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Sur la factorialité des anneaux de fonctions de Nash

JACEK BOCHNAK
À Viviane

1. Introduction.

Rappelons qu'une fonction analytique réelle /:[/—> R, d'un ouvert connexe U
de Un dans U, est dite de Nash s'il existe un polynôme P(x, t) de n +1 variables
réelles, P^O, tel que P(x, /(*)) 0 dans U. Remarquons qu'une fonction analytique

réelle /: U-> R, 1/ semi-algebrique, est de Nash si et seulement s'il existe un
ensemble semi-algébrique A <= Rn+1, tel que A fl (L/x R) graphe /. Nous noterons
Jf(U) l'anneau des fonctions de Nash sur U.

L'ensemble des fonctions de Nash forme une classe particulièrement bien
adaptée à l'étude de la géométrie algébrique réelle [1], [3], [5], [6], [9], [11], [12],
[13]. Ces fonctions sont assez proches des polynômes pour avoir des bonnes

propriétés algébriques (par exemple si U est un ouvert semi-algébrique, l'anneau
N(U) est noetherian [5], [12]), mais sont plus souples que les fonctions
polynômiales réelles, du point de vue des propriétés topologiques (par exemple
si 2P est un idéal premier de J((U), U étant de la forme U {xeUn:pt(x)>0,
p, elRfXi,..., Xn], i 1,..., k}, alors l'ensemble des zéros Z(2P) de cet idéal est

connexe [6], [9]; cette propriété est évidemment vraie pour l'anneau des

polynômes complexes, elle ne l'est pas pour l'anneau des polynômes réels).
Observons en passant que l'anneau des "fonctions de Nash sur Cn" est égal à

C[Xi,..., Xn]. Ces propriétés mettent en évidence que l'anneau des fonctions de

Nash réelles joue un rôle, dans le cas réel, analogue à celui de l'anneau des

polynômes complexes.
Remarquons que tout polynôme est de Nash, et que si / est de Nash, elle

divise un polynôme a0 non identiquement nul, ao fg, geN(U): en effet, d'après
la définition d'une fonction de Nash, il existe a,elR[X] R[Xi,... ,Xn], i

0, ...,fc, tels que Hifc-i o»/l ûo /Œik-i ^i/1"1)» «0^0. Les fonctions de Nash

appartiennent donc à l'ensemble des facteurs analytiques des fonctions
polynômiales, cependant une fonction analytique divisant un polynôme n'est pas
en général de Nash. On peut néanmoins conjecturer [4] que tout facteur analytique

(global) d'un polynôme a est associé à un facteur de Nash de a dans l'anneau
0(U) de fonctions analytiques réelles sur 17. Ceci est trivial pour n 1, non résolu

pour n^2. La conjecture que nous venons d'évoquer impliquerait, d'après les
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212 JACEK BOCHNAK

résultats obtenus en [2], la factorialité de Jf(U) sous des hypothèses convenables

sur U (telles que U semi-algébrique connexe et H1(U,l2) 0). Nous allons
démontrer ce résultat, en dehors de toute référence à cette conjecture qui reste
ouverte.

THÉORÈME 1. Soit U<^Un un ouvert semi-algébrique. Si U est connexe et

H^LJ, Z2) 0, alors Vanneau des fonctions de Nash N(U) est factoriel.

La réciproque du théorème 1 est probablement vraie; nous démontrerons
seulement:

PROPOSITION 1. Si [/cR2 est un ouvert et Jf(I7) est factoriel, alors U est

connexe et H1 (t/,Z2) 0.

Signalons que la démonstration de la factorialité de X(Un) donnée dans [12]
est erronée.

2. Anneaux semi-algébriques

Soit U un ouvert connexe non vide de Un.

DÉFINITION. On appelle un anneau semi-algébrique tout sous-anneau A
A (17) de l'anneau des fonctions de Nash J"f( 17), contenant l'anneau R[X]
M[XU Xn] des polynômes de n variables à coefficients dans U.

On trouvera dans [3] un exposé systématique de la théorie des anneaux
semi-algébriques, des exemples, et de nombreux problèmes non résolus.

Supposons désormais que l'ensemble U satisfait la propriété (P) de Risler
[12]:

(P) Si W est un ensemble semi-algébrique de Rn, alors U H W n'a qu'un nombre
fini de composantes connexes.

