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Kâhler metrics associated to a real hypersurface

S M Webster

Introduction

In their paper [2] Chern and Moser attach to a strongly pseudo-convex real
hypersurface M in Cn, n > 2, a complète System of local invariants with respect to
biholomorphic mappmgs Thèse invariants, which classically hâve been called
pseudo-conformal invariants, include a curvature tensor and a family of curves
called chains Along thèse curves there are invariant notions of parallel translation
and projective parameter

From a différent approach, using approximate solutions to a Monge-Ampère
équation, Fefferman [4] has also denved invariants for M The method îs to
construct a defining function for M which îs a solution to second order at M and
use ît to define a Kahler metnc From this Kahler metnc one constructs an
invariant conformai family of Lorentz metrics on a circle bundle over M Using
the connection form of [2] Burns and Shnider [1] hâve constructed a similar
family of Lorentz metrics In both cases the null geodesics of such a metnc project
to chains on M

The aim of this paper îs to relate ail the invariants denved from approximate
solutions to the Monge-Ampère équation to the pseudo-conformal invariants
The approach hère îs to work directly with the Kahler metnc The main tool îs the
method of moving frames In section one we associate to any defining function for
M an indefinite Kahler metnc as in [4] In section two we consider those curves in
CxM which hâve null velocity and null accélération vectors Along such

"doubly-null" curves there are parallel translation of vectors and a projective
parameter

In sections three and four we compare the connection forms of the Kahler
metnc to the pseudo-conformal connection forms The main results are as follows
If the defining function satisfies the Monge-Ampère équation to second order at

M, then some of the components of the two curvature tensors can be identified
Also, the doubly null curves project to chains, and the two parallel translations

agrée If the équation îs satisfied to third order at M, then the two curvature forms
are equal and the projective parameters agrée As a corollary we obtain a simple
proof that the null geodesics of [4] project to chains
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236 S M WEBSTER

Throughout this paper we use the notation of tensor calculus. Small Greek
indices always run from 1 to n-1, while small latin indices run from zéro to n,

except where indicated otherwise. Repeated indices are summed over their
respective ranges. The hermitian matrices hap of sections 1 and 2 and gaj§ of
sections 3 and 4 are used to raise and lower indices. Bars over indices indicate
complex conjugation, e.g.

Aie Aa/§ Al. gT/3, etc.

Finally, I wish to acknowledge that various conversations with C. Fefferman
on this subject hâve been very helpful to me in writing this paper.

1. The family of Kahler metrics

Let M be a real hypersurface of dimension 2n — l in complex n-space Cn. We
introduce complex coordinates Z (z1,...,zn) and express M as the zéro set of
a real valued function r

r(Z,Z) 0, drïO.

We also assume that the domain {r<0} bounded by M is strongly pseudo-convex,
so that the function r is determined up to multiplication by a positive function.

Given such a function r we define an auxiliary function

R r(Z,Z)(z°z'°)p (1.1)

on CxCn as in [4], where z° is the complex coordinate on C and p is a positive

power (later we take p (n + l)~1). We now define a Kahler metric H by

H=Y4Rl7dzl®dzï, (1.2)

where i and j are summed from 0 to n. We use subscripts on r and R to dénote

partial derivatives:

ra dr/dza, RlT Ô2R/dzl dzJ, etc.

We wish to put H into a more convenient form. If we put

û," -iu dr -iu(ra dza + rn dzn), u (zV)p, (1.3)
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(a is summed from 1 to n-1) then H can be written

H= uP2(z°z'Y'rdz0®dz* -ipiz0)'1 dz° ®a>*

~y1 dz5 +urlïdzl®dz\ (1.4)

where i and / are summed from 1 to n in the last term.
For purposes of local computation we assume that rn7*0. Further use of (1.3)

then gives

(1.5)

where

(o° piz0)'1 dz0-^ dza + iQœn, ù)a dza, (1.6)

and

hap u{raê - rarn^{rn)~l - r^r^y1 + r^r^v*)"1}, (1.7a)

t?« -rccnir*)'1 + ^^«(Vn)"1, (1.7b)

\ (1.7c)

Equation (1.7a) defines the Levi form of M, which is hermitian and positive
definite, since M is strongly pseudo-convex. Thus near C*M (where r 0),

excluding z° 0, H is a non-degenerate hermitian form of signature (n, -1).
We next recall the local formulas of Kahler geometry as in [2]. Relative to a

frame e} of type (1,0) and the dual coframe o)J of type (1,0)

