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Comment. Math. Helvetici §2 (1977) 259-295 Birkhauser Verlag, Basel

Sur la théorie classique des invariants

TH. Vusrt

(0.1.1) Le corps de base k est de caractéristique nulle.

On se donne un espace vectoriel N de dimension finie et un sous-groupe G du
groupe GL(N) des automorphismes linéaires de N. On note N’ le dual de N. Soit
p et q deux nombres entiers positifs; on fait opérer G dans ®° (N')@D?(N) par

s‘(§19 R gpa xla R xq)= (tS*l(gl), L] S(xl)’ .. )

se G, £eN', x’eN. Un probleme de la théorie classique des invariants est de
décrire, par générateurs et relations, I’algébre k[®?(N') @ &*(N)]¢ des fonctions
polynomiales sur ©°(N') @ @%(N) invariantes par G.

Soit r un entier avec r=p et r=q; l'injection

u:PP(N)ODI(N)-> D' (N)D D' (N)=D (N'® N)
(&, ..., x. . )= (&,...,¢,0,...,0,x',...,x%0,...,0)

induit un homomorphisme k[u]: k[® (N'®N)]° — k[®(N)DB*(N)]°; puisque
u posséde une rétraction qui commute aux opérations de G, k[u] posséde une
section; par conséquent, quitte 4 remplacer N par N'@ N, il suffit théoriquement
de résoudre le probléme dans le cas ot p=0. Dans la suite, on ne considerera
donc que le cas de I'opération de G dans @?(N).

Dans son livre: the classical groups [10], chap. II et VI, H. Weyl traite les cas
classiques: G = O(N), Sp (N), SL(N),...; le probleme des générateurs de cer-
taines de ces algébres est aussi étudié dans I'ouvrage [2] de J. Dieudonné et J.
Carrel. On trouve d’autres exemples dans Darticle [7] de C. Procesi.

Lorsque G = O(N) est le groupe orthogonal de la forme quadratique usuelle
Y (x;)* sur N, I’algebre k[BIN]°™ est engendrée par les produits scalaires (x', x’),
1<i<j<g, résultat di a E. Study [8]. Cet exemple, entre autres, suggére a H.
Weyl ([10] p. 32 dernier paragraphe) ‘la possibilité d’associer 2 G un nombre fini
d’invariants typiques indépendants du nombre q d’arguments en question. Un tel
systtme devrait étre formé d’invariants dépendants d’arguments typiques
U, v,...; il devrait fournir un syst¢éme de générateurs pour ’algébre des invariants
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260 TH. VUST

d’une quantité arbitraire d’arguments x, y, z, ... si on substitue ces vecteurs x, y,
z,... dans toutes les combinaisons possibles (répétitions non exclues) aux argu-
ments typiques u,v,...”. Dans le cas de '’exemple, un syst¢me d’invariants
typiques consiste en le produit scalaire (u, v). Plus loin, au chapitre II, théoréme
(2.5.A), il démontre en utilisant une identité de A. Capelli que

a) si un systeme d’invariants typiques fournit (par substitution) un systéme de
générateurs de 1’algébre des invariants k[®"(N)]° pour n arguments (n = dim N),
alors il fournit aussi un systtme de générateurs pour k[@®?(N)]°, quel que soit
Ientier q, G désignant toujours un sous-groupe quelconque de GL(N).

Dans [2] chap. 2 §10, on démontre des renséignements du type a) en utilisant
la technique des développements de Young-Deruyts. De plus, au chapitres II (C)
et VI §1 de [10] on trouve que

b) il existe un ensemble de relations R entre les éléments d’un systéme
complet d’invariants typiques (i.e. qui fournit par substitution un systéme de
générateurs I'(q) de k[®I(N)]° pour tout q) tel que les relations entre les
éléments de I'(q), q €N, s’obtiennent aussi par substitution a partir de R, ceci
lorsque G est I'un des groupes classiques.

Par exemple, l'idéal des relations entre les générateurs (x',x’) de
k[B*(N)]°™ est engendré par les det ((x', x'));cg,, ou E; désigne une partie de
jeE;

{1,..., q} a n+1 éléments; on prend alors pour R la relation det ((u', v")iz0. _n-

.....

j=0,...,n

De ces résultats se dégage I'idée que k[®"(N)]°, n=dim N, “détermine”
entierement k[@?(N)]° pour tout q. Le propos de ce travail est de donner forme
a cette idée.

(0.1.2) 1l faut aborder le probléme intrinsequement: on identifie le G-module
DN avec le G-module Hom (Q, N), ou Q est un espace vectoriel de dimension q
et G opére au but. On remarque ensuite que GL(Q) opere a la source dans
Hom (Q, N), que les deux opérations de G et GL(Q) commutent et par
conséquent que GL(Q) opére dans k[Hom (Q, N)]°.

11 faut aborder le probleéme fonctoriellement: on considére la catégorie 8 des
espaces vectoriels de dimension finie et la catégorie Uff des variétés algébriques
affines dont I’algebre des fonctions régulieres n’est pas.nécessairement de type
fini; on note Hom (Q, N)/G™ I'objet de UAff dont I’algébre des fonctions

' La variété Hom (Q, N)/G est loin d’étre le quotient de Hom (Q, N) par I'opération de G; c’est
par analogie avec le cas ou G est réductif qu’on a choisi cette notation: la variété Hom (Q, N)/G est
alors “I’espace des orbites fermées de G dans Hom (Q, N)” (cf. [6]).
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régulieres est k[Hom (Q, N)]¢ et w(Q):Hom (Q, N)— Hom (Q, N)/G le mor-
phisme induit par I'inclusion des fonctions réguliéres; alors Hom (., N)/G est un
foncteur (contravariant) de LB dans UAff et # une transformation naturelle
Hom (., N)— Hom (., N)/G.

(0.1.3) Soit F un foncteur (contravariant) de 8 dans Aff. Une présentation de

F est la donnée d’une suite de transformations naturelles entre foncteurs de L
dans Aff

Fsv,-5v,

en sorte que, pour tout espace vectoriel Q, on ait une présentation au sens usuel:

1) Vi(Q) est un espace vectoriel de dimension finie, i =1, 2,
2) I'(Q) est une immersion fermée,
3) I'(Q) induit un isomorphisme F(Q)— R(Q) *(0);

autrement dit,
2") le comorphisme k[I'(Q)]: k[ V1(Q)]— k[F(Q)] est surjectif,

3') k[I'(Q)] induit un isomorphisme k[ V:(Q)J/(k[R(Q)](m2(Q))) — k[F(Q)],
ou m,(Q) désigne I'idéal maximal de O dans k[ V,(Q)].

(0.1.4) Soit I un ensemble fini et a € N'; on note

®a(o) — @ a(i)(o)

iel

et on considére ®* comme un foncteur de B dans Aff. Si I* est un ensemble fini
contenant I et a*eN"", on écrit i(I, I*) pour l'inclusion naturelle ®* < ®*".
Pour tout Q, on désigne par Q' le dual de Q.

Voici le résultat principal de ce travail:

THEOREME. Soit P un espace vectoriel, dim P=dim N. On suppose que
k[Hom (P, N)]° est une algébre de type fini; on se donne une présentation

Hom (P, N)/G % ®%(P) - ®"(P)’ (1)

de Hom (P,N)/G oui acN', beN’ et g et r sont des morphismes (de Uff)
GL(P)-équivariants. Alors, une telle présentation se prolonge fonctoriellement en
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une présentation de Hom (., N)/G. De maniere précise, il existe deux transfor-
mations naturelles T':Hom (., N)/G — ®%(.) et R*:®%(.) = ®°"(.), b*eN"
telles que

a) I'(P) =g,
b) J* est un ensemble fini contenant J, b*|; = b et R*(P) = i(J, J*)(P)er,
¢) la suite

Hom (., N)/G - ®°(.) 25 ®°()

est une présentation de Hom (., N)/G.
Un tel prolongement n’est pas unique; on peut cependant en construire un qui est

canonique.

On donne quelques étapes de la preuve de ce théoreme, ce qui permettra de
préciser certains points.

(0.2.1) LEMME. Soit f:®°(Q)' = ®%(Q)’ un morphisme polynomial GL(Q)-
équivariant. 11 existe alors une transformation naturelle ® :®°(.) — ®*(.) telle que

P(Q)=f.

(0.2.2) On part de la présentation (1) et on considére le morphisme
gem(P):Hom (P, N)=®"V(Py - ®*(P)..

D’aprés le lemme, il existe X:Hom (., N) = ®“(.)" telle que X(P)=gow(P); on
montre de plus que X =X, ou te[®*(N)']° et X, est la transformation naturelle
définie par
X.(Q):Hom (Q, N) — ®%(Q)'
u > to®*(u).
Il existe enfin I':Hom (.,N)/G— ®“(.)’ en sorte que I'(P)=g et que le dia-

gramme
Hom (., N)

Y\
Hom (., N)/G - ®°(.)

est commutatif. On a alors la

PROPOSITION. Pour tout Q, I'(Q) est une immersion fermée.
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Remarque. La forme te[®°(N)']° sous-jacente & la définition de I' est
exactement un ‘‘systtme complet d’invariants typiques pour n arguments’ (cf.
(0.1.1)). En effet, pour tout Q, les fonctions polynomiales

Hom (Q,N)— k
u— (1@ (u), x)

xe®%(Q)

engendrent k[Hom (Q, N)]°; on a 14 un formalisme intrinséque pour le procédé
de substitution.

