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On the inverse limit of free nilpotent groups

G. BAuMsLAG and U. STAMMBACH

0. Introduction

A group P is called parafree (see [B1], [B2)) if it is residually nilpotent and if
there exists a free group F and a homomorphism ¢ : F— P such that ¢ induces
isomorphisms ¢;:F/F= P/P, i=2 modulo the terms F, P, of the lower central

series. Since F is residually nilpotent, the map ¢ is injective, so that F may be
thought of as a subgroup of P. If F= F(X) is free on the set X, then P is called
parafree on X. It is plain (see [B2]) that a parafree group on X can be embedded
in F=lim. F/F, The group F thus certamly merits some interest. This paper is a
contribution to the study of the group F.

In section 1 we introduce some notation and prove a basic lemma which
enables us to identify the subgroups of F'=F(X) which are parafree on X. In
section 2 we deal with the case of finitely generated free groups F= F(X). It turns
out (Corollary 2.2) that in this case the group F is parafree on X. This result
contrasts with the case where X is infinite. In section 3 we deal in detail with the
case where X is countably infinite. We prove the following results: F is not
parafree on X (Corollary 3.5; see also [BK]); F,, contains uncountably many
linearly independent divisible elements (Theorem 3.9); F contains a free sub-
group of uncountable rank with a generating set which is linearly independent
mod E, (Theorem 3.6); the 2-generator subgroups of F are free (Theorem 3.11).
We note that the restriction to the countable case in all of the main results of this
section is not decisive. The conclusions remain true if X is allowed to be
uncountable.

In section 4 we define two subgroups F, F of F=FE(X). The group F is the
union of the subgroups of F which are parafree on X. It is shown that F is
parafree on X, so that F is the universal parafree group on X in the sense that it
contains all groups which are parafree on X (Theorem 4.1). The subgroup F of F
consists of all elements of ' which can be expressed by finitely many elements of
X. It is shown that F too is parafree on X (Proposition 4.4). Hence clearly FcFE
But we show that F# F if X is countably infinite (Proposition 4.5).

We also show that the group F is freely indecomposable (Corollary 4.3). We
were however unable to settle the question whether F and F are freely indecom-
posable in case X is infinite.
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220 G. BAUMSLAG AND U. STAMMBACH

1. The inverse limit

Let G be a group and let {G;} denote its lower central series, i.e.
G1=G’ . Gi':[G’ Gi——l]; i=2. (11)

As usual we shall denote G/G, by G,,. We consider the inverse system of the
canonical projections

{G/G; — G/Gi-1}. (1.2)

Its inverse limit is denoted by

G =lim G/G; (1.3)
and its canonical maps by 7, : G — G/G;. We may regard G as the subgroup of the
(categorical) product [[;~» G/G; consisting of the elements

A=(A1Gy, XG5, . ) (1.4)

with A;€ G and A;+;=A; modulo G;.;. Then clearly 7,(A)=A_,G; € G/G.. By
universality of the inverse limit the family m; : G = G/G; of canonical projections
induces a homomorphism h: G — G such that m; = 7;h. Plainly it is given by

h(x)=(xG,, xGs, .. .), xeG. (1.5)

The homomorphism h is injective if and only if G is residually nilpotent (i.e. if
Go=i=2Gi=e).

In the sequel we shall be interested in subgroups P of G with hG < P< G and
with the property that h induces isomorphisms h; : G/G;= P/P;, i =2. The follow-
ing lemma characterizes these subgroups.

LEMMA 1.1. Let P be a group with hG < P< G. Then the following statements
are equivalent
(i) h:G — P induces isomorphisms h;: G/G;= P/P, i=2;
(ii) 7,:P— G — G/G; induces isomorphisms o;: PIP,= G/G;, i =2;
(iii) h: G — P induces an epimorphism h,: G,,—> P,p; .
(iv) 72: P — G, induces a monomorphism o, : P, > Ggp.

Proof. We consider the map

m=1th:G—>PcG— G/G, i=2. (1.6)
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It induces the identity G/G; ——l-‘i—> P/P; SN G/G;, i=2. Hence h; is always injec-
tive and o; surjective. Moreover h; is surjective if and only if o; is injective. This
proves the equivalence of (i) and (ii). Also, it is well known that h; is surjective if
and only if h, is, proving the equivalence of (i) and (iii). Finally h, is surjective if
and only if o, is injective, proving the equivalence of (iii) and (iv).