H=hxlo)l®ù)J. (1.8)

The covariant derivative of e} is

De]=wl].el, (1.9)

where the connection forms (o). are uniquely determined by the conditions

dù)l (o]Aù)lr, (1.10)

dhlT a>* Kj + K^U (<oj. â>,\). (1.11)

The curvature forms fl[. and curvature tensor R[.ki are given by

ï (1.12)
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and

f};. Ri.krcokA<or, (1.13)

respectively. DiflFerentiating (1.10) and (1.11) gives

0 w'Aii;., (1.14a)

and

0=nï.hkJ+hlk-af. s n-+nlx, (i.i4t>)

from which follows

Rijkï Rkjiî RiTkh Rijkï RjTik Rjiik. (1.14c)

Given another frame of type (1,0)

ët Ui.ej, a)l aJ]U).y l/eGL(n + l,C), (1.15)

with connection form c5{., we hâve the relations

dl/{.+ l/Ik.o)i. (3jl/i., (1.16a)

and

I7?fll. /3^.l/i.. (1.16b)

LEMMA (1.1). Relative to the coframe o>°, /, (on defined by (1.3) and (1.6)

we

ct>o- wJ, and f2o-==0.

Proo/. Let 6J dzJ, so that hlj Rlj. Equations (1.10) and (1.11) imply that

â>}o. dhOkhUl.

Since z°JR0 pR, we get

dhoû p(2°)"1Kk-I dz1 ~ (z°rlROk dz°,

so that
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8[ being the Kronecker delta. By the formula (1.16a) and the fact that

tt—10 _0~~l rpla irln r\U.o. -z p U.o. -L.o. =0,

we see that a)o. o)}. O}0. 0 now follows from (1.10) and (1.12).

2. Adapted frames and spécial curves in CxM

Let e} be a frame of type (1,0) in CxCn. The inner product relative to the
hermitian form H is given by (el9 e,) htj, htj given by (1.8), and is linear in the
first and conjugate in the second argument. The frame e] will be called hermitian
if

hoô= hoâ — hOn hnâ — hnfi 0, hOn —i, hnô i. (2.1)

Thèse conditions in conjunction with (1.11) imply the following

n — n 0 —0 0 i — n s\
ù)0. (o0., (on. ù)n.9 (A)0. + cûn. 0,

ihy ù> -icoh dh <ûyh Kl
An hermitian frame e} will be called an adapted frame if the following

conditions are satisfied: over the complex number field the n vectors ea, e0 span
the vector subspace H(CxM)=T(CxM)niT(CxM) of the real tangent space
to CxM; the first vector e0 of the frame is the distinguished vector
{p~lz°, 0,..., 0) tangent to the factor Cof CxM; the last vector en is tangent to

CxM while ien is transverse.
From (1.15) and (2.1) we see that two adapted frames c, and e, at a point are

related by

ëo e0, ëa L/2-eo+ U* <fc, ën U°n-e0+ Ute? + en, (2.3a)

where

(2.3b)

From the dual transformation we see that the one-form con and the System

(o)a, (on) are invariant. Also, upon restricting to CxM we hâve ù)n a>n. The
frame dual to (1.3), (1.6) at r 0 is clearly an adapted frame.
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LEMMA (2.1). Relative to any adapted frame e}, the dual coframe o)}, connection

forms ù)j0. and coj1., and curvature forms ilJ0. and 12 J\ satisfy

a. (ob. (o1, co". ihjkco io)p

b. n'0. nï. o,

for 0</<n.

The proof follows immediately from Lemma (1.1), (1.16a-b), (2.3), and
(1.14b). Notice that since Lemma (1.1) is true without restricting the forms to
CxM (i.e. without assuming <on (on) the same is true for Lemma (2.1)b. The
curvature condition can be expressed by saying that Rtjkï 0 if one of the indices
i, j, k, or / is 0.

We will dénote by P the bundle of adapted frames over CxM and by Px

those adapted frames for which hap is the identity matrix. Then Px is a principal
fibre bundle with structure group K of the matrices U defined in (2.3a-b) where
h h id.