EXEMPLE. On désigne par teS*(N)<®*(N) la Q-forme bilinéaire
symétrique non dégénérée positive sur N telle que O(N) est égal au sous-groupe
d’isotropie GL(N),, I la factorisation de X, a travers 7 et P un espace vectoriel
de méme dimension que N. On démontre alors (et il est classique) que

Hom (P, N)/O(N) 25 §?(PY — 0

est une présentation.

(0.2.3) Apres les succés précédents, on est tenté par I'affirmation suivante:
soit R:®%(.) = ®°(.)’ une transformation naturelle telle que R(P)=r; alors

Hom (., N)/G —— ®°(.) 25 ®"(.)’

est une présentation. Dans le cas de I’exemple, cela impliquerait que
Hom (Q, N)/O(N) est isomorphe a S*(Q)’ pour tout Q; or tel n’est pas le cas (cf.
(0.1.1)). On voit donc que les idées et techniques de la proposition (0.2.2) sont
insuffisantes.

Soit alors Q un espace vectoriel, dim Q =dim P; on se donne une application
linéaire surjective v: Q — P. On a la situation

Hom (P, N)/G £=1®, @2(py 2=R®, @b (py
1 l®“(v’) l@"(v')
Hom (Q, N)/G L2 ®2(Q) 22, @°(QY

O™ J R
GL(Q).Im®*(v")
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On introduit un nouveau foncteur V,, de 8 dans Ajff, sous-foncteur de ®“(.)’, en
posant

®*(Q) si dim Q<dim P=p
GL(Q).Im®“(v') si dim Q=dim P.

Va,p(Q) = {

Avec les notations ci-dessus, on a la

PROPOSITION. La suite
Hom (., N)/G —— V,, -2 ®"(.)’

est une présentation de Hom (., N)/G.
EXEMPLE. Lorsque G = O(N), cela signifie que Hom (Q, N)/O(N) est
isomorphe au cone C,(Q)< S*(Q)’ des formes bilinéaires symétriques sur Q dont

le support est de dimension <n.

(0.2.4) Le théoreme (0.1.4) est conséquence immédiate des deux propositions
précédentes et de la

PROPOSITION. Le foncteur V,, admet une présentation du type
Rap
Vap @ () —5@7 ()

ou o(a, p) est un multiindice ne dépendant que de a et p.

Sa démonstration est technique et se fait en exhibant R, ,; il serait intéressant
d’avoir une preuve procédant d’arguments ‘‘abstraits.”

EXEMPLE. La suite

s n+1 '
C.(Q) C—— §%(Q) — K@ ’52(/\ O)

Hom (Q, Q") 22, Hom (/\ oA o)

est une présentation de C,(Q). En conclusion, avec les notations de I’exemple, la
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suite
Hom (., N)/O(N) —= §?(.) == 52("ﬂl(.))

est une présentation de Hom (., N)/O(N).
Les autres exemples classiques peuvent se traiter selon le méme esprit (cf. [9]).

(0.2.5) Remarque. Lors des démonstrations, on utilise la théorie des
représentations du groupe symétrique; c’est essentiellement pour cela qu’on
suppose le corps de base k de caractéristique nulle.

(0.3.1) Deux points de vue s’offraient pour la rédaction de ce travail: le point
de vue algébrique ol l'on traite le foncteur k[Hom (., N)]° et le point de vue
géométrique ou c’est du foncteur Hom (., N)/G dont il s’agit. Outre des avan-
tages subjectifs, la premiere fagon est directe et élémentaire; la seconde par
contre permet des définitions simples (celles des variétés V,,(Q) et des mor-
phismes X,(Q) par exemple). On a choisi celui-ci pour I'introduction et celui-la
pour I’exposé.

Ce travail se compose de deux parties tres largement indépendantes, les §§1-3
d’une part, et les §§4-5 de l'autre.

Au §1, on étudie les transformations naturelles entre les foncteurs S*®?,
aeN". Au §2, on démontre un “demi théoréme de présentabilité”” pour un type
de foncteurs. Au §3, on applique les résultats du paragraphe précédent au
foncteur k[Hom (., N)]°.

Le §4 est consacré a des rappels et preuves de résultats relatifs a I’algebre du
groupe symétrique. Au §5, on démontre la proposition (0.2.4).

(0.4.1) Conventions. Le corps de base k est de caractéristique nulle.
Lorsqu’on parlera d’espaces vectoriels, sans autre précision, il s’agira toujours
d’espaces vectoriels de dimension finie.

(0.4.2) Notations.

B: la catégorie des espaces vectoriels de dimension finie.

B: la catégorie des espaces vectoriels (non nécessairement de dimension finie).
A: la catégorie des algébres commutatives (non nécessairement de type fini).
Q: un espace vectoriel.

Q’: le dual de Q.

$*(Q): Palgébre symétrique de Q.

®*(Q): I'algébre tensorielle de Q.
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S$"(Q): la puissance symétrique n°™° de Q.

®"(Q): la puissance tensorielle n°™ de Q.

k[Q]= S*(Q'): lalgébre des fonctions polynomiales sur Q.

Soit ¢:Q;— Q, une application polynomiale; on note k[¢]: k[Q.]— k[Q:]
’homomorphisme induit par ¢ et défini par k[¢](p)=pee, pe k[Q:].

Soit ¢ : $*(Q;) — S*(Q-) un homomorphisme; on note . la restriction de ¢ a
I'idéal maximal de S*(Q,) engendré par Q;.

I J, K: des ensembles finis.

Soit a, b € N'; on désigne par ab I’élément de N' défini par (ab)(i) = a(i)b(i),
i€ I; on note |a|=Y,cra(i); on écrit a<b si a(i)=<b(i) pour tout i€ L

§1. Transformations naturelles entre les S*®*

(1.1.0) On considére la catégorie B des espaces vectoriels de dimension finie
et la catégorie B des espaces vectoriels non nécessairement de dimension finie.
Dans ce paragraphe on s’intéresse aux transformations naturelles (dans 8B) entre
certains types de foncteurs de 8 dans B.

(1.1.1) Soit Q un espace vectoriel et A un foncteur covariant de 8 dans 8.
L’espace vectoriel A(Q) est muni naturellement d’une structure de GL(Q)-
module: s.x = A(s)x, s€ GL(Q), xe€ A(Q). Lorsqu’on parlera du GL(Q)-module
A(Q), il s’agira toujours de cette structure. Lorsque A=®* ou S* on a la
structure habituelle de GL(Q)-module sur ®*(Q) ou $*(Q); on remarque en
passant que ces deux derniers GL(Q)-modules sont semi-simples (cf. [2] chap. 2).

Soit A et B deux foncteurs covariants de 8 dans 8. Pour signifier que v est une
transformation naturelle (dans 8) de A vers B, on écrira souvent v:A — B. Si v
est une telle transformation, il est clair que la valeur »(Q) € Hom (A(Q), B(Q))
de v en l’espace vectoriel Q est un homomorphisme de GL(Q)-modules (on
parlera aussi d’application linéaire GL(Q)-équivariante).

(1.1.2) On désigne par I 'ensemble {1,...,r}. Soit a € N". Pour tout espace
vectoriel Q, on note

®*(Q)=® Q).

iel

On définit ainsi le foncteur ®°.
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(1.1.3) EXEMPLE. Soit aeN', neN. Il est bien connu qu’on a un isomor-
phisme naturel

§$"®@*—» & (PR Q(§1Q),

Y d(i)=n

L’espace vectoriel S*®°(Q) est muni d’une graduation de type N', sa
composante homogéne de degré deN’', [S*®%(Q)]°, étant isomorphe 2
$VR* V()R- - -® SR (Q). On note wi(Q) le composé des applications
canoniques

®(Q) = [®*PV(Q)]® - - - B[E"™*V(Q)] - [§*®*(Q)J - §*®°(Q)
et o2(Q) le composé de

$*®@*(Q) & [$*®*(Q)]" = [S*V®*(Q)]® - - - ®[$”®*"(Q)]
— [®a(1)d(1)(o)]® .. ®[®a(r)d(r)(o)];) ®Iad|(Q)_

On obtient ainsi deux transformations naturelles uﬂ et of telles que p,ﬁoaﬁ est la
projection de S*®° sur sa composante homogéne de degré d e N'.

(1.1.4) Soit Q et V deux espaces vectoriels et f: V— S*®“(Q) une applica-
tion linéaire, a € N'. Pour d e N, on pose

f=0i(Q)ef: V- ®*(Q).

De cette maniere, on a une décomposition canonique de f en

f=2 piQ)ef

deN!

Si V est un GL(Q)-module et f est GL(Q)-équivariant, alors les f* sont aussi
GL(Q)-équivariants.

(1.1.5) EXEMPLE. Soit neN. On note 7(Q) la représentation usuelle de
algébre k[&(n)] du groupe &(n) des permutations de {1,..., n} dans ®"(Q).
Soit x € k[&(n)]; l’application 7(.)(x) qui a tout espace vectoriel Q fait corres-
pondre 7(Q)(x)e End (®8"(Q)) est une transformation naturelle de ®" vers ®".
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(1.1.6) A ce propos, on rappelle le résultat fondamental suivant (cf. [1] §67,
[2] chap. 2 §2, [10] chap. IV §4): le commutant de Im 7(Q) dans End (8" (Q)) est
engendré par I'image de la représentation de GL(Q) dans ®"(Q). D’apres le
théoréme de densité ([4] chap. 17 §3) on a donc

Endgi (o) (8"(Q)) = 1(Q)(k[&(n))).