COROLLARY 1.2. Let F=F(X) be the free group on the set X. Then a group
P with Fc Pc F is parafree on X if and only if h,: F,, — Py, is surjective.

Proof. This is immediate from Lemma 1.1, since the groups F and F are
clearly residually nilpotent.

2. The case of finitely generated free groups

Let F= F(X) be the free group on the set X ={x;, x5, ..., X,}. The following
result is due to Bousfield-Kan [BK]. Since its proof to be found in [BK] uses
topological methods we shall include, for completeness, a purely algebraic proof;
it is also due to Bousfield-Kan.

THEOREM 2.1. Let F be a finitely generated free group. Then h:F— F
induces isomorphisms h;: F/F,— ﬁ/ﬁi, i=2.

COROLLARY 2.2. If F=F(xi,...,%,), then F is parafree on X=
{xl’ st xn}'

Proof. By Lemma 1.1 we only have to show that azzﬁab —> F,, induced by
72: F— F|F, is injective. We thus have to show that an element

A* = (/\1F2, A2F3, . .) S ﬁ (2.1)

with A, € F, is in E,. In the course of the proof we shall need the following two
wellknown results which we mention without proof.

LEMMA 2.3.

[ab, c]=[a, cI’[b, c],
[c, ab]=[c, b][c, al’.

LEMMA 2.4. Let F=F(xy,...,X,). Then given a€F,, k=2 there exist
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U, ..., Uy, € Fr_y such that
a=[uy, x[uz, x2]* * * [un, x,] mod Fy1.

We shall construct elements

A

r=WYF, y¥F,..)eF, 1<i<n 2.2)
such that in F
A*=[I'P, h(x)IIT'®, h(x2)] - - - [T, h(x,)]. (2.3)

In order to find y{’ we proceed by induction on k. Since A; € F, and hence A, € F,

there are, by Lemma 2.4, elements uy, ..., u, € F; such that

AZE[uI’ xl] e [um xn] mod Fj. (24)

Set v’ =u;. We then have

AM=[y, %] - [y, x.Jmod F, (2.5)
and also
A=[y{", x:]- - - [¥{", x.Jmod F. (2.6)

Suppose now that y{", ..., y¥, 1<i<n have already been determined such that

yi=y{"mod F,,, 1s<I<k-1, 2.7)

a=[yY, x] - [vf, xalmod Fy,  1s<I<k, (2.8)
and in addition

As1 = [‘chl), X1]: - [)‘gc"), X, mod Fi+2. (2.9)
Since Ag+z=Ar,; mod F,,, there exists r.,,€ F.,, such that

Mesz= [V, x1 - - [¥”, XD sz (2.10)
By Lemma 2.4 we can find v; € F,, such that

her2=[v1, 1] * * [Vn, x,]mod F.3. (2.11)
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We may thus set

vﬁl —755) Ui, l<i=sn. (2.12)

We then clearly have
‘chi-)nE‘Y:c mod Fy ;. (2.13)
Moreover

[vide, xaJ - - [y, % 1= [vP01, X1+ - - Y0 0y %]

= [y, x11"[v1, x11* * - [k, %01 [0ns Xn], by Lemma 2.3
=y, x11- - [y, % D1, x1]+ * * [Vny Xa]) mod Fis
= Ao mod Fy .3, by (2.10), (2.11). (2.14)
A fortiori we have
[7&1, xl] v [75521, xn] Ak+1 mod Fi .. (2.15)

This completes the proof of Theorem 2.1.

For the proof of Corollary 2.2 we only have to remark that E, being a subgroup of
[1i>2 F/F, is residually nilpotent. Next we recall that the group F contains any
parafree group on X (see [B2]). Since, by Corollary 2.2, the group F is itself
parafree on X if X is finite, we see that F is the biggest parafree group on the
(finite) set X.

We note that the proof of Theorem 2.1 works equally well if the free group F
is replaced by an arbitrary group G generated by the set X ={x;, ... x,}. We may
thus state

COROLLARY 2.5. If G is finitely generated, then G = G.

Finally we note

COROLLARY 2.6. If Fis finitely generated, then F is freely indecomposable.