Ensembles semi-algébriques quelconques, ou sous-analytiques et relativement

compacts [7] satisfont à (P).

Le théorème 1 est en fait un cas particulier (vérification triviale) du théorème
suivant:

THÉORÈME 2. Soit A A (17) est un anneau semi-algébrique intégralement
clos. Supposons:

(1)
1 1
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(2) Toute solution yeN(U) de Véquation de la forme

y2 a\+ +al, ateA,

appartient a A
(3) U satisfait à la propriété (P) et H1(U,12) O

Alors Vanneau A est factonel

Le théorème 2 sera démontre au §3 Au §4 nous donnerons quelques
exemples d'anneaux semi-algébriques qui sont factonels

Soit A(U) un anneau semi-algébrique intégralement clos, satisfaisant

l'hypothèse (1) du théorème 2 L'anneau A(U) est global régulier - c'est-à-dire
noethenen et tel que le localisé AM soit local régulier pour tout idéal maximal M
de A - et (comme dans le cas polynômial complexe) tout idéal maximal de A est
de la forme M Ma (xt - ax, xn - an), pour un aeU, ([5], [12], [3]) Pour
aeU notons A(a)(L0 le localisé de A(U) par rapport à l'idéal maximal Ma

On a les inclusions canoniques des anneaux locaux réguliers suivants

U[X\a) c AU U) c XU U)czXacz0acz^a= r[[x - a]], *

où IR[X](a), Xa et Ûa désignent respectivement le localisé de IR[X] par rapport à

l'idéal maximal des polynômes nuls en a, l'anneau des germes de fonctions de

Nash en a, et celui des germes de fonctions analytiques réelles Tous les anneaux
de la suite (*) sont factonels d'après le théorème de Auslander-Bushsbaum [14],
et chacun d'eux est plat sur celui qui le précède [12], [3]

3. Démonstration du théorème 2 et de la proposition 1

LEMME 1 Un idéal 9 de Vanneau localisé R[X](a) est réduit (c'est-à-dire
égal à sa racine) si et seulement si SPJfa est réduit dans Na (et donc si et seulement si

est réduit dans 9a)

Preuve On sait que l'une des caracténsations du Phensehsé A* d'un anneau
local noethenen, intégralement clos, pseudo géométrique A est que A* est égal à

la fermeture algébrique de A dans son complété A, et que si 9 est réduit dans A,
9A* est réduit dans son hensehsé ([10] p 186) Le lemme en résulte puisque J(a

est Phensehse de(R[X](a)

Remarque Le lemme 1 reste d'ailleurs valable pour tout anneau local régulier
du type A(a)( 17), A (U) étant semi-algébrique Ceci résulte du fait que Na est

aussi l'hensehsé de A(a)(L0
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PROPOSITION 2. Soient C/c=|Rn un ouvert satisfaisant la propriété et

geU[X]. Il existe un nombre fini de fonctions analytiques irréductibles fl9... ,fpe
€(U), telles que g UUfr

Preuve. Pour çeO(U) et xeU notons ju,x(<p) la multiplicité de <p en x. Soit
k g IN; il est évident que Vk {x eUn : jxx(g)^ k} est un sous-ensemble algébrique
de Un et que Vk\ Vk-i 0 pour k >deg g. Si Y est une composante connexe de

(Vfc\Vfc_i)n(7 et si feû(U) divise g, alors /xx(/) est constant le long de Y,

puisque la fonction x—> iix(f) est semi-continue supérieurement et ux(g) est, par
hypothèse, constant le long de Y. La proposition en résulte.

PROPOSITION. 3. Soit 9 un idéal premier de R[X].

(a) ([5], [12], [3]). Si A=A(U) est un anneau semi-algébrique intégralement
clos satisfaisant Vhypothèse (1) du théorème 2, alors il n'y a qu'un nombre fini
d'idéaux premiers 9U... ,9k de A au-dessus de 9 (Le. tels que 9lC)U[X] 9)9

tous de même hauteur et 9A 9X n • • • D 9k.
(b) Si 9 est principal, engendré par un polynôme irréductible /, si Vanneau

A(U) et le domaine U satisfont aux hypothèses du théorème 2, alors chaque 9X est

principal.