D’un autre c6té on a
Homgy (q) (®"(Q),®™(Q))=(0) pour m#n.

En effet, si a:®"(Q)— ®™(Q) est une application linéaire, a# 0, on a, pour
’homothétie s € GL(Q) de rapport A

a(s.x)=a(A"x)=A"a(x)
et

s.a(x)=A"a(x);
on doit donc avoir m =n si on veut que a soit GL(Q)-équivariant.

(1.1.7) PROPOSITION. Soit v:®" — $*®°, aeN', beN’, une transfor-
mation naturelle. Alors v est somme de transformations naturelles du type

pior()(x), deN}, x € k[&(|ad))].

Preuve. a) Il suffit de faire la démonstration lorsque Card (J) =1, i.e. lorsque
®°*=®", neN.
Soit Q un espace vectoriel. On considere la décomposition

v(Q) = Z pi(Q)ev(Q)*

donnée en (1.1.4); de la définition de »(Q)? résulte que v(.)? est une transforma-
tion naturelle ®" — ®'*?l. Une telle transformation n’est différente de 0 que si
n=|ad| (cf. (1.1.6)).

b) Il suffit donc de démontrer que toute transformation naturelle u :®" — ®",
neN, est de la forme 7(.)(x), x€ k[&(n)]. On se donne un espace vectoriel P,
dim P=n. On sait que Endgy ) (@"(P))=7(P)(k[&(n)]) (1.1.6) et que la
représentation 7(P) est injective (cf. [10] chap. IV). On note x I’élément de
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k[©S(n)] tel que 7(P)(x)= w(P). On vérifie facilement qu’on a alors 7(Q)(x)=
wn(Q) lorsque dim Q <dim P. Lorsque dim Q >dim P, on prend y € k[S(n)] tel que
7(Q)(y)=nu(Q); on a alors comme avant 7(P)(y)= u(P), d'ou 7(P)(y)=1(P)(x)
et enfin y=x par injectivité de 7(P). On a donc p =7(.)(x) ce qui achéve la
démonstration.

(1.2.1) Le cas particulier des transformations naturelles de ®* vers S*®"
lorsque be N’ est la fonction b(j)=1, jeJ, admet un traitement intrinséque trés
agréable.

Soit a e N' et N un espace vectoriel. A tout élément t € ®*(N)’ on associe une
transformation naturelle y,:®* — S*(.® N’) de la maniére que voici: pour tout
espace vectoriel Q, on pose

Xx(Q):®%(Q)— S*(Q®N')=k[Hom (Q, N)]
x> [u— to®@%(u)(x)]

(ue Hom (Q, N)).
On désigne par :S*(N®N')— k I'hnomomorphisme qui prolonge I'applica-
tion

NN — k
x® & (& x).

Via l'isomorphisme S*(N®N')=k[Hom (N, N)], ¢ devient I'homomorphisme
d’évaluation au point 15 € Hom (N, N).

(1.2.2) PROPOSITION. Soit v:®* — S*(.® N') une transformation naturelle,
aeN' Il existe alors un unique tc ®°(N)' tel que v=yx,; de maniére précise,
= gov(N).

Preuve. Soit Q un espace vectoriel et x € ®*(Q). On interpréte I'élément
r(Q)x) comme une fonction polynomiale sur Hom (Q, N). Il s’agit de calculer
[v(O)x)])(u) pour tout ue Hom(Q, N). Puisque v est une transformation
naturelle. pour un tel u. on a le diagramme commutatif

®“UQ " S*O®N')  k[Hom (Q. N)]

> AT S

® (N) "M S NON')= k[Hom (N, N)].
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Or
[v(Q)(x)(u) =[S*(u® 1)(»(Q)(x)))(1x)
=[eoS*(u®1)ev(Q)](x)
=[eev(N)o®@*(1)](x) =[x corn(Q)(x)]()

d’ou ’affirmation.

(1.3.1) LEMME DE PROLONGEMENT. Soit Q un espace vectoriel et
f:®°(Q)— S*®*(Q) une application linéaire GL(Q)-équivariante, a € N', be N’.
11 existe alors une transformation naturelle ¢ :®° — S*®* telle que ¢(Q)=f.

Preuve. 11 suffit de démontrer la proposition lorsque Card (J) =1, i.e. lorsque
®® =®", neN. On considére la décomposition

f=2 udQ)ef

donnée en (1.1.4), ou f*:®"(Q)— ®"“*(Q) est une application linéaire GL(Q)-
équivariante. Il reste donc a prouver que, pour toute application linéaire GL(Q)-
équivariante g:®"(Q)— ®™(Q), il existe une transformation naturelle y:®" —
®™ telle que y(Q) = g; cela résulte immédiatement de (1.1.6).

(1.3.2) Remarque. Le prolongement ¢ de f n’est pas unique. On peut cepen-
dant trouver un prolongement canonique de f de la maniére que voici.

On se raméne comme avant au cas d’une application linéaire GL(Q)-
équivarianteg: ®" (Q) —» ®"(Q). Le noyau de 7(Q):k[&S(n)]— End (®"(Q)) est
un idéal bilatere de I’algébre semi-simple k[&(n)]; il admet donc un
supplémentaire canonique E; on note alors x € E ’élément tel que 7(Q)(x) = g et
on prend 7(.)(x) comme prolongement canonique de g.

(1.4.0) On considére maintenant les foncteurs du type S*®“ comme prennant
leurs valeurs dans la catégorie ¥ des algébres commutatives (et non plus seule-
ment dans B) et on s’intéresse aux transformations naturelles (dans %) entre
ceux-ci.

(1.4.1) La proposition (1.1.7) fournit une description de toutes les transforma-
tions naturelles S*®” — $*®*; quant a (1.3.1), il donne immédiatement le
résultat suivant:

LEMME DE PROLONGEMENT. Soit Q wun espace vectoriel et
f: $*®"(Q) — $*®*(Q) un homomorphisme GL(Q)-équivariant, acN', beN’. Il
existe alors une transformation naturelle (dans %) ¢:S*®° — S*®@° telle que

e(Q)=f.
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(1.4.2) On note encore x,(Q) le prolongement de x,(Q):®“(Q)— S*( QO N')
a S*®*(Q), te®@*(N) (cf. (1.2.1)); on a donc une transformation naturelle (dans
W) x. :S*®* — S*(.® N’). La proposition (1.2.2) donne la

PROPOSITION. Soit v:S$*®“ — S*(.QN') une transformation naturelle
(dans ), aeN'. Il existe alors un unique te ®“(NY tel que v = x,. de manere
précise, t = ¢ * v(N)|g«n .

§2. Les foncteurs A,

(2.1.0) On se donne pour tout ce paragraphe un espace vectoriel N.

Soit A un sous-foncteur de S*(.@N’) et pe N. On considere la propriété
d’extension E(p) que voici:

Soit P un espace vectoriel de dimension p: toute transformation naturelle
x:S*®* — S*(.®QN’), ae N, telle que Im x(P)c A(P) a son image dans A, i.c.,
pour tout Q, Im x(Q)c A(Q). Autrement dit. notant ¢ “‘linclusion” A —
S*(.QN'), si Im x(P)c A(P), alors x se factorise a travers ¢ en une transforma-
tion naturelle y:S*®“ — A.

On considére ensuite la condition de finitude F(p):
Soit P un espace vectoriel de dimension p; I'algebre A(P) est de type fini.

Dans ce paragraphe on va décrire les sous-foncteurs de $*(.® N’) possédant
les propriétés E(p) et F(p) pour un entier p =dim N, puis démontrer que ces
foncteurs admettent une brésentation d’un type particulier. Au paragraphe sui-
vant, on démontrera que le foncteur S*(.® N')¢ posséde E(p), p=dim N.

(2.1.1) Voici un autre exemple. Soit I={1,...,r}. aeN' et te®*(N). On
considere la transformation naturelle

x:.: S*®° — S*(.®N’)

décrite en (1.4.2); géométriquement x,(Q) est le comorphisme du morphisme
polynomial

X,(Q):Q'®N =Hom (Q, N) - ®*(Q)
U to®%(u)=0*(u')(t)
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(u’ désigne I'application transposée de u). On note A, le sous-foncteur Im y, de
S*(.®N'). 1l est évident que A, posséde F(p) pour tout p. De plus

(2.1.2) LEMME. Le foncteur A, posséde la propriété E(p) pour tout p=dim N.

Preuve. Soit x:S*®” — S*(.®N’) une transformation naturelle, beN’;
d’aprés (1.4.2) il existe s€®"(N)' tel que x = x,. Soit P un espace vectoriel de
dimension p=dim N; on suppose que Im x,(P)< A,(P)=1Im x,(P). Puisque le
GL(P)-module S*®°(P) est semi-simple, il existe un homomorphisme
f:S*®"(P) - S*®*(P) GL(P)-équivariant tel que x.,(P)of=x,(P). On désigne
par ¢ : S*®" — $*®° une transformation naturelle telle que ¢(P) = f (cf. (1.4.1)).

On note @(Q):®%(Q) —®°(Q)' le morphisme polynomial défini par
k[®(Q)]= ¢(Q). Par hypothése, on a

®(P)° X,(P) = X,(P);
Pour u € Hom (P, N), on a donc

D(P)o®@% (u')(1) = ®"(u')(s),
d’ou

®°(u')e (N)(1) =®"(u')(s)
et enfin

DO(N)(t)=s

puisqu’il existe des éléments surjectifs dans Hom (P, N).
Un calcul semblable montre ensuite que, pour tout espace vectoriel Q,
®(Q)° X,(Q) = X;(Q), i.e. que x:°¢ = xs = x, d’ou I'affirmation.

