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Sur la factorialité des anneaux de fonctions de Nash

JACEK BOCHNAK .
A VIVIANE

1. Introduction.

Rappelons qu’une fonction analytique réelle f: U — R, d’un ouvert connexe U
de R" dans R, est dite de Nash s’il existe un polyndme P(x, t) de n+ 1 variables
réelles, P#0, tel que P(x, f(x)) =0 dans U. Remarquons qu’une fonction analyti-
que réelle f: U — R, U semi-algebrique, est de Nash si et seulement s’il existe un
ensemble semi-algébrique A = R**’, tel que A N (U X R) = graphe f. Nous noterons
N(U) I’anneau des fonctions de Nash sur U.

L’ensemble des fonctions de Nash forme une classe particuliérement bien
adaptée a I'étude de la géométrie algébrique réelle [1], [3], [5], [6], [9], [11], [12],
[13]. Ces fonctions sont assez proches des polyndmes pour avoir des bonnes
propriétés algébriques (par exemple si U est un ouvert semi-algébrique, I’anneau
N(U) est noetherian [5], [12]), mais sont plus souples que les fonctions
polynémiales réelles, du point de vue des propriétés topologiques (par exemple
si @ est un idéal premier de N(U), U étant de la forme U ={xeR":p;(x)>0,
peER[X,,...,X,],i=1,...,k}, alors ’ensemble des zéros Z(P) de cet idéal est
connexe [6], [9]; cette propriété est évidemment vraie pour I’anneau des
polyndmes complexes, elle ne I’est pas pour 'anneau des polyndmes réels).
Observons en passant que I’anneau des ‘‘fonctions de Nash sur C"” est égal a
C[Xi,..., X,]. Ces propriétés mettent en évidence que I’anneau des fonctions de
Nash réelles joue un réle, dans le cas réel, analogue a celui de I’anneau des
polynémes complexes.

Remarquons que tout polyndme est de Nash, et que si f est de Nash, elle
divise un polynéme a, non identiquement nul, a, = fg, g€ N(U): en effet, d’aprés
la définition d’une fonction de Nash, il existe a; eR[X]=R[X;,...,X,], i=
0,...,k tels que Yie; aif =ao=fCi~1 aif "), ao#0. Les fonctions de Nash
appartiennent donc a l’ensemble des facteurs analytiques des fonctions
polyndmiales, cependant une fonction analytique divisant un polyndéme n’est pas
en général de Nash. On peut néanmoins conjecturer [4] que tout facteur analyti-
que (global) d’un polyndme a est associé a un facteur de Nash de a dans ’anneau
O(U) de fonctions analytiques réelles sur U. Ceci est trivial pour n =1, non résolu
pour n=2. La conjecture que nous venons d’évoquer impliquerait, d’aprés les
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résultats obtenus en [2], la factorialité de N(U) sous des hypothéses convenables
sur U (telles que U semi-algébrique connexe et H'(U,Z,)=0). Nous allons
démontrer ce résultat, en dehors de toute référence a cette conjecture qui reste
ouverte.

THEOREME 1. Soit U<R" un ouvert semi-algébrique. Si U est connexe et
H'(U, Z,)=0, alors I’anneau des fonctions de Nash N(U) est factoriel.

La réciproque du théoréme 1 est probablement vraie; nous démontrerons
seulement:

PROPOSITION 1. Si UcR? est un ouvert et N(U) est factoriel, alors U est
connexe et H' (U,Z,)=0.

Signalons que la démonstration de la factorialité de N(R") donnée dans [12]
est erronée.

2. Anneaux semi-algébriques
Soit U un ouvert connexe non vide de R".

DEFINITION. On appelle un anneau semi-algébrique tout sous-anneau A =
A(U) de I'anneau des fonctions de Nash N(U), contenant ’anneau R[X]=
R[Xi, ..., X,] des polyndmes de n variables a coefficients dans R.

On trouvera dans [3] un exposé systématique de la théorie des anneaux
semi-algébriques, des exemples, et de nombreux problémes non résolus.
Supposons désormais que ’ensemble U satisfait la propriété (P) de Risler
[12]:
(P) Si W est un ensemble semi-algébrique de R", alors U N W n’a qu’un nombre
fini de composantes connexes.

