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Kahler metrics associated to a real hypersurface

S. M. WEBSTER

Introduction

In their paper [2] Chern and Moser attach to a strongly pseudo-convex real
hypersurface M in C", n=2, a complete system of local invariants with respect to
biholomorphic mappings. These invariants, which classically have been called
pseudo-conformal invariants, include a curvature tensor and a family of curves
called chains. Along these curves there are invariant notions of parallel translation
and projective parameter.

From a different approach, using approximate solutions to a Monge-Ampére
equation, Fefferman [4] has also derived invariants for M. The method is to
construct a defining function for M which is a solution to second order at M and
use it to define a Kihler metric. From this Kéhler metric one constructs an
invariant conformal family of Lorentz metrics on a circle bundle over M. Using
the connection form of [2] Burns and Shnider [1] have constructed a similar
family of Lorentz metrics. In both cases the null geodesics of such a metric project
to chains on M.

The aim of this paper is to relate all the invariants derived from approximate
solutions to the Monge-Ampere equation to the pseudo-conformal invariants.
The approach here is to work directly with the Kahler metric. The main tool is the
method of moving frames. In section one we associate to any defining function for
M an indefinite Kahler metric as in [4]. In section two we consider those curves in
CXM which have null velocity and null acceleration vectors. Along such
“doubly-null” curves there are parallel translation of vectors and a projective
parameter.

In sections three and four we compare the connection forms of the Kéahler
metric to the pseudo-conformal connection forms. The main results are as follows.
If the defining function satisfies the Monge-Ampére equation to second order at
M, then some of the components of the two curvature tensors can be identified.
Also, the doubly null curves project to chains, and the two parallel translations
agree. If the equation is satisfied to third order at M, then the two curvature forms
are equal and the projective parameters agree. As a corollary we obtain a simple
proof that the null geodesics of [4] project to chains.
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236 S. M. WEBSTER

Throughout this paper we use the notation of tensor calculus. Small Greek
indices always run from 1 to n—1, while small latin indices run from zero to n,
except where indicated otherwise. Repeated indices are summed over their
respective ranges. The hermitian matrices h,z of sections 1 and 2 and g,5 of
sections 3 and 4 are used to raise and lower indices. Bars over indices indicate
complex conjugation, e.g.

Asp=A5=Al.g8,5 etc.

Finally, I wish to acknowledge that various conversations with C. Fefferman
on this subject have been very helpful to me in writing this paper.
1. The family of Kahler metrics

Let M be a real hypersurface of dimension 2n—1 in complex n-space C". We
introduce complex coordinates Z=(z',..., z") and express M as the zero set of
a real valued function r

r(Z,Z)=0, dr#0.
We also assume that the domain {r <0} bounded by M is strongly pseudo-convex,
so that the function r is determined up to multiplication by a positive function.

Given such a function r we define an auxiliary function

R=r(Z, Z)(z° %" (1.1)

on CX C”" as in [4], where z° is the complex coordinate on C and p is a positive
power (later we take p=(n+1)""). We now define a Kihler metric H by

H=) R;dz' ®dz’, (1.2)

where i and j are summed from O to n. We use subscripts on r and R to denote
partial derivatives:

r, =0r/az°, R;=0"R/8z' az’, etc.
We wish to put H into a more convenient form. If we put

o"=—iudr=—iu(r,dz® +r,dz"), u=(z°z6)", (1.3)
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(a is summed from 1 to n—1) then H can be written

H=up*(?’ 2 rd’ ®d - ip(z) ' d" Q"
+ iw"®p(za)“1 dz’ + ur;y dzi®dz’T, (1.4)
where i and j are summed from 1 to n in the last term.