(2.2.1) LEMME. Soit V un sous-GL(Q)-module de dimension finie de
S*®*(Q). Il existe alors beN’ et une application linéaire surjective GL(Q)-
équivariante @°(Q) — V.

L’assertion provient de (1.1.3) et de la semi-simplicité des GL(Q)-modules en
question.

(2.2.2) Soit L une sous-algebre de type fini de S*(P® N’); on suppose que L
est stable par GL(P). Il existe alors aeN' et un homomorphisme GL(P)-
équivariant surjectif g:S*®*(P)— L. Soit en effet V un sous-GL(P)-module de
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dimension finie de L qui engendre L; puisque P® N’ est GL(P)-isomorphe a
P®---@®P, il résulte de (2.2.1) qu’il existe aeN' et une application linéaire
surjective GL(P)-équivariante g, :®“(P)— V. On prend pour g le prolongement
de g1-

(2.2.3) PROPOSITION. Soit A un sous-foncteur de S*(.® N') vérifiant E(p)
et F(p) pour un entier p=dim N. Soit P un espace vectoriel de dimension p et

g:S*®*(P)— A(P)

un homomorphisme GL(P)-équivariant surjectif, a € N* (cf. (2.2.2)). Il existe alors
une transformation naturelle et une seule

v:$*®* —> A

telle que y(P) = g; pour tout Q, y(Q) est surjectif; il existe de plus t € @*(N)' tel que
A=A.

COROLLAIRE. Soit A un sous-foncteur de S*(.® N') vérifiant E(p) et F(p)
pour un entier p = dim N. Alors A vérifie E(q) pour tout q =dim N et F(q) pour tout
qgeN.

Cela résulte de la proposition et de (2.1.2).

Preuve de la proposition.

a) On note : A — S*(.® N’) I'injection canonique. Alors ¢(P)og: S*®*(P) —
S*(P®N’) est un homomorphisme GL(P)-équivariant; d’aprés le lemme de
prolongement (1.4.1) il existe x:S*®* — S*(.® N’) telle que x(P)=t(P)og. Ce
prolongement est en fait unique: en effet, si y; en était un autre, on aurait
Xx1(N) = x(N) puisque dim N<dim P, d’ot x = x; d’apres (1.4.2).

Comme A possede la propriété E(p), x se factorise a travers ¢ en une
transformation naturelle y:S*®* — A telle que y(P)=g; de I'unicité de yx
résulte ensuite 'unicité du prolongement y de g, d’ou la premiére affirmation.

b) L’homomorphisme y(Q) est surjectif lorsque dim Q <dim P.

On se donne une application linéaire surjective u:P— Q. Par fonctorialité
A(u) est surjectif; par suite A(u)oy(P)=y(Q)S*®"(u) est surjectif; il en est
donc de méme de y(Q).

¢) L’homomorphisme y(Q) est surjectif lorsque dim Q =dim P (=dim N).

Soit V un sous-GL(Q)-module de dimension finie de A(Q); il faut prouver
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que V est contenu dans Im y(Q). D’aprés (2.2.1) il existe be N’ et une applica-
tion linéaire GL(Q)-équivariante f:®"(Q)— S*(Q® N’) dont 'image est V; du
lemme de prolongement (1.3.1) résulte qu’il existe ¢:®° — S*(.@ N') telle que
e(Q)=f.

On se donne une application linéaire surjective v:Q — P. On a la situation

®b(Q) e(Q)=f ’S*(P®N')
@”(v)l T A(Q) -

S*v®1)
b ¢(P) Aw) l
®”(P) > S*(PQN')

~
~
~

T A(P)

On voit alors immédiatement que Im ¢(P)< A(P).

Maintenant, puisque y(P): S*®“(P) — A(P) est surjectif et puisque le GL(P)-
module S*®“(P) est semi-simple, il existe une application linéaire GL(P)-
équivariante m:®°(P)— S*®%(P) telle que y(P)em=+(P). On prend
p:®” — S*®@° telle que w(P)=m ((1.3.1)). On a la situation

®b(o) f=¢(Q) S*(Q®Nl)

®(Q) [

$*®°%(Q) l*“” A(Q) —
. ®°(p) & J 5 S*(PQ N
#(y (/,

S*®a (P) y(P) A(P)

et il reste a démontrer que la face supérieure de se diagramme commute. On
considére alors f—y(Q)°u(Q):®°(Q)— S*(Q® N'): c’est un homomorphisme
de GL(Q)-module dont I'image est contenue dans le noyau de S*(v®1); du
lemme (2.2.4) ci-dessous, résulte que cet homomorphisme est identiquement nul.
On a donc f=y(Q)ou(Q), d’ott V=Im f<Im y(Q); I'assertion c) est démontrée.

d) On désigne par te ®@*(N)' I’élément tel que x = x, (cf. (1.4.2) et la partie a)
de la preuve). Puisque y =t°vy les foncteurs Im y = A, et Im y=A coincident;
cela termine la démonstration de la proposition.

(2.2.4) LEMME. Soit P, Q deux espaces vectoriels avec dim Q=dim P=
dim N et v: Q — P une application linéaire surjective. Soit V un GL(Q)-module
(non nécessairement de dimension finie) et f:V— S*(Q® N’) une application
linéaire GL(Q)-équivariante. Si Im f < Ker (S*(v® 1)), alors f=0.

Preuve. L’homomorphisme S*(v® 1) s’interpréte géométriquement comme
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I’application linéaire

vg:Hom (P, N)=P'QN — Q'® N=Hom (Q, N)

Ur—>uocyp

et Ker (S*(v®1)) comme I'idéal de Im vy dans S*(Q®N’). Comme dim Q=
dim P=dim N, GL(Q) - Im v =Hom (Q, N); il résulte de 1a que (0) est le seul
sous-GL(Q)-module de S*(Q® N’) qui est contenu dans Ker (S*(v® 1)). Enfin,
puisque Im f est un sous-GL(Q)-module, on a bien f=0.

(2.3.1) Soit meN et aeN’. On se donne un espace vectoriel M de
dimension m. Pour tout espace vectoriel Q, on consideére

S*®*(u): S*®*(Q) — S*®@“(M)

ol u:Q — M est une application linéaire de rang maximum. On note |, ,.(Q) le
plus grand sous-GL(Q)-module de S*®®(Q) qui est contenu dans Ker ($*®“(u)):
c’est un idéal de S*®°*(Q) qui est indépendant du choix de u. On a },,,(Q)=0
lorsque dim Q <m. Géométriquement, ta,m(Q) est I'idéal de la sous-variété
GL(Q).Im (®*(u')) de ®*(Q)’ formée des formes multilinéaires de support de
dimension*< m (pour toute partie E d’un espace vectoriel, on note E I’adhérence
de E pour la topologie de Zariski). On désignera par C,,.(Q) le quotient
S*®@*(Q)/ l..m(Q) et par 6,,.(Q) ou encore 8(Q) ’homomorphisme canonique
$*®%(Q)— C,,.(Q); C,,, est un foncteur covariant de B dans A et 6 une
transformation naturelle $*®“* — C, .

(2.3.2) LEMME. Soit peN, p=dim N; toute transformation naturelle
X:5*®% — S*(.QN'), aeN/, se factorise & travers 6:S*®°— C,, en une
transformation naturelle x : C,, — S*(.® N').

Preuve. Soit Q un espace vectoriel de dimension =p et v:Q— P une
application linéaire surjective. On a la situation suivante:

lap(Q) & Ker (S*(®°(v)))
$*®%(Q) —2— S*(Q®N')
S“®“(v)l \Ca,p(o) Js*(ueu)
$*®*(P) —X=— S*(P®N').

Le sous-espace x(Q)(l,,(Q)) est un sous-GL(Q)-module de S*(Q® N’) contenu
dans le noyau de S*(v®1). D’aprés le lemme (2.2.4), un tel sous-espace est
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nécessairement réduit a (0). L’homomorphisme x(Q) se factorise donc lorsque
dim Q=p. Comme C,,(Q)=S*®“(Q) lorsque dim Q=<p, laffirmation est
démontrée.

(2.3.3) Soit a un idéal de S*®*(P); on suppose que a est stable par GL(P); il
existe alors beN’ et un homomorphisme GL(P)-équivariant r:S*®°(P)—
S*®“(P) tel que I'idéal engendré par Im r, est égal a a (r, désigne la restriction
de r a I'idéal S*®"(P), formé des éléments de S*®°(P) de degré stxictement
positif). Soit en effet V un sous-GL(P)-module de dimension finie qui engendre a.
D’aprés (2.2.1), il existe be N’ et une application linéaire surjective GL(P)-
équivariante r; :®°(P)— V. On prend alors pour r le prolongement de r,.

(2.3.4) Dans I’énoncé ci-dessous, I'usage du mot “présentation’ est abusif: on
n’exige pas ici que la premiére algebre (resp. le premier foncteur) ‘“‘qui présente”’
soit une algébre de polyndomes (resp. prenne ses valeurs dans les algebres de
polyndmes).

En outre, si L est une sous-algébre de type fini de S*(P® N’) stable par
GL(P), il résulte de (2.2.2) et (2.3.3) qu’il existe une présentation de L (dite
GL(P)-équivariante) du type

S*®°(P) > S*®*(P) > L
ou r et g sont des homomorphismes GL(P)-équivariants.

