,..., Vp de m avec V= flf^i Vu Enfin,
pour toute partie P de m, on note x(P) la fonction caractéristique de P dans m.

De la formule bien connue

(Û m(V,)) t (-l)p+1 I x(n m(Vh))
P

on déduit

x(m)= X ï(m(V)) + • • • +(-l)p+1 IVem Vem(p)

Comme la relation Vem(p) implique w • Vem(p) pour tout weK(p), oa voit
ensuite que x(m) peut s'écrire comme combinaison linéaire des

Iweieo)*(m(w ' V)), Vem':

x(m)= Z A(V) Z s(m(wV)). (*)
Vem' weKO)

b) L'égalité (*) permet d'écrire Am(f}) XFem AF sous la forme

Am(E)= I A(V) I I AF
Vem' weK(/3)Fem(w V)

d'où l'affirmation puisque

Fem(w V) Vem(V) / I Fe

(5.4.1) Soit a, deN1; on va associer canoniquement au couple (a, d) une
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décomposition j8(a, d) de {1,..., \ad\} en blocs. Tout élément x de {1,..., \ad\}
s'écrit de manière unique sous la forme

avec fc € {0,..., d(i)-1} et / e {1,..., a(i)}. On pose alors

Pr(x)=1,

La décomposition j3(a, d) est par définition la décomposition décrite par les

relations d'équivalences sur {1,..., \ad\} associées aux trois applications pB, Pr et

Pc
Par exemple pour a (2, 3), d (2, 2), la décomposition /3(a, d) de {1,..., 10}

admet deux blocs suivant le diagramme

1

2

3

4

5

6

7

8

9

10

On écrit K(a, d) pour K(j3(a, d)) et on identifie {1,..., |ad|}/j3(a, d)c avec

{1,..., |d|}. Le groupe K(a, d) opère dans {1,..., \d\} comme le sous-groupe

©({1, • • •, @(ff

Pour tout feN1 tel que

V(0 fl,...,f(D,

et t^d, on pose

f
on a Card(V(r)) M et Card(pc1(V(0)) |af|. De plus, les V(t) constituent un
domaine fondamental m' pour l'opération de K(a, d) dans l'ensemble m des

parties de {1,..., |d|} avec m +1 éléments au plus.
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(5.4.2) Remarque. Le sous-groupe K(a, d) de cr(|ad|) est relié à rhomomor-
phisme yLda(Q) par l'égalité

en outre, Ker ixda{Q) est stable par l'opération de K(a, d). Il y a donc moyen de se

passer du lemme (5.2.3) pour obtenir la décomposition (*) de (5.2.4): il suffit de

prendre

x îd-l/Card(K(a,d)) £ w.
weK(a,d)

(5.4.3) Soit Vu V2 et W trois espaces vectoriels, ft : VI -> S* W, i 1, 2, deux
applications linéaires et <Pt : W—> Vh i 1, 2, deux morphismes polynomiaux. On

pose

et

On a alors

Pour a, deNf, on note comme en (5.1.1) Ma(O) le morphisme polynomial

d(r)

la restriction k[Ma(O)]|<s»MI(Q) est ^êale à ^«(Q).
Soit reN1 avec |r|^m + l et t^d. On considère le diagramme
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On choisit un élément w(t) de @(|ad|) tel que r(Q')(w(f)) rende ce diagramme
commutatif et vérifie

Par exemple, pour a (2, 3), d (2, 2) comme tout-à-l'heure, et t (1,1), on
désire que w(t) €©(10) vérifie

a) t«
b) {1,2,5,6,7}

avec xx€(8)2(Q') et x2e®3(Qf). Il suffit de prendre

1=/1 23456789 10\
W{t) "11 26734589 10/

Revenant au cas général, on voit que, puisque l'application transposée de

r(Q')(w{t)) est égale à t(O)(w(0~1), la première des conditions imposées à w(t)
est équivalente à

(5.4.4) PROPOSITION. L'application jLta(Q)or(O)(Am(|ad|) est combinaison
linéaire des applications

[n'a(Q)°T(Q)(Am(\at\))-nda-'(Q)]°

parcourant Vensemble des teN1 tels que |t|^m + l et

Preuve. D'après (5.3.2) et (5.4.1), ixda(Q)°r{Q){Am{\ad\) est combinaison
linéaire des

*ia(Q)"T(Q)

où t parcourt l'ensemble des tefi1 tels que |t|^m + l et t^d. Or
Am(pc1(V(r))) w(r)Am({l,..., |ar|})w(r)"1 par choix de w(t) ({1,..., |ar|} est

considéré comme sous-ensemble de {1,..., \ad\}); de plus, iii(Q)oT(Q)(w)
i pour tout weK(a, d) (cf. (5.4.2) par exemple). On peut donc écrire
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M'a(Q)°T(Q)(Am(|ad|)) comme combinaison des

weK(a,d)

d'où la conclusion par choix de w(t) encore une fois.
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