Proof. Suppose F'=A x B with A#{e}# B. Then there are surjective maps
A > C;, B> C, with C, i =1, 2 infinite cyclic. Thus we obtain an epimorphism
f:E— C,* C,=F(x, y) onto the free group on two generators. Take elements
a, b e F with fa=x, fb=y. Since F(x,y) is free there exists g:F(x, y)— F with
gx=a, gy= b and fg=Ide. Using Corollary 2.5 we obtain an epimorphism
p: F(x, y)— F=F— F(x, y). But, by Corollary 2.2 the groups F(x, y) and F(x, y)
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are parafree of the same rank, so that by Theorem 1.1 of [B2] p is an
isomorphism and F(x, y) is free. This is a contradiction.

3. The case of free groups of countably infinite rank

Let F=F(x;,x,---) be a free group on the countably infinite set X =
{x1, X2, .. .}. In order to obtain results on E we shall first construct a metabelian
group W.

Let A be the free abelian group on X ={x;, x,,...} and let IA be the
augmentation ideal of the integral group ring of A. Clearly IA/IA? is free abelian
on {x;—1,x,—1,...}. The following lemma is a generalization of this fact (see
[BG)).

LEMMA 3.1. IA"/IA""" is the free abelian group on the set {[[}=1 (xi;y— 1)}

We now define W as the semi-direct product W=1A | A where IA is regarded
as right A-module in the usual way. We prove

LEMMA 3.2. W,=IA", n=2.

Proof. Let u,velA, x,y€ A; then using Lemma 2.3 we obtain

[ux, vy]=[u, vyF[x, vy]=[u, yJ'[u, o*[x, y]lx, v} =[u, yJ'[x, 0],

since both IA and A are abelian. Thus we have W,=[W, W]=[IA, A]=IA"
Using induction it is now easy to prove W,=IA" for n>2. We leave the details
to the reader. We now consider W=Ilim. W/W,=lim._ (JA/IA" | A)=
(lim IA/IA™) | A. By Lemma 3.1 the group IA"/IA"*! is free abelian on the
n-fold products [[i-; (xij,—1). We may thus identify IA/IA", as abelian group,
with the augmentation ideal of the quotient of the polynomial ring on y; =x; — 1,
i=1,2,...modulo the ideal generated by the n-fold products. As a consequence
we see that lim._ IA/IA", as an abelian group, is isomorphic to the augmentation
ideal J of the power series ringon y;=x;—1,i=1,2,.... The operation of x;, x,-—1
on y; =x;—1 is given by

(xi—=Deoxi=(x;—1)(x—D+(x;—1)=yiy; +ys (3.1)

(xi—Dex;j ' =y(l—yj+yi—y;+ ). (3.2)
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We note for further reference that in W=7 1 A
[x—1, Xl==(x; = 1)+ (x; = 1) o x; = YiVis (3.3)
[x;—1, x,-'l]=-—yiy,-+yiy?—yiy?+ SO (3.4)

Here we have used the fact that conjugation of x;—1 by x;, x;' in W is just
operation of x;, x;' on y; in J. Since

W,=[J,A] W;=[J A, A], etc. (3.5)
We obtain from (3.3), (3.4) the following key result.

LEMMA 3.3. W,=J-IA*" k=2. In particular, an element ve J is in W, if
and only if it can be written as a finite linear combination

n

L= Z W;Vi, wW; € J. (3'6)

i=1

With this result it is now possible to settle various questions about our group E
We first reprove a result of Bousfield-Kan [BK, p. 114].

THEOREM 3.4. Let F=F(X) be a free group where X is countably infinite.
Then h,:F,, — ﬁab is not surjective.

COROLLARY 3.5. Let F= F(X) be a free group where X is countably infinite.
Then F is not parafree on X.

Proof. We enumerate the elements of X as follows

X ={x11, X21, X22, X31, X32, X33, X415 - - -} (3.7)
and consider (see [BK]) the element A = (A, F,, A,F;, .. .)€ F where

A= e, A =[x21, X22][X31, X32, X33) * * * [Xu1s -« o X ) K=2. (3.8)

We shall show that A€ F, but 12(A)=e € F,; hence 7, is not injective. This
implies, by Lemma 1.1, that h, is not surjective.

Consider the free abelian group A on X and the group W=1IA | A. Define a
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map f:F— W by

B xji—1leIAcW for j=1,
flx) {xk,-eAg w for 2<j<k. (3.9)
We then obtain a map f: F— W with
f(A) = (%21 = 1)(x22 = 1)+ (331 = D(x32—= D33 = 1)+ - - - (3.10)

(see (3.3)). It is then clear from Lemma 3.3 that f(A)E W,, so that Ag F,. This
completes the proof of Theorem 3.4.