PROPOSITION. Soit peN,p=dim N, et y:C,, = S*(.® N') une transfor-
mation naturelle (dans N), a e N'. Soit P un espace vectoriel de dimension p et

¥(P)

S*®°(P) 5 $*®°(P) = C,,(P) = Im %(P)

une présentation GL(P)-équivariante de Im ¥(P), beN’. Alors, il existe une
transformation naturelle p: S*®® — C,,p telle que p(P)=T; pour une telle transfor-
mation, la suite

S*®" & C,, H>Imy
est une présentation du foncteur Im %.

Preuve

a) D’aprés (1.4.1), il existe une transformation naturelle p:S*®° — $*®*
telle que p(P)=rF; alors p=0°p est une transformation naturelle S*®° — Cap
telle que p(P)=T.

b) L’idéal de C,,(Q) engendré par Im p(Q). est égal a Ker ¥(Q) lorsque
dim Q =<dim P.
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On se donne une application linéaire surjective u:P— Q. Par fonctorialité,
C.p(u)(Ker ¥(P)) =Ker y(Q); par conséquent, si Im g(P). engendre I'idéal
Ker ¥(P), Im (C,,(u)°5(P)+) =Im (p(Q)°S*®"(u).) engendre I'idéal Ker 7(Q);
comme u est surjectif, ’assertion b) est démontrée.

c) L’idéal de C,,(Q) engendré par Im g(Q), est égal a Ker y(Q) lorsque
dim Q>dim P (=dim N).

On se donne une application linéaire surjective v: Q — P. Puisque y(P)°p(P). =0,
le sous-espace Im (y(Q)°p(Q),) est un sous-GL(Q)-module de Ker (S*(v ® 1)).
Du lemme (2.2.4) résulte alors que ¥(Q)°p(Q).=0 ie. que Imp(Q).<
Ker ¥(Q).

Réciproquement, soit V un sous-GL(Q)-module de dimension finie de
Ker ¥(Q); il faut démontrer que V est contenu dans l'idéal engendré par
Im p(Q).. Puisque le GL(Q)-module $*®*(Q) est semi-simple, il existe c € N* et
une application linéaire GL(Q)-équivariante m:®°(Q)— S*®*(Q) telle que
Im(6(Q)em)=V (cf. (2.2.1)). On note w:Q°— S*®* une transformation
naturelle telle que w(Q)=m (cf. (1.3.1)). Par fonctorialité¢, Im (§(P)°u(P))<
Ker y(P). |

Pour tout espace vectoriel M, on pose

(- 9)(M):®*(M)® S*®* (M) = C,,(M)
x®@y = p(M)(x) - 6(M)(y)
(produit dans I'algebre C,,(M)).
Par hypothése, I'image de (p - 6)(P) est égale a Ker y(P). Par semi-simplicité
des GL(P)-modules en question, il existe une application linéaire GL(P)-

équivariante n:®°(P)— ®"(P)® S*®*(P) telle que (p - 0)(P)en = 8(P)ou(P).
Utilisant une généralisation facile de (1.3.1), on voit qu’il existe

1:®°— R’ S*Q”

telle que v(P)= n. La situation est la suivante:

®°(Q) HQ) > R (Q)R $*®%(Q)
o(o)om A)(O) l
S*®R°(Q) [ —5 Cap(Q) J o S*(Q®N))
®°(P) —2 ®R*(P)® S*®*(P)
0(?% AAf’)
S*Q®°(P) » Cop(P) » S*(PON')

p(P) ¥(P)
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ou les fleches verticales représentent les morphismes induits par v. Il faut
démontrer que le triangle du haut est commutatif.

On pose a=0(Q)°u(Q)—(p-0)(Q)°v(Q): c’est une application linéaire
GL(Q)-équivariante ®°(Q)— C,,(Q) dont I'image est contenue dans
Ker C,,(v). Or, Ker C,,(v)=Ker $*®*(v)/],,(Q); comme [,,(Q) est par
définition le plus grand sous-GL(Q)-module de S*®“(Q) qui est contenu dans
Ker $*®“(v), (0) est le seul sous-GL(Q)-module de C,,(Q) qui est contenu
dans Ker C,,(v). On a donc a =0 et par conséquent Im (8(Q)°u(Q))=V est
contenu dans l'idéal de C,,(Q) engendré par Im p(Q).. L’assertion c) est ainsi
démontrée.

(2.4.1) Le théoréme que voici résume les paragraphes 1 et 2 de ce travail; il
est conséquence immédiate des propositions (2.2.3), (2.3.4) et du lemme (2.3.2).

THEOREME. Soit A un sous-foncteur de S*(.® N') vérifiant les conditions
E(p) et F(p) pour un entier p=dim N. Soit P un espace vectoriel de dimension p et

S*®®(P) - S*®*(P) £ A(P)

une présentation GL(P)-équivariante de A(P), aecN', beN’. Alors

(i) il existe deux transformations naturelles y: S*®* — A et p:S*®" — S*®°
telles que

1) y(P)=g, p(P)=r,

2) vy se factorise a travers 6:S*®* — C,, en une transformation naturelle
Y:Cop— A,

3) la suite

S*@* 5 C,, A

ou p = @op est une présentation de A;

(ii) toutes transformations naturelles vy et p satisfaisant 1) satisfont aussi 2) et
3);

(iii) il existe te ®*(N)' tel que A = A..

§3. Le foncteur S*(.® N')°

(3.1.1) Dans ce paragraphe, on se donne un espace vectoriel N et un
sous-groupe G de GL(N).

Soit Q un espace vectoriel; sur Q® N’ on considere les opérations usuelles de
GL(Q) et G; ces deux opérations commutent. L’algébre S*(Q® N’) est donc
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munie d’une structure de GL(Q)-module (semi-simple) et d’une structure de
G-module. On désigne par S*(Q® N')€ la sous-algébre des invariants de G dans
S*(Q®N'). On considére S*(.® N")°: c’est un foncteur de B dans U, sous-
foncteur de S*(.®N’).

(3.1.2) PROPOSITION. Le foncteur $*(.® N")° posséde la propriété E(p) de
(2.1.0) pour tout entier p=dim N.

Preuve. Soit P un espace vectoriel de dimension p=>dim N. Soit ae N’ et
X :S*¥®* — S*(.®N') une transformation naturelle. On suppose que Im y(P)<
S*(P®N')®. On sait qu’il existe te®*(N)' tel que x=x ((1.4.2)). Pour
démontrer que Im ,(Q) < S*(Q® N')® quelque soit I’espace vectoriel Q, on va
procéder géométriquement.

L’homomorphisme x,(Q) s’interpréte comme le comorphisme du morphisme

polynomial

X.(Q): Q'®N=Hom (Q, N) - ®*(Q)
u > Q*(u)(1)

(cf. (2.1.1)). Maintenant il est clair que, pour que Im x,(Q)< S*(Q® N)°, il faut
et il suffit que le morphisme X,(Q) soit constant en restriction aux orbites de G
dans Hom (Q, N) (le groupe G opére dans Hom (Q, N) “au but”).

Par hypothese, on a

X,(P)(scu)=X,(P)(u) se€e G, ueHom (Q, N)
ie.

®“((sou))(t) =®*(u')(1)

Q% ()o@ (s)(1) =@ (u')(1)

d’ou te[®%(N")]° puisqu’il existe u tel que ®*(u’) est injectif.

Un calcul semblable montre ensuite que si te[®*(N)]°, alors X,(Q) est
constant en restriction aux orbites de G dans Hom (Q, N), ceci quelque soit Q,
d’ou la conclusion.

(3.1.3) Supposant que l'algebre S*(P®N') est de type fini, dim P=p=
dim N, i.e. que S*(.® N")€ vérifie la condition F(p) de (2.1.0), on peut appliquer
les résultats du paragraphe précédent 3 S*(.® N')°. En particulier, le théoréme
(2.4.1) fournit la “moitié” de (0.1.4), le théoréme (5.1.2), qu’on démontrera plus
loin au paragraphe 5, en étant I'autre moitié.
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(3.1.4) Remarques

1) La condition de finitude F(p) du foncteur $*(.® N")€ est étudiée dans [3].

2) D’aprés (3.1.3), si S*(.®N')” vérifie F(p) pour un entier p=dim N, il
existe te®“(N) tel que S*(.QN')°=A, Il n’est pas difficile de voir que le
sous-groupe d’isotropie GL(N), est égal au plus petit sous-groupe observable de
GL(N) contenant G (cf. [3]).

Réciproquement, soit t € ®*(N)'. On suppose de plus que GL(N), est réductif;
alors, pour que A, soit égal a S*(.Q N)°*™._ il faut et il suffit que les deux
conditions suivantes soient vérifiées:

a) A,(N) est intégralement clos;
b) Im X,(N) est fermée dans ®°(N)'.

Ces conditions sont clairement nécessaires (cf. [6]); elles sont suffisantes comme il
résulte d’un lemme de R. W. Richardson (cf. [5] lemme 1.8 ou [9]) et de (2.2.3) et
(1.4.2).

§4. Opérateurs d’antisymétrisation

(4.1.1) Dans ce numéro on rappelle quelques résultats classiques relatifs aux
représentations des groupes finis.

Soit H un groupe fini. On note k[ H] I’algébre du groupe H; c’est une algébre
semi-simple. On fait opérer H dans k[H] par multiplication a gauche. Tout
H-module irréductible est isomorphe a un sous-H-module de k[ H]. Les sous-H-
modules de k[H] sont les idéaux a gauche de k[H]; ceux-ci sont de la forme
k[Hle, ou e est un idempotent (e’=e). Les sous-H-modules irréductibles de
k[H] sont donc les idéaux minimaux a gauche.