For purposes of local computation we assume that r, # 0. Further use of (1.3)
then gives

H=-io'Quo" +in"Q + hegw® Rw’ + rp*u(Z’ 297! dz°®dzﬁ, (1.5)
where
0’=p(z°) 7" dz°— 1, dz* +iQu", w*=dz°% (1.6)
and
hag = Uflug — Talng (r) " = Tants (1) ™'+ Tarahas (rar) "', (1.7a)
Mo = — o (T2) "+ Talua (rara) ™, (1.7b)
Q =r; Qur,rz) . (1.7¢)

Equation (1.7a) defines the Levi form of M, which is hermitian and positive
definite, since M is strongly pseudo-convex. Thus near CXM (where r=0),
excluding z°=0, H is a non-degenerate hermitian form of signature (n, —1).

We next recall the local formulas of Kédhler geometry as in [2]. Relative to a
frame ¢; of type (1,0) and the dual coframe ' of type (1, 0)

H=hjo'Quw’. (1.8)
The covariant derivative of ¢; is

De; = w}.e;, (1.9)
where the connection forms w;. are uniquely determined by the conditions

do' =o' r0o;., (1.10)
dh; = w h; + hi;zw,g., (w,g =) (1.11)
The curvature forms /. and curvature tensor R!.,, are given by

do!.= 0f Aol + 0., (1.12)
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and
i —pi _ .k T
=Rl 0" A0,

respectively. Differentiating (1.10) and (1.11) gives

0=w' A,
and

0= 0F g + heldf. = Q5 + Oy,

from which follows

Given another frame of type (1, 0)
&= Ul.e, o' =&'Uj., UeGL(n+1, C),
with connection form &!., we have the relations

dUI. + Uk wi.=éF UL.,
and

Uk ai.= 0% UiL..

(1.13)

(1.14a)

(1.14b)

(1.14¢)

(1.15)

(1.16a)

(1.16b)

LEMMA (1.1). Relative to the coframe w°, w®, o" defined by (1.3) and (1.6)

we have

wh-=w', and 0f.=0.

Proof. Let 6' =dz’, so that ﬁi;= R;;. Equations (1.10) and (1.11) imply that

@h. = dhogh™.
Since z°Ro=pR, we get

dhor = p(z°) 'R dz' — (2°) ' Ror dz°,
so that

@h.=p(z° ' dz' — (2% 8. d2°,
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8! being the Kronecker delta. By the formula (1.16a) and the fact that
U-.—Ol.O — 20p~—1’ U-_()l-a — br':ol.n — 0,

we see that w).=w’. 2).=0 now follows from (1.10) and (1.12).

2. Adapted frames and special curves in Cx M

Let ¢; be a frame of type (1,0) in Cx C". The inner product relative to the
hermitian form H is given by (e;, ¢;) = h;;, h;; given by (1.8), and is linear in the
first and conjugate in the second argument. The frame e; will be called hermitian
if

hO(_) = hO& = hOr‘z = hn& = hnﬁ = 0’ hOr’t = _i, hn(_) = i, (2'1)

These conditions in conjunction with (1.11) imply the following

- 0 -0 (0] - —
wg- = Gg-, Wy =Dy, wo-+ &,.=0, (2.2)
. 5 0 . @& _ B - )
Wy = ihe300-, wg.= —iws-hsg, dheg = w3 -hyg + hoyw} ..

An hermitian frame e¢; will be called an adapted frame if the following
conditions are satisfied: over the complex number field the n vectors e,, o span
the vector subspace H(C x M)= T(CxM)NiT(C X M) of the real tangent space
to CxM, the first vector e, of the frame is the distinguished vector
(p™'2%0,...,0) tangent to the factor C of C x M; the last vector e, is tangent to
C X M while ie, is transverse.

From (1.15) and (2.1) we see that two adapted frames ¢€; and e¢; at a point are
related by

bo=eo, .=Ul.e+Ub e, & =Une+Us.es+e, (2.3a)

s =hUS.UJ,  US==iUhssUL, I (US)= —HhayUS- U
(2.3b)

From the dual transformation we see that the one-form " and the system
(w®, @™) are invariant. Also, upon restricting to CXM we have 0" =w". The
frame dual to (1.3), (1.6) at r=0 is clearly an adapted frame.
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LEMMA (2.1). Relative to any adapted frame e;, the dual coframe w’, connec-
tion forms w). and w}., and curvature forms Q). and Q7. satisfy

« ) . E .
a. wh.=w, o). = iho"* = iw;,

b. 2).=00.=0,

for 0=sj=n.

