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Analytische periodische Stromungen auf kompakten
komplexen Riaumen

HArRAaLD HOLMANN (FREIBURG/SCHWEIZ)

0. Einleitung
D.B.A. Epstein zeigt in [7]:

Operiert die additive Gruppe R der reellen Zahlen differenzierbar auf der
3-dimensionalen kompakten differenzierbaren Mannigfaltigkeit X, so dass alle
R-Bahnen kompakt 1-dimensional (homdomorph zu S') sind, dann gibt es eine
differenzierbare Operation der Kreisgruppe S* auf X mit den gleichen Bahnen. (Bei
differenzierbar ist stets zu erginzen: von der Klasse C', 1 <r<w).

Das hat zur Folge:

(1) Alle R-Bahnen sind stabil (d.h. jede Umgebung einer Bahn enthilt eine
invariante Umgebung dieser Bahn).

(2) Der Bahnenraum X/R hat eine kanonische Mannigfaltigkeitsstruktur (d.h.
unter anderem, dass die kanonische Projektion 7 : X — X/R differenzierbar ist).
(3) (X, m, X/R) ist ein differenzierbarer Seifertscher Prinzipalfaserraum iiber X/R mit
S als Strukturgruppe.

Dieser Satz von Epstein war die erste positive Antwort auf das folgende Problem
von A. Hifliger:

Ist X eine kompakte differenzierbare Mannigfaltigkeit mit einer differenzierbaren
Blitterung, so dass alle Bldtter kompakt sind, gelten dann die folgenden untereinan-
der dquivalenten Aussagen?

(1) Alle Bldtter sind stabil.

(2) Der zugehérige Blitterraum ist hausdorffsch.

(3) Alle Holonomiegruppen sind endlich.

R. Edwards, K. Millett, D. Sullivan (siche [6]) und E. Vogt (siehe [22]) konnten in
Verallgemeinerung des Satzes von Epstein fiir 2-codimensionale differenzierbare
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252 HARALD HOLMANN

Blatterungen kompakter differenzierbarer Mannigfaltigkeiten das Problem von
Hiéfliger ebenfalls positiv entscheiden. Analog zum Satz von Epstein ergibt auch
hier die Blatterung einen differenzierbaren Seifertschen Faserraum tiber dem
Blatterraum.

Fir 3-codimensionale Bladtterungen ist das Problem von Haéfliger noch offen.
Fir 4-codimensionale Blatterungen wurden jedoch von Sullivan und Thurston
(siehe [20], [21]) Gegenbeispiele in Form von 5-dimensionalen kompakten
differenzierbaren Mannigfaltigkeiten mit differenzierbaren Blitterungen in Kreis-
linien angegeben, deren Bldtter nicht alle stabil sind. Diese Gegenbeispiele lassen
sich sogar reell-analytische konstruieren.

Fir kompakte komplexe Rdaume mit holomorphen Blitterungen, so dass alle
Blatter kompakt sind, ist Hafligers Frage, ob alle Blitter stabil sind, vollig offen.
Selbst fiir nicht kompakte komplexe Rédume hat man bisher noch keine Gegen-
beispiele gefunden.

Die Verhéltnisse scheinen hier vollig anders zu liegen. Im komplex-
analytischen Kontext gelten z.B. die unten stehenden Versionen des Satzes von
Epstein ohne alle Dimensionseinschrankungen. Bevor wir diese Aussagen for-
mulieren, miissen wir noch einige Bezeichnungen einfiihren.

Sei X im folgenden ein (reduzierter) komplexer Raum. Versieht man die
Gruppe Aut(X) der biholomorphen Selbstabbildungen von X mit der CO-
Topologie, so erhdlt man eine topologische Gruppe (siche [1]). Unter einer
stetigen Operation einer topologischen Gruppe G auf X versteht man einen
stetigen Gruppenhomomorphismus h:G— Aut (X). Die Stetigkeit von h ist
dabei aquivalent zur Stetigkeit der Operationsabbildung &,:GX X — X, die
jedem Paar (g, x)e G X X das Element g(x):= h(g)(x) zuordnet. Ist G eine reelle
(bzw. komplexe) Liesche Gruppe, so sagt man, G operiere reell-analtisch (bzw.
holomorph) auf X, wenn die Abbildung @, : G X X— X reell-analytisch (bzw.
holomorph) ist. Es gilt (siehe [2], [3], [15]):

Operiert eine Liesche Gruppe stetig auf einem komplexen Raum, dann ist
diese Operation sogar reell-analytisch.