On note h le cardinal de H. L’endomorphisme

1 _
x> xF=— ) !
hteH

de k[H] est un projecteur d’image le centre de k[H]. Si e est un idempotent non
nul, e” n’est pas nul. De plus, si k[H]e est minimal, la composante isotypique de
k[H] de type k[H]e est égale 2 k[H]e”; c’est aussi I'un des composants simples
de k[H].

Soit (e;);cr une famille d’idempotents de k[ H] telle que les (k[ H]e;);c; forment
un systeme de représentants des classes de H-modules irréductibles; alors
Card (I) est plus petit ou égal au nombre de classes de conjugaison des éléments
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de H, et pour tout H-module V,

V=@ el -V,

iel
ef - V étant la composante isotypique de V de type k[H]e..

(4.2.1) Soit E un ensemble fini. Un diagramme de Young'® sur E consiste en
la donnée de deux relations d’équivalences ar et ac sur E vérifiant:

1) quels que soient x, y € E, “ar{x, y} et ac{x, y}”’ entraine x =y,
2) quels que soient x, y € E, il existe z€ E tel que “agr{z, x} et ac{z, y}’’ ou
“ar{z, vy} et ac{z, x}.”
Les classes d’équivalence suivant ar (resp. ac) sont les lignes (resp. les colonnes)
de a. On note pg:E — E/agr et pc: E — E/ac les projections canoniques.

(4.2.2) LEMME. Il existe un ordre (noté <) sur E/ac tel que, pour x,y € E, la
relation “‘pc(y) <pc(x)” entraine ‘il existe z € E tel que pr(z) = pr(x) et pc(z)=
Pc()’)-”

Preuve. On choisit sur E/ac un ordre satisfaisant la condition

pc(y) < pe(x) > Card (pc' pe(y)) = Card (pc' pe(x)).

Un tel ordre convient. Soit en effet x,yeE tels que Card (pElpC(y))>
Card (pc'pe(x)). Si pr(x) € pr(pc'pe(y)), d’aprés la condition 2) de la définition
des diagrammes sur E, pour tout y’e€ pc'pe(y), il existe z'€ E tel que

pr(z2)=pr(y’) et pc(z')=pc(x);

par conséquent Card (pc pc(x))>Card (pc'pe(y)) ce qui est contraire 2
I'hypothése. On a donc pr(x)€ pr(pc' pce(y)), d’ou Iexistence de z € pc'pe(y) tel
que pr(x) = pr(z).

(4.2.3) On note ©(E) le groupe des permutations de E. Le groupe &(E) opére
dans I’ensemble des partitions de E; il opere aussi dans I’ensemble des diagram-
mes de Young sur E:

-1, -1,
(w - a)r{x, y} © ar{w X, W y} x,y€E, we S(E).

(w-a)efx, yl @acfw™ - x,w -y}

% Cette définition m’a été proposée par J. L. Koszul.
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On dira que deux diagrammes «; et a, sur E sont de méme type s’il existe
we S(E) tel que w - a; = ay; il faut et il suffit pour cela qu’il existe w; € S(E) tel
que (wy - a)r =(az)r (ou (w;- aj)c=(az)c). Si T(E) désigne I’ensemble des
types de diagrammes sur E, on déduit de 12 que Card (T(E)) est égal au nombre
de décompositions de I’entier Card (E) en somme d’entiers positifs.

Soit @ un diagramme sur E. On pose h(a)= Card (E/ar) et on dit que h(a)
est la hauteur de a. Ce nombre ne dépend que du type de «; on peut donc définir
la hauteur de t pour te T(E) par h(t)= h(a) ou a€t.

Par un raisonnement semblable a (3.2.2), on prouve qu’on a

h(a) =max (Card (pc'pc(x))).

xeE

(4.2.4) Soit a un diagramme sur E. On note R(«a) (resp. C(a)) le sous-groupe
de &(E) formé des permutations qui laissent invariantes les lignes (resp. les
colonnes) de a. On introduit alors les éléments

A.= ), el@q et Sa= ) p

qgeC(a) peR(«a)

de l'algébre k[S(E)] du groupe S(E) (e(q) désigne la signature de g € S(E)). On a
visiblement les formules:

Ay .o= WA W, Sw.a=wSw we &(E)

qA. = Auq = €(q) Ao, q € Cla),
PSa = SaDP = Sas p€ R(a).

(4.2.5) Voici le résultat principal de la théorie des représentations du groupe
symétrique (cf. [1] §28, [2] chap. 2, [10] chap. IV).

PROPOSITION.

(i) Soit @ un diagramme de Young sur E; il existe une constante non nulle
A(a)eQ (ne dépendant que du type de a) telle que e(a)=A(a)A,S, soit un
idempotent de k[a(E)]; de plus k[o(E)]e(a) est un idéal minimal.

(ii) Soit a; et a, deux diagrammes sur E; pour que les idéaux engendrés par
e(a;) et e(a) soient isomorphes, il faut et il suffit que a, et a, soient du méme type.

(4.2.6) Soit (a,);c1(r) un systéme de représentants pour les types de diagram-
mes sur E; alors les idéaux (k[S(E)]e(a.))cT@) constituent un systeme de
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représentants des classes de ©(E)-modules irréductibles: on sait en effet que
Card (T(E)) est égal au nombre de classes de conjugaison des éléments de S(E)
(cf. (4.2.3)), nombre qui est plus grand ou égal au nombre de classes de
&(E)-modules irréductibles.

D’aprés (4.1.1), on a donc V=®,.1() e(a,)” - V pour tout S(E)-module V;
de plus, comme e(a,)” est proportionnel a ¥,.,e(a), on a aussi

V=€B(Z

e(a) - V).
teT(E) \aet

(4.3.0) Dans ce numéro, on se donne un ensemble fini E et un nombre entier
m. On désigne par m I’ensemble des parties de E a (m + 1) éléments. Pour toute
partie F de E, on pose

GSr={weS(E)| w(x)=x, x¢ F},

Ar= ), £(q)g,

qeGE

puis

AE)= ) ) e(@q= ) Ar

Fem qeC€g Fem

On dira que I’élément A,,(E) de k[S(E)] est I’opérateur d’antisymétrisation
relativement aux parties de E a (m+1) éléments; c’est visiblement un élément
central de k[&(E)] qui est nul si Card (E)<m+1. On désire évaluer A,,(E) en
fonction des e(a)”.

On suppose dans la suite que 0<m <Card (E).

(4.3.1) La démonstration du lemme suivant m’a été communiquée par J. L.
Koszul.

LEMME. Soit @ un diagramme sur E et Fem. Alors A,AgS, est égal a
Card (C(a) NSE)A,S, si les m+1 éléments de F appartiennent a des lignes
distinctes de a et est égal a O dans le cas contraire.

Preuve.

a) On suppose que les éléments de F appartiennent a des lignes distinctes de
a, autrement dit que la restriction pg|r de pr a F est injective.

Soit we SN C(a); on a alors e(w)A.wS, = A,S. (cf. (3.2.4)).

Soif we Sy, mais we C(a); alors e(w)A.wS, = 0. En effet, il existe x € F tel
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que pc(x) # pc(w - x), et on peut de plus choisir x € F en sorte que pc(w - x) <
pc(x), ot < est un ordre sur E/ac satisfaisant la condition du lemme (3.2.2); il
existe donc z€ E tel que pr(z)=pr(x) et pc(z)=pc(w - x). On a z£ F puisque
Pr|F est injectif. On se trouve alors dans la situation classique (cf. [1] lemme
(28.11), [2] p. 17, [10] lemme (4.2.A)) d’une permutation w de E et de deux
éléments x et z de E tels que x, z appartiennent a une méme ligne de a et w - x,
w - z =z appartiennent a une méme colonne de a: ona w=(w - x, z)w(x, z) avec
(w-x,2z)e C(a) et (x, z) € R(a). Par conséquent on a enfin

A WS, =A,(w - x, 2)w(x, 2)S, = —A wS,.

Puisque A AES, =Y weo, E(W)A,WS,, On a bien démontré que si les éléments
de F appartiennent a des lignes distinctes de «, alors A,AEgS, =
(Card (C(a) N ©g))A,S..

b) On suppose qu’il existe deux éléments x et y de F dans une méme ligne de
a. La transposition (x, y) appartient 8 SN R(a); on a donc

AFSa = (AF(x7 Y))((x, Y)Sa) = _AFSa
d’ou A,AES, =0.

(4.3.2) PROPOSITION. Soit a un diagramme sur E. Alors A,,(E)A,S, est un
multiple entier strictement positif de A,S, si h(a)>m et est égal a 0 si h(a)=m.

Preuve. Puisque A,,(E) est un élément central de k[S(E)], on a

Am(E)AaSa = AaAm(E)Sa = Z AaAFSa-

Fem

Si h(a)>m (resp. h(a)<m) I’ensemble des Fem dont les éléments appartien-
nent a des lignes distinctes de a est non vide (resp. est vide); I’affirmation provient
donc directement du lemme (3.3.1).

Remarque. Soit (a,);c) un systeme de représentants des types de diagram-
mes sur E. On peut énoncer la proposition précédente en disant que A,,(E) est
combinaison linéaire des e(a,)”, h(t)> m.

§5. Le foncteur C,,,

(5.1.0) On reprend les notations du paragraphe 4, a ceci prés que, pour
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E={1,...,n}, onécrira ©(n), T(n), An(n),...pour &({1,...,n}), T{1,..., n}),
A.({1,...,n},....