The proof follows immediately from Lemma (1.1), (1.16a-b), (2.3), and
(1.14b). Notice that since Lemma (1.1) is true without restricting the forms to
CX M (i.e. without assuming " = 0") the same is true for Lemma (2.1)b. The
curvature condition can be expressed by saying that R;57 =0 if one of the indices
i, j, k, or [is O.

We will denote by P the bundle of adapted frames over CXM and by P,
those adapted frames for which h,s is the identity matrix. Then P, is a principal
fibre bundle with structure group K of the matrices U defined in (2.3a-b) where
h=h=id.

Using the hermitian connection D restricted to adapted frames we can define
a special class of curves in CX M. A curve t— Z(t) will be called a doubly null
curve if its velocity and acceleration vectors are both null. Since

dZ = w’eo+ w%e, + w"e,,
a null curve is characterized by
0=(dZ,dZ)=—io"(«®~- wﬁ) + hagw“wé.

We are interested in curves which have a non-trivial projection from CX M to
M, so we require " # 0. Along such a null curve we can choose a frame ¢; for
which

0 ) @ a

0o =0, o =w*=0. (2.4a)
The acceleration is then given by

Z"=D(dZ) = (0" + 0°wi. + 0"w).)eg+ 0wl e + (0™ + 0w} )e,.
Since ®°, wy=w°, and w} are real

(Z", Z") = (0" ) hogos-wh ..
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This leads to the additional equation
0. =w;.=0 (2.4b)

for doubly null curves. It follows from the structure equations (1.10) and (1.12)
that the system (2.4a-b) satisties the Frobenius integrability condition. These are
to be viewed as equations on the bundle P of adapted frames, solution curves of
which project to doubly null curves in CXM. Also, it is easy to see that any
vertical curve is a doubly null curve.

As a consequence of (2.4a-b) and (2.2) we see that the vectors e,, 1=a =<
n—1, are parallel along a doubly null curve if

Ry

.=0. (2.5)

wh.=w

Also, (2.4a-b), the structure equations, and the remarks following Lemma (2.1)
imply

do" =" A(-20°), do’=0"Awl., dwd.=20°r0°.. (2.6)

The real differential one-forms ", —2w°, —2w,. satisfy the structure equations of
the projective transformation group of the real line. Hence, we have a preferred
parameter on a doubly null curve which is defined up to a projective transforma-
tion.

We can define a Riemannian metric on CX C" by ds’=Re H; i.e. the inner
product of two vectors is given by (v, w)=Re (v, w). When restricted to C X M,
ds® becomes degenerate, since the vector e, is perpendicular to T(C X M) at each
point. In [4] this problem is gotten around by the following construction. Let f be
a strictly positive function on M and define

M;={(z°, x)e Cx M| (z°2°)" = f(x)}.

M; is a trivial circle bundle over M, and ds” restricted to M; is a non-degenerate
Lorentz metric of signature (2n—1, —1).

LEMMA (2.2). The null geodesics of (M, ds®) are doubly null curves.

Proof. A manifold M; is characterized in terms of adapted frames by the
condition that its intersection with C X {point} be a curve tangent to ie,. Therefore
restricting to M; we have

Re wo = anw" + aaw“ + a&wa, a, = Qn,
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where the a’s are some functions. If we choose the frame so that the null vector e,
is tangent to M;, then a, =0. Now we define new vectors

U, =€q + (aa + a&)eO’ Uy = iea + i(aa - a&)eO’
so that (u,, va, €n, ieo) span the tangent space of M;. The orthogonality conditions

0=(dZ, iep)=(dZ, e,)={dZ, u,)=(dZ, v,)

can be written as
0=Re w"=Im o’ 0=i(a, +az)o" +Re hagwé,
0=(as —az)0" +Im hyz0°.
Now given a null curve t— Z(t) in M; which is nowhere verticle, we choose
our frame so that in addition to the above

dZ = w"e,, w"=w"#0.