Using the hermitian connection D restricted to adapted frames we can define
a spécial class of curves in CxM. A curve f —> Z(t) will be called a doubly null
curve if its velocity and accélération vectors are both null. Since

dZ ù)°e0 + (oae

a null curve is characterized by

0 (dZ, dZ) -i<on(<D0-a)~0

We are interested in curves which hâve a non-trivial projection from CxMto
M, so we require û>n#0. Along such a null curve we can choose a frame e] for
which

û>° û)6, û>a û>"=0. (2.4a)

The accélération is then given by

Since 0*°, (o% <o°, and o)1^ are real
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This leads to the additional équation

û>ï. ù)Ï. 0 (2.4b)

for doubly null curves. It follows from the structure équations (1.10) and (1.12)
that the System (2.4a-b) satisfies the Frobenius integrability condition. Thèse are
to be viewed as équations on the bundle P of adapted frames, solution curves of
which project to doubly null curves in CxM. Also, it is easy to see that any
vertical curve is a doubly null curve.

As a conséquence of (2.4a-b) and (2.2) we see that the vectors ea, l<a<
n-1, are parallel along a doubly null curve if

<»2. a>f. 0. (2.5)

Also, (2.4a-b), the structure équations, and the remarks following Lemma (2.1)
imply

d(on ojnA(-2(o°), da)0 conA(o°n., dù)°n. -2ajoAa)On.. (2.6)

The real differential one-forms con, -2<o°, -2o>°. satisfy the structure équations of
the projective transformation group of the real line. Hence, we hâve a preferred
parameter on a doubly null curve which is defined up to a projective transformation.

We can define a Riemannian metric on CxCn by ds2 Re H; i.e. the inner
product of two vectors is given by (v, w) Re(u, w). When restricted to CxM,
ds2 becomes degenerate, since the vector e0 is perpendicular to T(CxM) at each

point. In [4] this problem is gotten around by the following construction. Let / be
a strictly positive function on M and define

Mf {(z°, x) e C x M | (z°zô)p /(*)}.

Mf is a trivial circle bundle over M, and ds2 restricted to Mf is a non-degenerate
Lorentz metric of signature (2n-l, -1).

LEMMA (2.2). The null geodesics of (Mf, ds2) are doubly null curves.

Proof. A manifold Mf is characterized in terms of adapted frames by the
condition that its intersection with C x {point} be a curve tangent to ie0. Therefore

restricting to Mf we hâve

Re a)0 an(on + aa(oa + ado)a, an ân,
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where the a's are some functions. If we choose the frame so that the null vector en

is tangent to Mf, then an 0. Now we define new vectors

w« ea + (aa + aa)e09 va iea + i(aa - aa)e0,

so that (ua, va, eny ie0) span the tangent space of Mf. The orthogonality conditions

0 (dZ, ie0) <dZ, en) (dZ, ua) (dZ, va)

can be written as

0 Re œn Im w°, 0 i(aa + ad)(on H- Re ha^9

Now given a null curve f —? Z(0 in Mf which is nowhere verticle, we choose

our frame so that in addition to the above

dZ a) en, a) (o 9^0.

This results in

This null curve is a géodésie on Mf if and only if its accélération vector

Z" D(dZ) a)nù)on.
'

is perpendicular to T{Mf). The orthogonality conditions for Z" imply a)n- <On-

0. Hence, Z(t) is a doubly null curve.

3. Pseudo-conformal structure

We now discuss the structure M inherits as a submanifold of Cn [3]. The

one-form 0 -idr is real when restricted to M and annihilâtes the complex
tangent bundle H(M). Let E be the Une bundle of positive multiples uO of 6. On
E we hâve an intrinsic real one-form 6n u6. Let B* be the bundle of coframes
{0°, Re 6a, Im 0a, $n} which satisfy

ddn ig«£0a a 0* + 0n a 0°, (3.1a)

{0a, dn} 0, mod{dza,dzn}, l<a<n-l, (3.1b)
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and let B be the bundle of dual frames over E. If rn ¥¦ 0 then one such frame field
is given by

0° - m"1 du + t]a dza + tj* dza, 6a dza, (3.2)

where gaj§ hap and i\a are given by (1.7a-b). The hermitian matrix ga/§ in (3.1a)
is always positive definite.

The forms 6°, 6a, 0n are determined up to the transformation

0o=6o+6aVoa. + éaVoa. + 0nVon.,
(3.3a)

ea opVp. + onvï., on en,

where

l ° l, V°n.= V°n.. (3.3b)

Let £?! be the sub-bundle of frames for which gap is the identity matrix, and

let G be the group of matrices V defined by (3.3a-b) where g g I. Then Bi is

a principal fibre bundle over E with structure group G.