(5.1.1) On désigne par I I’ensemble {1, ..., r}; on se donne acN' et meN.

On désigne par M un espace vectoriel de dimension m. On rappelle que, pour
tout espace vectoriel Q, on notait en (2.3.1) [,,.(Q) le plus grand sous-GL(Q)-
module de S*®“(Q) contenu dans le noyau de

S*®*(u): $*®@*(Q) — S$*®*(M)

ol u:Q — M est une application linéaire de rang maximum; on notait ensuite
C.m(Q) le quotient $*®*(Q)/l,.m(Q) et 6(Q) 'homomorphisme canonique
$*®%(Q) = Com(Q).

De plus, pour tout d € N, on a introduit en (1.1.3) I’application linéaire

pa(Q):®4(Q)— $*®@*(Q)

dont l'image est la composante homogéne de degré d de S*®°(Q);
géométriquement, le prolongement de u2(Q) a $*®“*/(Q) est le comorphisme du
morphisme polynomial

M3(Q):®“(Q) — ®“I(Qy
(x1,...,%)>»xQ - Qx;Q--Qx,® - Qx,
2 9 QoK

(1) d(r)

x; € ®*M(Q).
On pose enfin

pam(Q)= @ pi(Q)o7(Q)(Am(lad))

del(m)

ou I(m) est ’ensemble des deN' tels que |d|<m+1; on définit ainsi une
transformation naturelle p, ,, :®°@™ — §*®°, ol o(a, m) est I'application

o(a,m):I(m)— N
d > |ad|.

On écrira encore p,(Q) pour le prolongement de p,.(Q) a S*®°“™(Q).
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(5.1.2) Le but de ce paragraphe est de démontrer le résultat que voici:
THEOREME. La suite
$*¥®7 @™ 205 ¥ @ 5 C,

est une présentation de C,,p,.

Il résulte immédiatement des propositions (5.2.4) et (5.4.4) ci-dessous.

(5.1.3) On note V,,(Q) la sous-variété fermée de ®°(Q)' définie par
k[Vom(Q)]=C,m(Q); on a (cf. (2.3.1))

Vem(Q)= GL(Q) - Im & (u).

On désigne ensuite par r,,,(Q) le morphisme ®*(Q) — ®”“™(Q)’ défini par
k[ra,m(o)]: pa,m(o); alors

ram(Q)= @ 7(Q)(An(ad|)-M(Q).

deI(m)

La version géométrique du théoréme (5.1.2) est:
Vam(Q) = 1a,m(Q)7(0).
EXEMPLE 1. a=neN, m=1. Alors

Voi1(Q) ={(x® - - ®x)e®"(Q), xe Q"}
et
r1(Q):®"(Q) — ®"(Q) ®®*"(QY
t = (1(Q)(A1(n))(1), 7(Q)(A1(2n))(t®1)

ol A;(p)e k[S(p)] est I'opérateur
p(p—1)/2 id - Z transpositions de S(p).

EXEMPLE 2. a=2. Dans ce cas
r.m(Q)= D 7(Q)(An(2d))> M5(Q).

[m+1/2}sd=m+1
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En théorie classique des invariants des groupes O (M) et Sp (M) on est amené
a considérer les sous-variétés V,,,(Q)N S*(Q") et V,,.(Q)N A’ (Q’) de S*(Q’) et
/N’ (Q') respectivement; la restriction de r,,,,(Q) a S*(Q’) et A (Q") fournit donc
une présentation de ces variétés. Un examen soigneux (et fastidieux) devrait
donner des résultats équivalents a ceux de [9].

EXEMPLE 3. a=(1,...,1)eN", m=<n. Alors ®*(Q"')=Hom (Q, N), ou N
est de dimension n, et

Vam(Q)={veHom (Q, N), rang (v) <m}.

Puisque A,.(p)=0 pour p<m+1, on a

ram(Q)=1(Q)(An(m+1))e & MQ);

|d|=m+1

comme enfin

An(m+1)= Y &)

qeG(m+1)

on peut se restreindre dans la somme précédente aux d e N" tels que |d|=m+1 et
d(j)=0 ou 1.

On voit donc que r,,,(Q) est somme des ( m:l_ 1) morphismes
®a(Q/)_> /\m+1 (Ql)c®m+1(01)
(X152 05 Xn) Xy N A Xim+1)
(cf. [9] théoréme 3 §2).

(5.2.1) LEMME. L’idéal Ker 7(M) de k[&(n)] est engendré par An(n).

Preuve. D’aprés [10] lemme (4.4.B), pour que e(a)e Ker (M), il faut et il
suffit que h(a)>m. Comme

Eml= & (I KSmle@)

teT(n) \aet
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on a

Ker 7(M)= @ (Z k[@(n)]e(a)).

teT(n) \act
h(t)>m

L’affirmation résulte donc immédiatement de (4.3.2).

(5.2.2) LEMME. Soit u:Q — M une application linéaire de rang maximum;
alors, le plus grand sous-GL(Q)-module de ®@"(Q) contenu dans Ker ®"(u) est
égal a Im 7(Q)(A,.(n)).

Preuve. Si dim Q <dim M, alors A,,.(n) € Ker 7(Q) (cf. (5.2.1)), d’ou affirma-
tion dans ce cas.

On suppose donc dim Q>dim M et on note V le plus grand sous-GL(Q)-
module de ®"(Q) contenu dans Ker ®"(u). Le groupe ©(n) opére dans V. Il
résulte de la que I’ensemble E des x € k[&(n)] tels que Im 7(Q)(x)< V est un
idéal bilatere de k[S(n)]; de plus, on voit facilement que E = Ker (M), et que, si
x est un générateur central de E, alors Im 7(Q)(x) = V. La conclusion provient
alors du lemme (5.2.1).

(5.2.3) LEMME. Soit F un sous-foncteur de ®"; il existe alors un idempotent x
de k[&(n)] tel que F(Q)=1Im 7(Q)(x) pour tout espace vectoriel Q.

Preuve.

a) Pour tout Q, F(Q) coincide avec le sous-espace F'(Q) de ®"(Q) engendré
par GL(Q) - Im F(u), ou u: N — Q est une application linéaire de rang maximum
et dim N=n.

En effet, si dim Q <dim N, F(u) est surjective et I’affirmation est évidente. Si
dim Q >dim N, pour toute application linéaire surjective v: Q— N, on a

F(N) = F(v)(F(Q)) = F(v)(F(Q)) *)
puisque

F(N) = F(v)(F(Q)) = F(v)(Im F(u)) = F(v)(F'(Q)) = F(N)
ou u est une section de v.

Maintenant, on désigne par V un supplémentaire de F'(Q) dans F(Q) stable

par Popération de GL(Q); la projection correspondante de F(Q) sur F'(Q) est la
restriction 3 F(Q) d’un opérateur de la forme 7(Q)(y), y € k[&(n)] (cf. (1.1.6)).
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Du fait que F est un sous-foncteur de ®" et de (*) résulte qu’on a le diagramme
commutatif

®"(Q) = F(Q) ™ F'(Q)

®"(D)J 11-'(1)) ll-(v)

®"(N) > F(N) ™Y, F(N)

ou 7(N)y):F(N)— F(N) est un isomorphisme. Par conséquent, V=
Ker 7(Q)(y)< Ker F(v)cKer®"(v). On prend enfin zek[S(n)] tel que
Im 7(Q)(z)=V (cf. (1.1.6)); on a

®"(v)°7(Q)(2) = 7(N)(2)°®"(v) =0

d’ot 7(N)(z) =0, puisque ®"(v) est surjectif, et ensuite z=0, puisque 7(N) est
injectif (cf. (5.2.1)). On a donc V=0 ce qui démontre a).

b) Puisque F(u)=®&"(u)|rn), u€Hom (N, Q), on voit que I’assertion a) sig-
nifie que le sous-foncteur F de ®@" est entierement déterminé par sa valeur F(N)
en N, dim N = n. L’affirmation du lemme provient immédiatement de 1a puisque,
d’aprés (1.1.6) encore une fois, il existe un idempotent x € k[&(n)] tel que
Im 7(N)(x) = F(N).

(5.2.4) On considére la graduation naturelle de type N' de S*®“(Q); puisque
I'idéal Ker S*®(u), u: Q — M, est gradué, il en est de méme de bam(Q).

PROPOSITION. La composante homogéne de degré d, deN', de fa,m(O)
coincide avec I'image de n2(Q)o7(Q)(A,(|ad])).

Preuve.

a) On pose n = |ad|. Par définition, la composante homogéne de degré d, (})*
de l...(Q) est le plus grand sous-GL(Q)-module contenu dans Ker $*®*(u)N
Im p2(Q). Le lemme (5.2.3) appliqué au sous-foncteur Ker w5 de ®" montre qu'’il
existe un idempotent x € k[S(n)] tel que Ker u2(Q)=1Im 7(Q)(x) (voir aussi la
remarque (5.4.2)). On a donc une décomposition naturelle de ®"(Q) en

®"(Q) =Ker ui(Q)®Ker 7(Q)(x). *)

b) On a wnl(Q)Ker®"(u))=Ker $*®*(u)NIm us(Q). En effet, si Vc
Ker $*®°(u)NIm n(Q), il existe W < Ker 7(Q)(x) tel que ua(Q)(W)=V; puis-
que ®"(u)(W)cKer ua(M)NKer r(M)(x), on a bien W< Ker®"(u). L’autre
inclusion est tout aussi banale.
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c¢) De b) résulte que I'image par u2(Q) du plus grand sous-GL(Q)-module
(a)* de ®"(Q) contenu dans Ker ®"(u) est égale a (})°. On a donc ()=
Im (12(Q)°a) ol a est un endomorphisme GL(Q)-équivariant de ®"(Q) dont
I'image est (a)?. D’aprés (5.2.2), on peut prendre pour a I’élément 7(Q)(A,.(n)),
d’ou la conclusion.