Es ist somit sinnvoll zu definieren:

DEFINITION 1. Eine stetige Operation der additiven Gruppe R der reellen
Zahlen auf einem komplexen Raum X heisst eine reell-analytische Stromung auf
X. Sind alle Bahnen R(x):={r(x);reR}, x€ X. kompakt eindimensional (d.h.
homdomorph zu S'), so nennt man die Stromung periodisch.

DEFINITION 2. Eine holomorphe Operation der additiven Gruppe C der
komplexen Zahlen auf einem komplexen Raum X heisst eine komplex-
analytische oder holomorphe Stromung auf X. Sind alle Bahnen C(x):={z(x); z €
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C}, x € X, kompakt komplex eindimensional (Tori), so nennt man die Strémung
periodisch.

Fir holomorphe Stromungen gilt das folgende Analogon zum Satz von Eps-
tein:

SATZ 1. X sei ein zusammenhdngender kompakter komplexer Raum mit einer
periodischen holomorphen Stromung, dann gibt es eine holomorphe Operation einer
komplexen Torusgruppe T auf X mit den gleichen Bahnen.

Hieraus folgt sofort (siehe [10], [11], [17]):

COROLLAR 1. 1) Der Bahnenraum X/C=X/T ist hausdorffsch bzgl. der
Quotiententopologie.
2) X/C hat eine kanonische komplexe Struktur.
3) X ist bzgl. der kanonischen holomorphen Projektion =:X— X/T ein
holomorpher Seifertscher Prinzipalfaserraum mit T als Strukturgruppe.

Fir reell-analytische Stromungen gilt das folgende Analogon zum Satz von
Epstein:

SATZ 2. X sei ein kompakter komplexer Raum mit einer periodischen reell-
analytischen Strémung, dann gibt es eine reell-analytische Operation von S* auf X
mit den gleichen Bahnen.

COROLLAR 2. 1) Der Bahnenraum X/R = X/S" ist hausdorffsch.
2) X/R hat eine kanonische gemischt reell-komplex-analytische Struktur, vom Typ
(1,dim, X) in x € X (d.h. lokal hat X/R die Gestalt I X V, wobei I <R ein offenes
Intervall und V ein komplexer Raum ist, vergleiche [14]).
3) X ist bzgl. der kanonischen reell-analytischen Projektion :X— X/S' ein
reell-analytischer Seifertscher Prinzipalfaserraum mit S' als Strukturgruppe.

Bemerkung. In den Sdtzen 1 und 2 erhidlt man die analytischen Operationen
der Torusgruppe T bzw. der Kreisgruppe S' auf X, indem man C bzw. R jeweils
nach dem Ineffektivitdtskern der gegebenen Operationen durchdividiert und dann
die induzierten Operationen nimmt. Im Gegensatz dazu muss man beim obigen
Satz von Epstein die differenzierbare Operation von R erst neu definieren.

Die Beweise zu den obigen Sitzen und Corollaren sind in den folgenden
Paragraphen 1 bzw. 2 ausgefiihrt.
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Es sei noch bemerkt, dass der Satz von Epstein fiir nichtkompakte 3-
dimensionale differenzierbare Mannigfaltigkeiten i.A. falsch ist. Es sind schon
langer 3-dimensionale nichtkompakte differenzierbare und reell-analytische Man-
nigfaltigkeiten mit differenzierbaren bzw. reell-analytischen Blitterungen in
Kreislinien bekannt, deren Blitter nicht alle stabil sind (siehe z.B. [18], [7]). Fiir
nichtkompakte komplexe Mannigfaltigkeiten gilt dagegen (siehe [13]):

X sei eine komplexe Mannigfaltigkeit, G eine zusammenhdngende kommutative
komplexe Liesche Gruppe, die holomorph auf X operiert. Alle G-Bahnen G(x),
x € X, seien kompakt und reell 2-codimensional. Dann sind alle Bahnen stabil und
der Bahnenraum X/G ist auf kanonische Weise eine Riemannsche Fldche.

1. Komplex-analytische Stromungen.

Wir beschiftigen uns in diesem Abschnitt mit dem Beweis von Satz 1. Wir
beginnen mit dem Spezialfall, dass X irreduzibel ist:

Da C holomorph auf X operiert, so definiert die Zuordnung (z, x) — (z(x), x)
fiir zeC, x e X, eine holomorphe Abdildung

Y:CXX—>XXX.