Ensembles semi-algébriques quelconques, ou sous-analytiques et relativement
compacts [7] satisfont a (P). '

Le théoréme 1 est en fait un cas particulier (vérification triviale) du théoréme
suivant:

THEOREME 2. Soit A= A(U) est un anneau semi-algébrique intégralement
clos. Supposons:

(1) Vfe A, f(0=T>f"eA;
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(2) Toute solution y e N(U) de I’équation de la forme:

y’=al+ - +ai, @ €A,
appartient a A.
(3) U satisfait a la propriété (P) et H'(U, Z,) = 0.
Alors I’anneau A est factoriel.

Le théoreme 2 sera démontré au §3. Au §4 nous donnerons quelques
exemples d’anneaux semi-algébriques qui sont factoriels.

Soit A(U) un anneau semi-algébrique intégralement clos, satisfaisant
I’hypothése (1) du théoréme 2. L’anneau A(U) est global régulier - c’est-a-dire
noetherien et tel que le localisé A4 soit local régulier pour tout idéal maximal #
de A -et (comme dans le cas polyndmial complexe) tout idéal maximal de A est
de la forme M =M, = (x1—a4,..., X, —a,), pour un a € U; ([5], [12], [3]). Pour
a € U notons A,)(U) le localisé de A(U) par rapport a I'idéal maximal #,.

On a les inclusions canoniques des anneaux locaux réguliers suivants:

[R[X](a) = A(a)( U) < N(a)( U) < Na < Oa < g;a = R[[X— a]]a (*)

ot R[ X)), Na et O, désignent respectivement le localisé de R[X] par rapport a
I'idéal maximal des polyndmes nuls en a, I'anneau des germes de fonctions de
Nash en a, et celui des germes de fonctions analytiques réelles. Tous les anneaux
de la suite (*) sont factoriels d’aprés le théoréme de Auslander-Bushsbaum [14],
et chacun d’eux est plat sur celui qui le précéde [12], [3].

3. Démonstration du théoreme 2 et de la proposition 1

LEMME 1. Un idéal ® de I’anneau localisé R[X],) est réduit (c’est-a-dire
égal a sa racine) si et seulement si PN, est réduit dans N, (et donc si et seulement si
PF, est réduit dans F.,).

Preuve. On sait que I'une des caractérisations du I’henselisé A* d’un anneau
local noetherien, integralement clos, pseudo géométrique A est que A* est égal a
la fermeture algébrique de A dans son completé A, et que si @ est réduit dans A,
PA* est réduit dans son henselisé ([10] p. 186). Le lemme en résulte puisque N,
est I’henselisé de R [ X],).

Remarque. Le lemme 1 reste d’ailleurs valable pour tout anneau local régulier
du type A.)(U), A(U) étant semi-algébrique. Ceci résulte du fait que N, est

aussi I’henselisé de A,)(U).
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PROPOSITION 2. Soient U<R" un ouvert satisfaisant la propriété (P) et
g €R[X]. Il existe un nombre fini de fonctions analytiques irréductibles f,, ..., f, €
O(U), telles que g =[1’-1 f:

Preuve. Pour ¢ €0(U) et x € U notons u,(¢) la multiplicité de ¢ en x. Soit
k € N; il est évident que Vi ={x eR":u,.(g)=k} est un sous-ensemble algébrique
de R" et que Vi \ Vi_; = pour k>deg g Si Y est une composante connexe de
(Vi\Vi-1)N U et si feO(U) divise g, alors u,(f) est constant le long de Y,
puisque la fonction x — u,(f) est semi-continue supérieurement et u,(g) est, par
hypothése, constant le long de Y. La proposition en résulte.

PROPOSITION. 3. Soit P un idéal premier de R[X].

(a) ([5], [12], [3]. Si A =A(U) est un anneau semi-algébrique intégralement
clos satisfaisant I’hypothése (1) du théoréme 2, alors il n’y a qu’un nombre fini
d’idéaux premiers P4, ..., P, de A au-dessus de P (i.e. tels que P; NR[X]=P),
tous de méme hauteur et PA =P, N---NP,.

(b) Si P est principal, engendré par un polynéme irréductible f, si I’anneau
A(U) et le domaine U satisfont aux hypothéses du théoréme 2, alors chaque P; est
principal.

Preuve. La partie (a) a ét€ démontrée par Efroymson [5] et Risler [12] lorsque
A =N(U). Le cas général se démontre de fagon analogue [3 §2].