This results in

& 0 0
w'=0"=0w =0 =0.

This null curve is a geodesic on M; if and only if its acceleration vector
Z"=D(dZ)=0"0’.eo+ 0 "w.e, + 0" e,

is perpendicular to T(M;). The orthogonality conditions for Z” imply w;. = w}.=
0. Hence, Z(t) is a doubly null curve.

3. Pseudo-conformal structure

We now discuss the structure M inherits as a submanifold of C" [3]. The
one-form 6= —idr is real when restricted to M and annihilates the complex
tangent bundle H(M). Let E be the line bundle of positive multiples u6 of 6. On
E we have an intrinsic real one-form 6" = u. Let B* be the bundle of coframes
{6° Re 6%, Im 6%, 9"} which satisfy

do" = ig.50° AP + 6" A 6°, (3.1a)
{6%,0"}=0, mod {dz®, dz"}, l=sa=n-1, (3.1b)
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and let B be the bundle of dual frames over E. If r,# 0 then one such frame field
is given by

0°=—-u""du+m,dz*+mn;dz*% 0% =dz", (3.2)
where g.5 = ho3 and 7, are given by (1.7a-b). The hermitian matrix g,z in (3.1a)

is always positive definite.
The forms 6°, 6%, 6" are determined up to the transformation

6°=6°+6"V2.+6°V2.+ 6" V2.,
. - . (3.3a)
0°=6°V5.+0"Vy., 0"=6"
where
B5=gsV2.VE., V3=iVlggVi, V3.=Vi. (3.3b)

Let B, be the sub-bundle of frames for which g,5 is the identity matrix, and
let G be the group of matrices V defined by (3.3a-b) where g = g=1I. Then B; is
a principal fibre bundle over E with structure group G.

We want to compare the bundle B with the adapted frame bundle P of section
2. Recall that P depends on a fixed choice of defining function r for M. For this r
we put § =—i dr and let u be the fibre coordinate of E relative to 6. We define a
map f from CXM to E by

f2°% x)=(w,x), u=(z%2°, (3.4)
where x = (x', ..., x>""") is the coordinate on M. For the coframes (1.6) and (3.2)
we see that

f*6°=-2Re w’, f*0°=0°% f*0°=0°% fH0"=o0" (3.5)

On the frame level we define a map f by

f(eo, €as €x) = (—5fx(e0), fr(ea), frlies), falen)). (3.6)

Note that fy(ieo) = 0.

If we choose a point (z°,x) in CXM and another frame at f(z°% x) by
(3.3a-b), then (3.5) determines a unique adapted frame at (2%, x) via (2.3a-b). It
is given by

s« =US., VS.=-US., ve.=Uz., Vi.=—2Re V.. (3.7)
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Thus the map f makes P a circle bundle over B. If we take w’ and 6’ as the
canonical forms on P and B, respectively, then it follows from (3.4) and (3.7) that

A

f*00=—-2 Re °, f*O“ =w? f*O& =@,

. ) (3.8)
0" =0",  hog=gas°f.

Also, (3.7) gives a group isomorphism from G to K.

One of the main theorems of [3] is that the principal bundle B;, (g,5 = const =
8,5) admits an invariant connection. To state this theorem we first extend the
matrix g,z to an (n+1)X(n+1) matrix g; by defining

800 = 80f = 8uii = 8na =0, gorn = —1,

and requiring it to be hermitian. The connection will be given by a matrix of
one-forms . Its curvature matrix and tensor are given by

dwl.=wf Al +11., (3.9)
and

H{:.——'S{:.kiw'g./\wg.. (3.10)

THEOREM (3.1) [3]. There exists a unique connection matrix @ on B,
satisfying

a. —2Re 7.=0° m§.= 6% m5. = 0",

b. r is su(n, 1)-valued:

wﬁ‘.gk;+gi,;1r,'—‘_.=0, trm=a.=0,
C. 1r is torsion free:

Siskr = 87sSi-ki=0 if one of the indices i, j, k, l is zero,

d. Si.g=0, 0=k I=n.