We note that it might conceivably be the case that F is parafree on some set
other than X. That this is not the case follows from Corollary 3.9 where the
existence of non-trivial divisible elements in F,, is proved. We first state

THEOREM 3.6. Let F= F(X) be a free group where X is countably infinite.
Then E contains a subgroup which is free on an uncountable set Y of elements which
are linearly independent mod F,.

For the proof of this result we shall need the following

LEMMA 3.7. There exists an uncountable set 3 of sequences o = (0o, 01,...)
of natural numbers a; with the following properties:

(i) 00=2, 0i11>0y, i20;
Gi) if {o,..., 0™} is a finite subset of X then there exists i =0 such that for

every k=i the entries 0, ..., o\’ are different.

Proof. Let £ be an uncountable set of sequences w = (wo, wy, . . .) of numbers
0,1,2,...,9 with wo=2. Define, for any such w, a sequence

o(w) = (0o(w), o1(w), . ..) (3.11)
by setting
gi(@)=wo* 10 +w; - 10"+ + -+ w;—; - 10"+ w; - 10°. (3.12)

It is plain that w# o’ implies o (w) # o(w’). Also, it is clear that oo(w) = wo=2 and
that ;. 1(w)> oi(w), i = 0. Moreover, if {'", ..., o™} is a finite subset of 3 with
o =a(0"), then there exists i =0 such that for k =i the elements o, ..., o™

are different. We may thus set 3 ={o(w) | w € 2}.
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Proof (of Theorem 3.6). Let F= F(X) where

X ={x01, X025+ - + s X11, X125 - - - » X21, X22, . . .} (3.13)
Define for any sequence o = (0o, 01,...)€ 3 an element

A(0)=(A\1F2, AoFs, .. )eF (3.14)
by setting

Ai=e for i<oy,
. (3.15)
Ai = [x019 se ey an'o][xll’ ceey xl-:r1] e [x119 ceey xlcn] fOI' a; =1 <0-H-]-
Note that A(c) is an element of F since o is strictly increasing. Next we shall
show that the elements A(o), o €3 generate a free subgroup of F. For this it is
enough to show that any finite set of elements

AP=A@®), 1<lI=sn

freely generate a free subgroup. By Lemma 3.7 we may conclude that there exists
an i =0 such that the entries o'*, ..., o™ are all different. We now consider the
projection p:F(X)— F(xiy, Xi2, Xi3,...); then p induces a map p:F(X)—

ﬁ(xu, Xi2, Xi3, . . .) With
ﬁ(A(O'“))) =[Xi1, ..., Xizw] € F(Xi1, Xi2, Xi3,...) S ﬁ(xn, Xi2y Xi3y - - -) (3.16)

It follows at once that ﬁ(A(a(”)) freely generate a free subgroup of F(x;, Xi2, . . .)-
Hence the elements A(c"), 1<I<n freely generate a free subgroup of F(X).

It remains to show that the elements A(c), c€ 2 are linearly independent
mod E,. For this we consider the group W=1IA | A where A is the free abelian
group on X and the map f: F— W defined by

( _{(xﬂ—l)eIAQW for k=1, i=0, .47
fOxu) = xx€EASW for k=2, i=0. A7)
For the induced map f:F— W we then obtain

f(A@)=(X01=1) " * (Xooo = D)+ (11— 1) * =+ (X105, = 1)+ - - - (3.18)

It follows from Lemma 3.3 that f(A(a))E W,. Moreover no non-trivial linear
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combination of elements f(A(cr)) lies in W,. For, if o, ..., ™ are different

elements of 3 then, by Lemma 3.7, there exists i =0 such that for all k=i the

entries oi,..., o\’ are different. Hence a nontrivial linear combination of

f(A(e™), ..., f(A(c™)) cannot lie in W,.

We note that in the course of the above proof we also have proved the
following result

COROLLARY 3.8. Let F= F(X) be a free group where X is countably infinite.
Then F,, is uncountably infinite.

We next prove

THEOREM 3.9. Let F=F(X) be a free group where X is countably infinite.
Then F,, contains uncountably many linearly independent divisible elements.