Preuve. La partie (a) a été démontrée par Efroymson [5] et Risler [12] lorsque
A =N(U). Le cas général se démontre de façon analogue [3 §2].

(b) Soit /i • • • fp une décomposition de / en facteurs irréductibles dans û( U)
(proposition 2). L'hypothèse H1(l7,Z2) 0 implique que chaque /, engendre un
idéal premier de 0(1/) ([2], corollaire 1). Si fA(U) 9t H • • • H9k, alors pour tout
i et aeZ(9l) r\(pG9i<p~1(0), l'idéal 3\A(a) est principal, puisque c'est un idéal
minimal associé à l'idéal principal /A(a), l'anneau A(û) étant factoriel.

Quel que soit a € U, on a la suite d'égalités suivantes:

(9t0(U)n • 'D9kÛ(U))Ga=91Ûa H • •

(91A(a))0a H • • • fl (9kA(a))Ca

((9Xn • ••• n 0»k)A(a))0(a) (0\n • • • n 9k)0a ;

la première résulte de la platitude de Ûa sur 6(U), la troisième de la platitude de

0a sur A(a) et les autres sont banales.

Le Théorème B de Cartan et

(9>iO([/)H • • -D9k0(U))0a (9t H • • -n9k)0a, Va € 17,
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implique que

fO(u)=91o(U)n- n®k€(U) f1€(u)n--nfpo(U)

Chaque idéal <3>l est contenu dans un idéal f}0(U). Nous allons montrer que

(a) Chaque fjO(U) contient précisément un seul idéal 9t;
(p) Si, pour un i fixé, l^i^k, fh€(U)y... ,flw(i)€(U) sont tous les idéaux

contenant 9\, alors l'idéal &t0a de €a est engendré par le germe (en a) de

IFii^Vael/.
(a) Fixons aeU. Puisque <3>lA{a) est principal, alors 9\A(a) <p,A(a) pour un

<pt e A(Û); si a<£Z(9X) on prend <pt 1. En localisant /A 0\ H• • • H0>fc on a

n
1 1

Raisonnons par l'absurde; supposons que fl^U9^^0(17), ii 5^ i2, et soit ae
/r^O). Cela impliquerait que les germes çHa et cpl2a seraient divisibles par fja dans
0a; d'après (*) fa serait alors divisible dans Ûa par un facteur multiple f%. Ceci est
impossible par le lemme 1, / étant irréductible dans U[X].

(j8) D'après (a) on a donc (modulo une permutation d'indices):

(**)

où 1 ^ lx < - - • < Zk p.
Posons i^ 11^1,-a+i /m, )' 1, • • • >

fc ; ïo 0. Il suffit de vérifier que si pour un
a e 17, ^jA(a) <PjA(a), alors <pja et ^ja sont associés dans 0a.

Pour simplifier la notation supposons / 1 et montrons que çia est associé à

i/^ia, où i/^i /i • • • //j. D'après (**) <pia est divisible par i//ia. Montrons la réciproque:
soit £G©a un facteur irréductible de <pia. Puisque les germes en a de / Flf-1 fy et
de nk=i <Pj sont associés, ^ divise l'un des i^a (et un seul).

Supposons que £ divise ij/]a, avec />1; f divise donc un des fla, avec l>li.
Puisque ^iOa (piOa, le germe en a de chaque élément de ^i possède un facteur
commun avec fla, à savoir £ D'après le corollaire 1 [2], il en résulte que
^i^fiO(U), ce qui est exclu d'après (a), puisque fiO(U) contient déjà un 9\, avec

i>\. Cela montre que chaque facteur irréductible de <pla divise ^la, c'est-à-dire
t/>ia est divisible par <pla ((pXa est sans facteur multiple).
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Terminons maintenant la démonstration de (b): soient g}l,..., g]m les

générateurs de 9V D'après (j3) la somme u}=J^ll g2, est associé dans €(U) à

hj =Tl7-i fl- La fonction up qui est de Nash, est donc un carré d'une fonction
analytique 7,; la fonction y, est aiors nécessairement de Nash, y, e .NX 17).

L'hypothèse (2) du théorème 2 entraîne que y}eA. Puisque y} est associée
dans l'anneau 0(17) à nr-°i/j«> % engendre #,0(17), ce qui implique - grâce à la
fidèle platitude de €a sur A(a)-que y, engendre l'idéal #,A(a) de A(a) et par
conséquent l'idéal 9>, de A.