The curvature tensor S also satisfies the relations (1.14c). The (non-trivial)
components of S can be expressed in terms of the defining function r of M and its
derivatives of order less than or equal to

4 if all indices are less than n,
5 if only one index is n,
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6 if only two indices are n,
7 if three indices are n.

The component S,;.: is undefined since 6" = 6"
Chains on M are defined in terms of the connection by the equations

7T0~=7T()-=7Tn.=7T‘:.=0. (311)

Parallel translation of the complex tangent space along a chain is defined by the
additional equations

R

.=0. (3.12)

wﬁ =T
Equation (3.12) leads to

do"=0"n6°  d8°=0"A(-2ms.), dmn.=0°Amn.. (3.13)
It follows that 8", 8°, —2r,. satisfy the structure equations of the real projective

group on the real line and so give rise to a projective parameter along the chain.

4. Comparison of connections - the Monge-Ampere equation
In order to compare the pseudo-conformal connection 7 and the hermitian

connection w, we use the map f defined by (3.6) to pull the forms = and IT on B,
back to forms on the bundle P;. Omitting the notation f* we write (3.8) as

0°=—-2 Re wo’ 0" =w?, 0" =w", hii = &ij-

By Lemma (2.1), Theorem (3.1), and the equation (2.2), which hold for = also,
we have

0 0
Re wo-=Re my., wy. = To-, wo. = Mg, (4.1)
and
Wo. = Ty-, Re w,.=Re ..

LEMMA (4.1). For an arbitrary defining function r and the corresponding
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hermitian metric, the following relations hold:

wg.=mg.+uds.+Bi.0",
wn.=75.+Bj.0° + B%0",

®d. =7 +Im (Bow®)+ Ew™.

The Bg, B®, and E are certain functions satisfying

B}.g,s+gs7Bl.=0, E=E,
and

— Y =_,0 0
M=—"HU=wWo.—T9-.

Proof. We first differentiate the relation o® = 6*and make use of the structure
equations (1.10) and (3.9) and the fact that 2}.=II).=0. This results in

0=l A(wf.— 5.~ w85 )+ 0" Al(ws.—m5.).
By Cartan’s lemma

wg.—mg-—pdg.=Az.,0" +Bj.0", Ag.,=A% ., Wh-— .

for certain functions A and B. The relation
Y-85+ BayTh-=0
from (2.2), which also holds for the w%., when applied to the first equation gives
5.,=0,  Bpz+Bss=0.
We next differentiate the relation Re wg. =Re mg. to get

0=Re (0*A(02.— 72 )N+ 0" A(0d.—72.).
But

0l —nd.= —-igag(wg .- 'ng.) = iBa,';wE —iB,w",
so that

0=0"A(0?.—72.—Im (B,w%)).
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Since this is a real equation, there is a real function E making the last equation of
the lemma true. This finishes the proof.

The error terms Bgs, B,, E in Lemma (4.1) won’t vanish in general. Condition
(d) of Theorem (3.1) suggests that we should require that the trace of the
curvature tensor R vanish:

[ S
i.k"'O-

This leads to Fefférman’s Monge-Ampére equation [4], which was derived from
other considerations. To see this we compute the Ricci form relative to the

coordinate frame dz’.
By (1.10) and (1.11)

dhi; = wi-hyg,
so that

Q.= do!.=d(h'h;)=d0log det (h;7), (4.2)
where

hi: = Ri;=9’R/0z' 927,
Since, for i,j=1,

Ri=(z°2%r;,  Ror=p(z°)7'(z°2%r,
Ros=p*(z°2°y7'r,

the determinant in (4.2) is given by
det (h7) = p2(z°2°P "0 (r),

where J is the operator

ror;