(b) Soit f; - - - f, une décomposition de f en facteurs irréductibles dans O(U)
(proposition 2). L’hypothése H'(U, Z,) =0 implique que chaque f; engendre un
idéal premier de O(U) ([2], corollaire 1). Si fA(U)=®,N -+ -NP,, alors pour tout
iet aeZ(@®)=Nyeo, ¢ '(0), 'idéal P;A, est principal, puisque c’est un idéal
minimal associé a I'idéal principal fA,), 'anneau A, étant factoriel.

Quel que soit a € U, on a la suite d’égalités suivantes:

(@.0(U)N- -NPOU))O0,=P0,N---NP,O,
=(@1A0)0. N - N(PLAwL)0,
=(@1A@)N N PAw)0,
=((@.N: " NP)AL)OGH=(P1N---NP)O, ;
la premieére résulte de la platitude de O, sur O(U), la troisieme de la platitude de
0, sur A, et les autres sont banales.

Le Théoréme B de Cartan et

(@10([]) Nne--- ﬂ@kO(U))Oa = (@1 Ne-- ﬂ?Pk)Oa, Vae U,
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implique que
fo(u)=2,0(U)N-- NPOU)=fO0U)N---Nf,0(U)

Chaque idéal &; est contenu dans un idéal f;0(U). Nous allens montrer que

() Chaque f;0(U) contient précisément un seul idéal &;;
(B) Si, pour un i fixé, 1<i<k, f,0(U),...,f, O(U) sont tous les idéaux
contenant &;, alors 'idéal #;0, de 0, est engendré par le germe (en a) de
e fisVaeU.
(a) Fixons a € U. Puisque P;A(, est principal, alors ®;A )= ¢;A(,) pour un
¢ic A(L); si ag Z(P,) on prend ¢; = 1. En localisant fA=%2,N---N%, on a

k
fAay=e1AwN: N@An = (= H ‘Pi)A(a)' (*)
i=1

Raisonnons par I’absurde; supposons que @, UP, < fio(U), i, #i,, et soit ae
fi'(0). Cela impliquerait que les germes ®ia €t ¢, seraient divisibles par f, dans
0.; d’apres (*) f, serait alors divisible dans @, par un facteur multiple sza. Ceci est
impossible par le lemme 1, f étant irréductible dans R[X].

(B) D’apres (a) on a donc (modulo une permutation d’indices):

@1Cf10(U)n' ‘ 'nth(U):(I:Ilf])O(U), ooy

be

#fu 0000 =( ] flow, (%)

j=h-1+1

oulsl<---<h=p.

Posons ¢; =[Th=y,+1 fm j=1,..., k; lo=0. Il suffit de vérifier que si pour un
ae U, PiAq@) = ¢jAq), alors ¢;, et Yj, sont associés dans 0,.

Pour simplifier la notation supposons j =1 et montrons que ¢;, est associé a
Y1a, 00 Yy = f1 - - - fi,. D’aprés (x *) @1, est divisible par ¢, ,. Montrons la réciproque:
soit ¢ € @, un facteur irréductible de ¢,,. Puisque les germes en a de f= H;;l P; et
de H};l @; sont associés, ¢ divise 'un des ¢, (et un seul).

Supposons que ¢ divise y;,, avec j>1; £ divise donc un des fi,, avec 1> 1.
Puisque ®,0, = ¢,0,, le germe en a de chaque élément de P, posséde un facteur
commun avec fi,,, a savoir £ D’aprés le corollaire 1 [2], il en résulte que
P, < fi0(U), ce qui est exclu d’aprés (a), puisque f;0(U) contient déja un ®;, avec
i>1. Cela montre que chaque facteur irréductible de ¢,, divise 1,4, c’est-a-dire
Y14 est divisible par ¢;, (@1, est sans facteur multiple).
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Terminons maintenant la démonstration de (b): soient gi;,..., gm les
générateurs de ?,. D’aprés (B) la somme u; =), g,z, est associé dans O(U) a
hi =TI f. La fonction u;, qui est de Nash, est donc un carré d’une fonction
analytique 1v;; la fonction v; est alors nécessairement de Nash, vy, € N(U).

L’hypothese (2) du théoréme 2 entraine que y;€ A. Puisque v, est associée
dans I’anneau O(U) a []}2 f,, v; engendre ?;0(U), ce qui implique — grace a la
fidele platitude de O, sur A,)—que ¥ engendre 'idéal P;A(,) de A, et par
consequent I'idéal #; de A.