(5.3.1) Pour poursuivre la preuve de (5.1.2) il est nécessaire d’en savoir un
peu plus sur les opérateurs A,,(E); pour cela, il est utile d’introduire une nouvelle
notion.

Soit E un ensemble fini. Une décomposition B de E en blocs consiste en la
donnée de trois relations d’équivalence Bg, Br et B¢ sur E vérifiant:

1) quels que soient x, y € E, “Br{x, y} et Bc{x, y}’ entraine x = y;
2) quels que soient x, y € E, “Bc{x, y}”’ entraine “Bg{x, y}’;
3) quels que soient x,y € E tels que Bg{x, y}, il existe 2z’ et z"€ E tels que

Br{x, z'}, Briy, 2"}, Bcix, 2"}, Bely, 2}

Les classes d’équivalence suivant Bg (resp. Br, Bc) sont les blocs (resp. les
lignes, les colonnes) de B. Il résulte immédiatement de la définition que les
colonnes d’un méme bloc ont le méme nombre d’éléments.

On note pc:E — E/Bc et pr: E — E/Br les projections canoniques.

Soit B une décomposition de E en blocs. On note K(B) le sous-groupe de
©(E) formé des permutations w telles que

a) quels que soit x € E, Br{x, w - x},
b) quels que soient x,yeE tels que Bc{x,y}, alors Bc{w-x,w:-y} et
Be{x, w - x}.

De maniere plus imagée, K(B) est le produit des groupes de permutations des
colonnes d’'un méme bloc. Le groupe K(B) opére de maniére naturelle dans E/Bc.

(5.3.2) Pour toute partie E; de E on pose

An(E)= ). Ap
FEE]
Fem

ol Ar et m sont comme en (4.3.0). On note m I’ensemble des parties V de E/Bc
telles que Card (V)<m+1, et m’ un domaine fondamental pour 'opération de
K(B) dans m.

LEMME. Soit B une décomposition de E en blocs. L’opérateur A,,(E) est
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combinaison linéaire des éléments

Y wAL.pA(V)W, Ve

weK(B)

Preuve.

a) Pour tout Vem, on note m(V) ’ensemble des Fem tels que pc(F)< V. La
famille (m(V))vem constitue un recouvrement de m; il est clair que I'intersection
de deux éléments de ce recouvrement est vide ou appartient encore a ce
recouvrement. Pour pe N, on désigne par m(p) ’ensemble des Vem tels qu’il
existe p éléments distincts deux a deux Vi,..., V, de m avec V=)f-; V.. Enfin,
pour toute partie P de m, on note x(P) la fonction caractéristique de P dans m.

De la formule bien connue

(O mvo)= L e T s Amo)

1 1<ij<---<i;<n

on déduit

xm)= ) xm(V) +-- -+ Y x(m(V)+- .

Ve Vem(p)

Comme la relation Vem(p) implique w - Vem(p) pour tout we K(B), on voit
ensuite que ¥(m) peut s’écrire comme combinaison linéaire des
Ywek@ E(m(w - V), Vem”:

m)= 2, A(V) Y x(m(w- V)). | (*)

Vem' weK(B)

b) L’égalité (*) permet d’écrire A,,(E)=Yfem Ar sous la forme

An(B)= 2 AMV) Y Y A

Vem’ weK(B) Fem(w-V)

d’ou I’affirmation puisque

Fem(w - V) Fem(V) Fem
<ps (V)

D Ap=w( D AF)W”1=W( Y. Ap)w*1=wAm(p51(V))w‘l.

(5.4.1) Soit a,deN"; on va associer canoniquement au couple (a,d) une
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décomposition B(a, d) de {1,...,|ad|} en blocs. Tout élément x de {1,...,|ad[}
s’écrit de maniere unique sous la forme

i—1

x= Y a(j)d(j)+ka(i)+1

i=1

avec ke{0,...,d(i)—1} et le{l,..., a(i)}. On pose alors

i—1
pe(®)=i, pr(®x)=1  pc(x)= Y d(j)+k+1.
j=1
La décomposition B(a, d) est par définition la décomposition décrite par les
relations d’équivalences sur {1, .. ., |ad|} associées aux trois applications pg, pr et
Pc-
Par exemple pour a = (2, 3), d =(2, 2), la décomposition B(a, d) de {1, ..., 10}
admet deux blocs suivant le diagramme

113 518
214 6 |9
7 110

On écrit K(a, d) pour K(B(a, d)) et on identifie {1,...,|ad|}/B(a, d)c avec
{1,...,]|d|}. Le groupe K(a, d) opére dans {1,...,|d|} comme le sous-groupe

e{1,...,d)Px--- x@({]g d(j)+1,... ]; d(i)})

de &(1,...,]|d)).

Pour tout te N’ tel que [t{|<m+1 et t<d, on pose

V(t)={1, ooy t(1),d(1)+1, ..., d(1)+12(2), . ..

) d(j)+1,...,; d(j)+t(r)};

i=1

on a Card (V(t))=|t| et Card (pc'(V(t))) =|at|. De plus, les V(t) constituent un
domaine fondamental m’ pour l'opération de K(a, d) dans I’ensemble m des
parties de {1,...,|d|} avec m+1 éléments au plus.
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(5.4.2) Remarque. Le sous-groupe K(a, d) de o(|ad]) est relié a ’'homomor-
phisme w3(Q) par I'égalité

®“(Q) =Ker p2(Q)B[B"(Q)T***;

en outre, Ker p.‘;‘(Q) est stable par 'opération de K(a, d). Il y a donc moyen de se
passer du lemme (5.2.3) pour obtenir la décomposition (*) de (5.2.4): il suffit de
prendre

x =id —1/Card (K(a, d)) Z w.

weK(a,d)

(5.4.3) Soit V;, V, et W trois espaces vectoriels, f;: V;— S*W, i=1, 2, deux
applications linéaires et ®;: W— V,, i=1,2, deux morphismes polynomiaux. On
pose

fl . fzﬁ V1® Vg'—> S*W

x1®x2'—> fl(xl) : fz(xz)
et
d)l® @21 W - V1® V2
x > D,(x)Q P,(x).

On a alors
k[@:1® D,)|v.@v.y = k[Pillv; - k[D,]]v;.
Pour a, d e N', on note comme en (5.1.1) M2(Q) le morphisme polynomial

M(0):8"(Q) > 8"(Q)
(X1,...,%)—=>xQ Qx® - - Rx,® - Qx,;
- . e it

d(1) d(r)

la restriction k[M24(Q)]l-¢(0) est égale & wa(Q).
Soit te N avec |t|<m+1 et t=<d. On considére le diagramme

X° (O)l Ma(Q) ®|adl(o)/
d

ML(Q)®Mﬁ_mA Q) w(e)

®|at|(Q)l ® ®la(d—t)l(Q)l )
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On choisit un élément w(t) de &(|ad|) tel que 7(Q")(w(r)) rende ce diagramme
commutatif et vérifie

pc (VD)) =w(({L,...,]at]}.
Par exemple, pour a = (2, 3), ‘d=(2,2) comme tout-a-I’heure, et t=(1, 1), on
désire que w(t) e ©(10) vérifie

a) T(QNw(1)(x1®¥x,®x;®x,)=x,80x;, 8 x,D x5,
b) {1,2,5,6, 7} =w(){1,...,5}),
avec x; € ®*(Q’) et x,€ ®*(Q"). 1l suffit de prendre

1 23 456 789 10)
1 26 73 458 9 10/
Revenant au cas général, on voit que, puisque ’application transposée de

7(Q")(w(t)) est égale & 7(Q)(w(t)™'), la premiére des conditions imposées 3 w(t)
est équivalente a

w(t)“1=(

pa(Q)=[pa(Q) - pa (@I r(QUw(D™).

(5.4.4) PROPOSITION. L’application u3(Q)°1(Q)(A,.(lad|) est combinaison
linéaire des applications

[1i(Q)em(Q)(Am(at)) - ni~(Q@)]e Y T(Q)(ww(t)™),

weK(a,d)

t parcourant I’ensemble des te N' tels que |[t|<m+1 et t<d.

Preuve. D’aprés (5.3.2) et (5.4.1), p,Z(Q)o'r(O)(Amﬂadl) est combinaison
linéaire des

uﬁ(Q)Wr(O){ ) WAm(pél(V(t)))W"l},

weK(a,d)

ol t parcourt l'ensemble des teN' tels que |tjsm+1 et t<d. Or
An(pc (V) =w(DAL({1,...,|athw(t)™" par choix de w(t) ({1,...,|at]} est
considéré comme sous-ensemble de {1,...,|ad[}); de plus, pu3(Q)°7(Q)(w)=
pa(Q) pour tout we K(a,d) (cf. (5.4.2) par exemple). On peut donc écrire
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pn(Q)°r(Q)(An(Jad|)) comme combinaison des

ra(Q)er(Q)w(1)°7(Q) (Am({l’ s lathe ) T(Q)((WW(t)”l))

weK(a,d)

d’ou la conclusion par choix de w(t) encore une fois.
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