Proof. Let X ={xo1, X02, ..., X115 X12, - - - » X21, X22, . . .} and consider for o€ 3
(Lemma 3.7) the element

I'(o)=(y1F>, v.F3,.. .)€ F (3.19)

defined by

{'yi =e for i<oy,
Y = ([X21, ey xZGz]([x31’ ey x303] e [xll? ceey xlo‘x]l“.)3)2 for o si< Ol+1.
(3.20)

(The fact that we start with o, is merely a notational convenience.) We shall show
that each I'(o) gives rise to a divisible element in F,,. We first recall that F,, is a
direct summand of F,,. Thus in order to exhibit divisible elements in F,, we may
consider the quotient of F,, by F,, in other words we may consider the quotient
of F by the normal subgroup N generated by F and F,. In order to show that for
k=2 the element I'(o) is a k-th power modulo N we consider the element

A=A(0)=(8,F,, 8,F;,...)eF (3.21)
where

{8i=e for i<oy

61' = ([xkh ey xkcrk]([xll, % 18 )y xlo‘;]lm)k‘kl)k! for g; = l< Oix1, 12 k (3'22)
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Clearly, modulo N the elements I'(c) and A(o) are equivalent. But A(g) is a k-th
power. Hence I'(o) is a k-th power modulo N. An argument similar to the one
used in the proof of Theorem 3.6 shows that the elements I'(o), o € 3 are linearly
independent in F,.

COROLLARY 3.10. Let F=F(X) be a free group, where X is countably
infinite. Then Fi/F.1, k=1 contains non-trivial divisible elements.

Proof. Let X ={Xo1, X025+ - - » X115 X125 - - -  X21, X22,. ..} and let ' =TI'(o) € F be
one of the elements defined in (3.19), (3.20). We consider the element

I'*=[T, Xo1, Xo02, - - - » xO,k—l]e ﬁk- (3.23)

Since the k-fold commutator is a linear map from the k-fold tensor product of E,,
into Fk/ﬁk+1

["']:ﬁab®"'®ﬁ‘ab'—)ﬁk/ﬁk+1 (324)

the element I'™* gives certainly rise to a divisible element in ﬁk/Fk+1. It remains to
prove that I'* is non-trivial. We use the map f: F— W defined by

fxo)=xacAcW, I=1.
fx)=xacAcW, i=1, I=2. (3.25)
f(xi1)=(xi1i—1)e IAc W, i=1.

For the induced map f: F— W we obtain

far* =
[2(x2:—1) - -+ (xZ(Yz— 1)+3Ux31—1) -+ - (X35, 1)+ - - J(x01— 1)--- (X0k-1—1)
(3.26)

By Lemma 3.3, f(l"*)é W, and hence T*¢F....
The following result should be compared with Theorem 4.2 of [B2].

THEOREM 3.11. The 2-generator subgroups of F are free.

Proof. Let a, b e F=F(X). We have to consider two cases.

(i) Let [a, b]#e. In this case we shall deduce our result from Theorem 4.2 of
[B2). Clearly there exists i=1 such that for .:F— F/F, we have [a, b]#e.
Consider then a finite subset Y < X and the projection p: F(X)— F(Y), such that
for pr:F(X)— F(Y)/F(Y) we have [pra, prb]#e. We may thus consider
p:E(X)— E(Y). Since F(Y) is parafree and [pa, pb]# e we may conclude from
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Theorem 4.2 of [B2] that pa, pb generate a free subgroup. Hence a, b generate a
free subgroup in F(X).

(ii) Let [a, b]=e. We shall proceed as in the proof of Theorem 4.2 of [B2]. By
Theorem 3.1 of [B2] the group F=F(X) can be embedded in the power series
ring Z[[X]] and hence in Q[[X]]. Under that embedding let

{a 1+a;+ , a;#0 (3.27)

b=1+b+---, b#0

i.e. a; b; are the first non-zero terms in the power series corresponding to a, b.
The elements a;, b; are Lie elements in £[ X], the Lie algebra over Q generated by
X inQ[X]. Since £[X] is a free Lie algebra over Qit follows that a;, b; generate a
free sub-Q-Lie algebra (see Sirsov [S], Witt [W]). Since [a, b]=e we have in
QllX1]

ab=1+a,-+b,-+aib,~+ ¢ & & =1+a,~+b,-+b,-ai+ -+ = ba. (328)

Hence in £[X] we have [a;, b;]=0, so that the Lie algebra generated by a; b; is
abelian. Since it is free it must be isomorphic to Q. It follows that there exist
integers m, n >0 such that

ma; = nb,-. (329)
In particular i =deg a; =deg b; =j. We now compute c=a ™ - b" in Z[[X]].