Démonstration du théorème 2. Soit $> un idéal premier de A (£7). Pour
démontrer la factorialité de A (17) il suffit, d'après le théorème 5 de [8], de

montrer qu'il existe un idéal premier principal contenu dans &. Soit / un
polynôme irréductible contenu dans <3>. D'après la proposition 3(b), / ]l/fc=i <Pi>

avec <pj€A et <p;A premiers, 7 1,..., fe. L'idéal $> contient l'un de <p,A.

Démonstration de la proposition 1. Supposons HX{U,Z2)^0. Cette condition
implique l'existence d'une droite affine L^U2 telle que L n U possède au moins
deux composantes connexes, pour l'une d'elles Ll9 l'ensemble U\Li étant
connexe.

Appelons L2 (Ln l7)\Li. Sans perte de généralité on peut supposer que L
est l'axe des x et que Lx est l'intervalle ouvert ]a, b[. La fonction f(x, y) y2

admet deux décompositions non équivalentes dans N(U). Posons

II est facile de voir que: /=y2 /i/2> /J~1(0) LJ, /1 ne divise pas y, /1 est

irréductible dans X(U)9 ce qui prouve que N(U) ne peut pas être factoriel.

Remarque. On peut montrer que si pour un ouvert semi-algébrique U a un il
existe un ensemble algébrique L<^Mn et une composante connexe Lx c L D U de

codimension 1, telle que [7\Li soit connexe, alors Jf(U) n'est pas factoriel.
L'existence d'un tel ensemble L est probablement assurée lorsque Hl{U,Z2)ï1Q.
Le problème est donc posé de démontrer la proposition 1 dans le cas de n

variables.

Le lecteur remarquera que la construction de / dans la démonstration de la

proposition 1 reste valable pour tout anneau semi-algébrique A (U),
contenant Jal + al, où a, sont des polynômes, aî1(0)f)a21(0)r\ [7=0.
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4. Exemples

Soit un anneau semi-algébrique A A(U); désignons par A(1) le sous-anneau
de N(U) engendré par A(U) et les solutions y eN(U) des équations de la forme

a,eA.

Définissons par récurrence A(n) (A(n~1})(1) et posons Â Un i A(n). L'anneau
semi-algébrique Â a la propriété (2) du théorème 2. Prenons maintenant le
localisé S~lÂ de Â par rapport à la partie multiplicative S {/eÂ:/~1(0)= 0}.
L'anneau S^Â est encore semi-algébrique et satisfait les conditions (1) et (2) du
théorème 2. Posons Â S~1Â si Â est intégralement clos, ou bien Â
(fr(S~1(Â))0}f(U) si Â ne l'est pas, fr(S~1Â) désigne le corps des fractions de

L'anneau Â, ainsi défini, satisfait toutes les hypothèses du théorème 2, il est
donc factoriel si H\U,Z2) 0.

Cette construction permet d'obtenir toute une série d'anneaux semi-

algébriques factoriels et non isomorphes. Par exemple, prenons AP(U) U[X][$f]
l'anneau semi-algébrique engendré par les polynômes de n variables et la racine

$f, feU[X] irréductible et strictement positif sur U; p e N. On peut montrer que
les anneaux semi-algébriques factoriels Ap et Âq ne sont pas isomorphes si p^ q.

Pour terminer, observons que le critère fourni par le théorème 2 est efficace
seulement pour A "assez grand" par rapport à l'anneau de polynômes: par
exemple si A satisfait la propriété (2) du théorème 2, alors A ne peut pas être

une (R-algébre de génération finie (ni le localise d'une telle algèbre). Il serait
intéressant de trouver un critère de factorialité pour les anneaux semi-algébriques
"proches" des anneaux des polynômes; nous avons étudié à titre d'exemple
Aj(I) (R[X][Vl + (-l)J*], / 1, 2, /= ]-l, 1[ et montré que A2 est factoriel, alors

que Ai ne l'est pas.
Je remercie mes amis Claude Bruter, Felice Ronga et surtout Jean-Jacques

Risler pour les conversations qui m'ont permis d'éclairer certains points de ce

travail.
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