J(r)=det[ ] (1=i, j=n). (4.3a)

i Iy
If we choose p=(n+1)"', then the equation

J(r) = const. (4.3b)

makes the Ricci form (4.2) vanish. A less restrictive condition will do. If (4.3ab)
holds to second order at the hypersurface M :(r = 0), then one sees from (4.2) that
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;. will vanish when restricted to CXM (6" =0"). If (4.3ab) holds to third or
higher order then !. will vanish for r=0, §"# 6". Summarizing, we have

LEMMA (4.2). If the defining function r for M satisfies the Monge—Ampére
equation (4.3ab) to second order at M, then

Ri.z=0, unless j=k=n.
If r satisfies the equation to third or higher order at M, then
i.x=0, forall jk=0,1,...,n
LEMMA (4.3). If the defining function r for M satisfies (4.3ab) to second order

at M, then the coefficients B,z and B, in Lemma (4.1) vanish. If r satisfies (4.3ab)
to third or higher order at M, then the coefficient E also vanishes.

Proof. We first take the exterior derivative of the trace
we.-=ma-+(n—1u+Bs.0"

of the first equation of Lemma (4.1). If we utilize the structure equations (1.12)
and (3.9), no curvature terms appear, since by Lemma (4.2)

02.=0:.=0
on P;. With the aid of (2.2), (3.1a) and (4.1) this exterior derivative becomes

n(we.— o)A@ +ivg Ao —me)=(n- D" Alwd.—72.)+dBl. A"
+BY.(igs0* Aw® — 0" A0’ +0?). (4.4)

Using Lemma (4.1) we get

A modoe",

—i(n+1)Byso* Ao’ = iB).g.50" A
so that
(n+1)B,z=—B) .8

The trace of this equation yields
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Equation (4.4) now reduces to
51' (n+1)(Byw® — Bzw*)Aw" =0,
so that

B, =0.

Now if we differentiate w,. and use the structure equation (1.12) and Lemma
(4.1) we get

O.=II.+ Eo®* A",

so that
Ry ..i=Sn. it Ed,..

The trace of this last equation is
Ri.:=R%.ci=Se.ca+(n—1)E=(n-1)E,

by Theorem (3.1)(d). The second part of Lemma (4.2) gives the final conclusion of
Lemma (4.3), finishing the proof.

THEOREM (4.4).

a) Suppose that the defining function r of the strongly pseudo-convex real
hypersurface M satisfies the Monge— Ampére equation (4.3ab) to second order at M.
Then between the hermitian curvature tensor R and the pseudo-conformal curvature
tensor S the following relations hold:

Raép& = SaB-p&a Raﬁpﬁ = Sa[;pﬁa Raﬁﬁﬁ — Varpn-

The doubly null curves (sec. 2) in CX M project to chains in M. Parallel complex
frames along such a curve project to parallel frames along the chain.

b) Suppose r satisfies (4.3ab) to third or higher order at M. Then the hermitian
connection w and the pseudo-conformal connection  satisfy

wl.=al +udl., —u=qa, du =0.
The curvature forms are equal

Ql.=1II..
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The projective parameter on a doubly null curve agrees with the projective parameter
on the corresponding chain.

Proof. The proof follows from Lemmas (4.1), (4.2), (4.3) and the structure
equations (1.12) and (3.9). That doubly null curves project to chains follows from
equations (2.4ab) and (3.11). The statement about parallel translation follows
from (2.5) and (3.12). The equality of the parameters follows from (2.6) and
(3.13).

COROLLARY (4.5) (Burns-Fefterman—Shnider). The chains on a strongly
pseudo-convex real hypersurface M may be realized as the projections of the null
geodesics of a conformal family of Lorentz metrics on a circle bundle over M.

Proof. If we take as our circle bundle M; as in section 2, then the proof
follows immediately from Theorem (4.4)(a) and Lemma (2.2).

The Lorentz structures (M, ds?) of section 2 are the same as those introduced in

[4].
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