We want to compare the bundle B with the adapted frame bundle P of section
2. Recall that P dépends on a fixed choice of defining function r for M. For this r

we put 6 -i dr and let u be the fibre coordinate of E relative to 6. We define a

map / from C x M to E by

f(z°,x) (u,x), u (z°,Zyy (3.4)

where x (x1,..., x2""1) is the coordinate on M. For the coframes (1.6) and (3.2)

we see that

f a>n. (3.5)

On the frame level we define a map / by

/(60, ea, O H/*(*o), /*(O, /*0O, /?(«»)). (3.6)

Note that /*(ie0) 0.

If we choose a point (z°, x) in CxM and another frame at f(z°,x) by

(3.3a-b), then (3.5) détermines a unique adapted frame at (z°, x) via (2-3a-b). it
is given by

VS-=[/?., Vg. -U?., Van.= Uan., V°n. -2ReV°n.. (3.7)
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Thus the map / makes P a circle bundle over B. If we take co1 and 01 as the
canonical forms on P and B, respectively, then it follows from (3.4) and (3.7) that

Also, (3.7) gives a group isomorphism from G to K.
One of the main theorems of [3] is that the principal bundle Bl9 (gap const

8ap) admits an invariant connection. To state this theorem we first extend the
matrix gaj§ to an (n + l)x(n + l) matrix gtj by defining

goÔ gO/3 g<xn gnn 0, g0n ~h

and requiring it to be hermitian. The connection will be given by a matrix of
one-forms tt\. Its curvature matrix and tensor are given by

(3.9)

and

l (3.10)

THEOREM (3.1) [3]. There exists a unique connection matrix tt on Bx

satisfying

a. -2 Re ir%. 0°, tto- 0a, ttS- 0n,

b. 77 ïs su(n, l)-valued:

irtgkj + ftcirj. 0, tr 7T ttÎ 0,

c. 7t is torsion free:

Sijhî= gjsSSi'kî= 0 if one of the indices i,/, k, / is zéro,

d. S;.kf=O, 0<fc, /^n.

The curvature tensor S also satisfies the relations (1.14c). The (non-trivial)
components of S can be expressed in ternis of the defining function r of M and its
derivatives of order less than or equal to

4 if ail indices are less than n,
5 if only one index is n,
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6 if only two indices are n,

7 if three indices are n.

The component S™™ is undefined since 6n 6n.

Chains on M are defined in terms of the connection by the équations

TTO- TT%. TTn- TTn- 0. (3.11)

Parallel translation of the complex tangent space along a chain is defined by the
additional équations

7r£. 7r!. 0. (3.12)

Equation (3.12) leads to

de» e"Ae\ de°=6nA(-27ron.)y d7TOn. 0°ATron.. (3.13)

It follows that 0n, 6°, -2iTOn. satisfy the structure équations of the real projective
group on the real line and so give rise to a projective parameter along the chain.

4. Comparison of connections - the Monge-Ampère équation

In order to compare the pseudo-conformal connection tt and the hermitian
connection co, we use the map / defined by (3.6) to pull the forms tt and FI on Bt
back to forms on the bundle Plm Omitting the notation /* we write (3.8) as

By Lemma (2.1), Theorem (3.1), and the équation (2.2), which hold for rr also,
we hâve

T">0t>0 a a n n /a ¦* \Ke(Uo. Re7ro., a)0. TTo-, u)q. tt0., (4.1)

and

LEMMA (4.1). For an arbitrary defining function r and the corresponding
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hermitian metric, the following relations holà:

a. a
7T

The B%, Ba, and E are certain functions satisfying

Î^O, E É,

and

0 0

Proof. We first differentiate the relation (oa 0aand make use of the structure
équations (1.10) and (3.9) and the fact that n}0. n}0. 0. This results in

By Cartan's lemma

for certain functions A and B. The relation

from (2.2), which also holds for the wf., when applied to the first équation gives

We next differentiate the relation Re o>S- Re tto- to get

But

so that

0 û>n A((o°n.-<7r0n.-Im(Baù>a)).
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Since this is a real équation, there is a real function E making the last équation of
the lemma true. This finishes the proof.