Das Urbild Y:= ¢ '(4) der Diagonalen A :={(x, x); x€ X} von X x X unter der
Abbildung ¢ ist eine analytische Menge in CXX. Bezeichnet
I :={z€C; z(x) = x} jeweils die Isotropiegruppe im Punkte x € X der holomor-
phen Operation von C auf X, so ist Y nichts anderes als die Familie J .ex I X {x}
dieser Isotropiegruppen. Die I, x € X, sind nach Voraussetzung Z-Moduln, die
jeweils von zwei iiber R linear unabhéngigen komplexen Zahlen erzeugt werden.

Zu jedem x,€ X gibt es eine Umgebung U, eine analytische Menge S in U mit
xo€ S und eine Umgebung V von 0 in C, so dass die Zuordnung (z, y) > z(y) fiir
ze V und y e S eine biholomorphe Abbildung V X S— U definiert (siche [12], S.
102, Theorem 2). Hieraus folgt, dass I, N V ={0} fiir alle xe U. Da X kompakt
ist, gibt es wegen des Ueberdeckungssatzes von Heine-Borel sogar eine
Umgebung V von 0 in C, so dass VNI, ={0} Vxe X

p:CxX—C und q:CXX— X bezeichnen die kanonischen Projektionen. p
ist wegen der Kompaktheit von X eine eigentliche holomorphe Abbildung. Auf
Grund des Remmertschen Abbildungssatzes (siehe [19], S. 356, Satz 23) ist p(Y)
eine analytische Menge in C. Da p(Y)N V ={0} ist, so kann I:=p(Y) nur aus
isolierten Punkten von C bestehen. Da q(Y')= X fir Y':= Y- ({0} x X) und da
Y'cp '(p(Y))=(I-{0}) X X, so muss dim Y’'=dim X sein. Das ist aber wegen
der Irreduzibilitit von X nur moéglich, wenn Y’ mindestens eine irreduzible
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Komponente der Form {z,} X X mit z; € I —{0} hat. Das bedeutet, es existiert ein
z;#0in () ex L. Auf gleiche Weise findet man noch einen weiteren Punkt z, # 0
in [)xex I, so dass zy, z, liber R linear unabhingig sind.

Wir haben damit ein Gitter G:=Z -+ 2,+Z - 2, in C gefunden, das in allen
Isotropiegruppen I, x € X, enthalten ist. Die holomorphe Operation von C auf X
induziert folglich eine holomorphe Operation der komplexen Torusgruppe
T:=C/G auf X, so dass die Zerlegung von X in T-Bahnen gleich der vorgegebe-
nen Zerlegung von X in C-Bahnen ist.

Wir behandeln jetzt den allgemeinen Fall, wo X reduzibel sein kann. Da X
kompakt ist, zerfillt es in hochstens endliche viele irreduzible Komponenten
X1y ooy XN

Die holomorphe Operation von C auf X induziert durch Beschriankung
holomorphe Operationen von C auf X, mit reell 2-dimensionalen kompakten
Bahnen fir v=1,..., N. Wie wir gerade bewiesen haben, ist G, := [),cx, L ein
2-dimensionales Gitter in C.

Wir zeigen nun, dass auch G:= ()., G, ein zweidimensionales Gitter in C
ist. Da X zusammenhédngend vorausgesetzt ist, konnen wir annehmen, dass die

irredziblen Komponenten Xj, ..., Xy so durchnumeriert sind, dass X" := X, U
P
- UX, fiir n=1,...,N jeweils zusammenhdngend ist. Wir beweisen durch
] g
Induktion iiber n, dass G™:=["_; G, fir n=1,..., N ein zweidimensionales

Gitter in C ist. Der Induktionsbeginn n =1 ist klar. Sei nun fiir n <N angenom-
men, dass G™ ein zweidimensionales Gitter ist. Dann wihlen wir ein xe€
X"NX,.,. Da G™ und G,,; in I, enthalten sind, so ist auch G"*V=
G™ N G,., ein zweidimensionales Gitter in C.