Démonstration du théoréme 2. Soit ® un idéal premier de A(U). Pour
démontrer la factorialit¢ de A(U) il suffit, d’aprés le théoréeme 5 de [8], de
montrer qu’il existe un idéal premier principal contenu dans ®. Soit f un
polynéme irréductible contenu dans %. D’aprés la proposition 3(b), f=[]-; ¢;
avec @;€ A et ;A premiers, j=1,..., k. L’idéal ? contient 'un de ¢;A.

Démonstration de la proposition 1. Supposons H'(U, Z,) # 0. Cette condition
implique I’existence d’une droite affine L < R? telle que L N U posséde au moins
deux composantes connexes, pour 'une d’elles L,, I'’ensemble U\L, étant con-
nexe.

Appelons L,=(L N U)\L,. Sans perte de généralité on peut supposer que L
est ’axe des x et que L, est l'intervalle ouvert ]a, b[. La fonction f(x, y)=y>
admet deux décompositions non équivalentes dans N(U). Posons

fi=J@a—x)(x-bY+y>+(-1Y(a—x)(x—b), feNU), j=1,2

Il est facile de voir que: f=y>=fif,, f;(0)=L;, f; ne divise pas y, f, est
irréductible dans N(U), ce qui prouve que N(U) ne peut pas étre factoriel.

Remarque. On peut montrer que si pour un ouvert semi-algébrique U < R" il
existe un ensemble algébrique L < R" et une composante connexe L; < L N U de
codimension 1, telle que U\L; soit connexe, alors N(U) n’est pas factoriel.
L’existence d’un tel ensemble L est probablement assurée lorsque H'(U, Z,) # 0.
Le probleme est donc posé de démontrer la proposition 1 dans le cas de n
variables.

Le lecteur remarquera que la construction de f dans la démonstration de la
proposition 1 reste valable pour tout anneau semi-algébrique A(U), UcR?,
contenant Ja?+ a3, ou a; sont des polyndémes, a; (0)Na3'(0)NU=J.
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4. Exemples

Soit un anneau semi-algébrique A = A (U); désignons par A" le sous-anneau
de N(U) engendré par A(U) et les solutions y € N (U) des équations de la forme

k
=Y a?, a€A.
i=1

Définissons par récurrence A™ = (A" P)® et posons A =Ji-; A™. L’anneau
semi-algébrique A a la propriété (2) du théoréme 2. Prenons maintenant le
localisé S™'A de A par rapport a la partie multiplicative S ={fe A:f(0)= &}.
L’anneau S™'A est encore semi- algebrlque et satisfait les conditions (1) et (2) du
théoreme 2. Posons A=S""'A si A est intégralement clos, ou bien A =
(fr(S™ YAYNNU) si A ne Dest pas, fr(S™ TA) désigne le corps des fractions de
ST'A.

L’anneau A, ainsi défini, satisfait toutes les hypothéses du théoréeme 2, il est
donc factoriel si H(U, 7,) = 0.

Cette construction permet d’obtenir toute une série d’anneaux semi-
algébriques factoriels et non isomorphes. Par exemple, prenons A,(U)=R[X][Yf]
I’anneau semi-algébrique engendré par les polyndmes de n variables et la racine
Jf, feR[X] irréductible et strictement positif sur U; pe N. On peut montrer que
les anneaux semi-algébriques factoriels A, et A, ne sont pas isomorphes si p# q.

Pour terminer, observons que le critere fourni par le théoréme 2 est efficace
seulement pour A ‘“‘assez grand” par rapport a l'anneau de polynOmes: par
exemple si A satisfait la propriété (2) du théoréeme 2, alors A ne peut pas étre
une R-algébre de génération finie (ni le localise d’une telle algébre). Il serait
intéressant de trouver un critére de factorialité pour les anneaux semi-algébriques
“proches” des anneaux des polynOmes; nous avons étudié a titre d’exemple
A;(D=R[X]V1+(-1)x],j=1,2, I=]-1, 1[ et montré que A, est factoriel, alors
que A; ne l’est pas.

Je remercie mes amis Claude Bruter, Felice Ronga et surtout Jean-Jacques
Risler pour les conversations qui m’ont permis d’éclairer certains points de ce
travail.
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