The error terms Bpa, Ba, E in Lemma (4.1) won't vanish in gênerai. Condition
(d) of Theorem (3.1) suggests that we should require that the trace of the
curvature tensor R vanish:

This leads to Fefferman's Monge-Ampère équation [4], which was derived from
other considérations. To see this we compute the Ricci form relative to the
coordinate frame dz].

By (1.10) and (1.11)

so that

O\. da>\. d(hx\i) =~dd log det (hl7), (4.2)

where

hlJ RlJ d2R/dzl dzJ.

Since, for i, /> 1,

Rl7 (z°z°YrlT, Roj p(zor\zozyrh
Roô pVz°)p-1r,

the déterminant in (4.2) is given by

det(hlJ) p2(z0zYn+l)-1J(r),

where / is the operator

J(r) det
r n (1 < î, j < n). (4.3a)

If we choose p (n + 1)~\ then the équation

J(r) const. (4.3b)

makes the Ricci form (4.2) vanish. A less restrictive condition will do. If (4.3ab)
holds to second order at the hypersurface M:(r 0), then one sees from (4.2) that
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Ù\. will vanish when restricted toCxM(0n 0% If (4.3ab) holds to third or
higher order then û\. will vanish for r 0, 0n7* 0n. Summarizing, we hâve

LEMMA (4.2). If the defining function r for M satisfies the Monge-Ampère
équation (4.3ab) to second order at M, then

R\.j£ 0, unless j=k n.

If r satisfies the équation to third or higher order at M, then

i^;.Jk 0, for ail /, k 0, l,...,n.

LEMMA (4.3). If the defining function r for M satisfies (4.3ab) io second order

at M, then the coefficients Ba$ and Ba in Lemma (4.1) vanish. If r satisfies (4.3ab)
to third or higher order at M, then the coefficient E also vanishes.

Proof. We first take the exterior derivative of the trace

of the first équation of Lemma (4.1). If we utilize the structure équations (1.12)
and (3.9), no curvature terms appear, since by Lemma (4.2)

on Pi. With the aid of (2.2), (3.1a) and (4.1) this exterior derivative becomes

n((O°a. ~ 77°.) A ù)a + iû)a A (û>£. - 7Tn-) (t " l)w" A (<O°n. ~ 7T°n .)+ dByy A O>"

aA(Dë-cDnA(w° + a)~0)). (4.4)

Using Lemma (4.1) we get

-i(n + l)Ba^o)a aû)P"= iByy.gaiïù)a a a/, mod con,

so that

The trace of this équation yields
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Equation (4 4) now reduces to

~ (n + l)(Bau)a - Bawa)Aû)n 0,

so that

Ba=0.

Now if we differentiate (On- and use the structure équation (1.12) and Lemma
(4.1) we get

so that

The trace of this last équation is

R\-n* Rn-an S^ + (il " 1)E {fi ~ 1)E,

by Theorem (3.1)(d). The second part of Lemma (4.2) gives the final conclusion of
Lemma (4.3), finishing the proof.

THEOREM (4.4).
a) Suppose thaï the defining function r of the strongly pseudo-convex real

hypersurface M satisfies the Monge-Ampère équation (4.3ab) to second order at M.
Then between the hermitian curvature tensor R and the pseudo-conformai curvature
tensor S the following relations hold:

The doubly null curves (sec. 2) in CxM project to chains in M. Parallel complex

frames along such a curve project to parallel frames along the chain.

b) Suppose r satisfies (4.3ab) to third or higher order at M. Then the hermitian
connection oj and the pseudo-conformai connection tt satisfy

-fjL jI, djx=0.

The curvature forms are equal
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The projectwe parameter on a doubly null curve agrées with the projective parameter
on the corresponding chain.

Proof. The proof follows from Lemmas (4.1), (4.2), (4.3) and the structure
équations (1.12) and (3.9). That doubly null curves project to chains follows from
équations (2.4ab) and (3.11). The statement about parallel translation follows
from (2.5) and (3.12). The equality of the parameters follows from (2.6) and

(3.13).

COROLLARY (4.5) (Burns-Fefïerman-Shnider). The chains on a strongly
pseudo-convex real hypersurface M may be reahzed as the projections of the null
geodesics of a conformai family of Lorentz metrics on a circle bundle over M.

Proof. If we take as our circle bundle Mf as in section 2, then the proof
follows immediately from Theorem (4.4)(a) and Lemma (2.2).

The Lorentz structures (Mf, ds2) of section 2 are the same as those introduced in
[4].
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