Wir im obigen Spezialfall induziert die holomorphe Operation von C auf X
eine holomorphe Operation der komplexen Torusgruppe T:=C/G auf X mit den
gleichen Bahnen. '

2. Reell-analytische Stromungen.

BEWEIS ZU SATZ 2. Wir konnen ohne weiteres annehmen, dass X
zusammenhidngend ist. Da X kompakt ist, so stellt Aut(X) eine komplexe
Liesche Gruppe dar mit holomorpher Operationsabbildung @ : Aut (X)X X— X,
(g, x)—> g(x) (siehe [3], [16]). Nach Voraussetzung operiert R stetig auf X mittels
eines stetigen Homomorphismus h :R— Aut (X). Als stetiger Homomorphismus
zwischen Liegruppen ist h sogar reell-analytisch. Da C die universelle Komplex-
ifizierung (siehe [8], S. 204) von R ist, so l4sst sich h eindeutig fortsetzen zu einem
holomorphen Homomorphismus h :C— Aut (X). Wir haben also eine holomorphe
Operation @;:Cx X— X von C auf X, deren Beschrinkung auf R die gegebene
reell-analytische Stromung &, :R X X — X ist.
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Wie beim Beweis von Satz 1 zeigt man, dass es im Durchschnitt (),cx I, der
Isotropiegruppen I, von C eine reelle Zahl r#0 gibt, d.h. r+Z liegt in allen
Isotropiegruppen I, x € X. Die holomorphe Operation von C auf X induziert also
eine holomorphe Operation von C/rZ und durch Beschriankung eine reel-
lanalytische Operation von R/rZ auf X. Die Operation von R/rZ auf X hat die
gleichen Bahnen wie die gegebene Operation von R.

Die Zuordnung

-
C/r°Z3[z]*-’->exp~—T:E eC*:=C—{0}

definiert einen holomorphen Isomorphismus zwischen den komplexen Lieschen
Gruppen C/r+Z und C*, so dass wir Satz 2 wie folgt ergénzen konnen.

ZUSATZ ZU SATZ 2. Es gibt eine holomorphe Operation der multiplikativen
Gruppe C*:=C—{0} auf X mit komplex eindimensionalen Bahnen, so dass die
Beschrinkung dieser Operation auf S':={zeC; |z|=1} die gleichen Bahnen wie
die gegebene Operation von R auf X hat.

Beweis zu Corollar 2. 1) Da S' kompakt ist und folglich eigentlich auf X
operiert, so ist X/S' hausdorffsch (siche [4], §4, No. 2, Prop. 3).
2) Da sich die gegebene stetige Operation von R auf X eindeutig zu einer
holomorphen Operation @:C X X — X von C auf X fortsetzen ldsst, wobei alle
Isotropiegruppen diskret sind, so gibt es zu jedem x € X eine offene Umgebung
U, eine analytische Menge A< U mit xe A, so dass V.XA durch &
biholomorphe auf U abgebildet wird, wobei V,:={z=x+iyeC; |x|<e, |y|<
e}, e>0 (siehe [12], S. 102, Theorem 2). Den Mengen V. x{a}, a€ A, en-
tsprechen folglich C-Bahnenstiicke und den Mengen {z = x +iy € V,; y = const} X
{a}, a € A, R-Bahnenstiicke in U.

Wir kénnen annehmen (siehe Hilfssatz 1, S. 428 in [9]), dass A gegeniiber der
endlichen Isotropiegruppe Sy von S' im Punkie x invariant ist.

S: bestehe aus den Elementen g1, . .-, gn- Es gibt reelle Zahlen ry, ..., ry, so
dass g =j[r],[n]eR/rZ, fir i=1,...,N. Fir x'e X ist dann g (x") = ®@(r, x').

¢:V.XA—>U bezeichne die durch Beschrinkung von ¢ definierte
biholomorphe  Abbildung. Die transformierte  Automorphismengruppe
I:={y:= ¢ o god:i=1,..., N} von V. X A hat dann folgende Gestalt:

Yi(z,a)= ¢ (g(D(z,a)) = ¢~ (P(r, P(z, a)))
=¢ (P(z, D(r, a))= ¢~ (P(z, g(a)) = (2, g(a))

fiur (z,a)e V. XA, i=1,...,N.
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U:= S'(U) ist eine offene R-invariante Umgebung von x, wobei der Quotienten-
raum U/S' auf kanonische Weise zu (—¢, €)X A/S. homdomorph ist. A/S.: hat
eine kanonische komplexe Struktur (siche [5]). Hieraus folgt sofort, dass X/S' =
X/R eine kanonische gemischt reell-komplex-analytische Struktur vom angegebe-

nen Typus besitzt.
3) Dies ist ein Spezialfall von Satz 4, S. 149 in [11].
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