c=a"b"=(1-ma;+ - )(1+nb+---)
=1—ma; + nb; +{terms of degree=i+1} (3.30)

= 1+{terms of degree=i+ 1}.
But c, being an element in the subgroup generated by a, b commutes with a and b

and hence satisfies [a, c]=e - A repetition of the above argument with ¢ at the
place of b shows that the power series expansion of ¢ has the form

C=1+Ck+"', Ck;éo (331)
with k =i. This is a contradiction to (3.30) so that c=1, i.e. a™ =b". Since Eis

torsion-free it follows that the subgroup generated by a, b is infinite cyclic, hence
free.
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4. Two subgroups of F

Let F=F(X) be the free group on the set X. Here we shall exhibit two
subgroups F, F of F=F(X) which are parafree on X. Note that F is not itself
parafree on X if X is at least countably infinite.

THEOREM 4.1. There exists a subgroup F < = F(X) which is parafree on X
and has the property that it contains all subgroups of F which are parafree on X.

Proof. We first show that the system of subgroups of F which are parafree on
X is directed. Thus let U, V be two subgroups of F which are parafree on X. Let
W be the subgroup of F generated by U, V. We claim that W is parafree on X.
Since F<S W< F we may apply Lemma 1.1, so that we have to show that
F, — Wy, is surjective. Consider the obvious epimorphism Uy V — W. We then
have the series of maps

Foo, = Uy, — (U*FV)ab - W (4.1)

so that we only have to show that U,,— (Ux,.V),s is surjective. But this is trivial
since U, V are parafree on X. We may thus define F by F=1lim_, U, where U is a
subgroup of F which is parafree on X. It is then clear that F,, — F,, is surjective,
so that F is parafree on X, by Lemma 1.1.

It is obvious that the above construction is independent of the fact that the
group we start with is free. Thus if G is an arbitrary group we may find in G a
group G with hG < G < G such that h induces isomorphisms h; : G/G; = G/ G,
i=2, and with the following universal property. If f: G — H is a homomorphism
such that f,: G/G;= H/H,, i=2 and H is residually nilpotent, then there exists a
unique f:H— G such that fof=h:G — G. By construction of G we have

COROLLARY 4.2. G=0.

As in Corollary 2.6 we obtain from Corollary 4.2

COROLLARY 4.3. Let F be free, then F is freely indecomposable.

We shall now construct another subgroup Fof F=F (X) which is Pare_l_free on
X. Thus we have Fc F, by Theorem 4.1, but we shall later show that F# F if X is

(at least) countably infinite.
Consider the directed system of finite subsets Y of X and the associated
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directed system of groups F(Y). Define

F=1lim F(Y), YgcX,Y finite (4.2)

If we consider F(X) as a subgroup of the power series ring Z[[ X]] (see Theorem
3.1 of [B2]), then F may be described as the subgroup of those power series of F
which involve only finitely many elements of X.

PROPOSITION 4.4. The group F is parafree on X.

Proof. Clearly Fc< Fc FE Since F,,=lim_, (I:“( Y))a =lim_, (F(Y))a 1is free
abelian on X, the map F,, — F,, is surjective. By Lemma 1.1 we conclude that F
is parafree on X.

PROPOSITION 4.5. Let F=F(X) where X is countably infinite. Then F is a
proper subgroup of F.
Proof. We shall exhibit a subgroup U of F which is parafree on X, but not

contained in F. Since U< F by Theorem 4.1 it then follows that F# F.
Let X={x{, X2,..., Y1, ¥2, . - .}. Define elements

Z0=(F, {$'F;,.. )eF,  i=0,1,... 4.3)
by setting
(li) = Xiy
{g) =[Xi+1, Yi+1]%, (4.4)

(3” = [[xi+2, y:'+2]xi+19 yi+1]xi’ ete.
where xo=e. Modulo any F, and hence in F we have
Z(i)= [Z(i+1)a yi+1]xi, = 0, 1’ R (45)

Consider now the subgroup U of E generated by Xy, X2,..., Y1, Y25.. .5
Zz@®,z®, 7Z?, ... We claim that U is parafree on X. By Lemma 1.1 we only
have to show that F,, — U, is surjective. But it is clear that

{Z“’) =e mod U,,

ZP=xmod U,, i=1. (4.6)

Finally it is plain that none of the elements Z is contained in F.
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