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A long homology localization tower

E. DrRorR and W. G. Dwyer*

1. Introduction

Let R be fixed as a subring of the rational numbers or a finite field of the form
Z/pZ, p prime. The purpose of this paper is to give a new description of the
R-homology localization Xr of a space X [1]. The main ingredient is an inverse
limit construction for Xr (complementary to Bousfield’s direct limit construction
[1. 11.5]) which is obtained by transfinitely iterating the R-nilpotent completion
process of [3]. Thus one immediate benefit is a clearer understanding of the
relationship between X and the R-nilpotent completion R.X of X.

A space X is said to be R-Bousfield if Xr is homotopy equivalent to X. The
possibility of two constructions for Xg is suggested by the fact that the natural
map X — Xk has two universal properties:

(i) X — Xg is terminal, up to homotopy, in the category of all maps X —» Y
which induce isomorphisms Hy(X; R)=~ Hg(Y; R).

(i) X — Xg is initial, up to homotopy, in the category of all maps X - Y
which have an R-Bousfield target space Y.

In order to exploit property (ii) effectively, it is necessary to study the

1.1. Structure of R-Bousfield Spaces. For each ordinal a =0, let I, be the class of
R-Bousfield spaces defined inductively as follows.

(i) Ip contains all fibrant spaces with the property that each connected
component has the homotopy type of a simplicial R-module.

(ii) I, (a>0) contains all fibrant spaces which are of the homotopy type of
holim_ D [3, p. 295], where D is a small diagram of spaces, each of which
belongs to Iz for some B <a.

The spaces in I, are R-Bousfield by [1, §4] and, inductively, the spaces in I,
(a>0) are R-Bousfield by [1, §12]. Using [2] it is not hard to prove (see §5)

1.2. PROPOSITION. If X is an R-Bousfield space, then X eI, for some
ordinal a.

* Supported in part by National Science Foundation grant MPS72-05055 A03.
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186 E. DROR AND W. G. DWYER

1.3. The Long Tower. Let {2 be the opposite category of the category of all
ordinals, that is, {2 is the category with one object for each ordinal @ and one
morphism B — a for each B=a. A long tower in a category C is a functor
F:0Q — C, usually written {F(a)},. The long tower is said to be augmented by the
object X of C if there are compatible maps X — F(a), a € (2.

For any space X we will construct a natural long R-homology localization
tower {T, X}, of spaces, naturally augmented by X, such that

1.4. () if f:X— Y induces an isomorphism Hg(X; R)— Hg(Y; R) then f in-
duces homotopy equivalences T,X~T,Y,
(ii) for any X or a, T,X€l,, and
(iii) if X € I, then the natural map X — T,.,1X is a homotopy equivalence.

In view of 1.2, these properties imply that

(iv) for each space X there is some ordinal a such that for all B > a, the map
X—TgX is up to homotopy the R-homology localization map X — Xg.

In fact, a can be chosen to be any ordinal such that Xgel,. Thus the point at
which the localization tower finally stabilizes for a given X depends explicitly on
the minimal number of homotopy inverse limits needed to construct Xy from the
spaces in I, (that is, from disjoint unions of products of R-module Eilenberg-
MacLane spaces [6, 24.5]). This ordinal is an intrinsic measure of the homotopical
complexity of Xz or of the homological complexity of X itself.

1.5. Relationship to the R-completion. The first few spaces in the tower {T, X},
appear at least implicitly in [3]. The space T, X is exactly RX [3, p. 14], T1 X is
homotopy equivalent to R.X, and T,X is homotopy equivalent to the homotopy
inverse limit of the cosimplicial resolution of X [3, p. 20] constructed using the
triple structure of R. [3, p. 26]. The whole tower {T,X}, is obtained by imitating
the process of passing from RX to R.X at successor ordinals and taking inverse
limits at limit ordinals (see §6). The main technical innovation is the substitution
of augmented functors (§3) for triples [3, p. 13].

This paper was inspired by Bousfield’s algebraic work in [2], but, although we
use his results heavily, our constructions do not seem to be related in a simple way
to his.

1.6. Organization of the Paper. Section 2 gives a simplified outline of our general
approach. Section 3 contains some preparatory material of a category-theoretical
nature; Section 4 gives a generalization to transfinite towers of a result which is
well known for towers indexed by the natural numbers; and Section 5 presents a
proof of 1.2. Section 6 contains the construction of the tower {T,X}, and the
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proof of its properties; Section 7 has an inductive ‘“Artin-Mazur-like” interpreta-
tion of the functors T,, and the final section contains some examples.

1.7. Notation and Terminology. Although our arguments are not usually com-
binatorial, the word space is used as a synonym for simplical set ([3, VIII], [6],
[7)); S denotes the category of spaces. For convenience we will sometimes use
the terminology of homotopical algebra [7: I, 1.1 and II, 3.14]; for instance, a
cofibration is an injection of simplicial sets, a fibration is a Kan fibration, and a
space X is fibrant if the unique map of X to the one-point space is a fibration, i.e.,
if X satisfies the Kan extension condition.

2. Outline of the proof

This section presents the main arguments of the paper in a schematic setting in
which most of the technicalities disappear. We hope that this will help the reader
to catch sight of the underlying simplicity of the basic ideas.

Warning! This section is independent of the rest of the paper in notation and
terminology.

Let C be a category closed under inverse limits. An augmented functor (T, ¢)
on C is a functor T:C — C together with a natural transformation ¢ :1c— T.

2.1. An Equalizer Construction. Let (T, ¢) be an augmented functor on C. For
XeC, let T"(X) denote the equalizer of the two maps ¢(TX), T(¢(X)): TX —
T?X, that is, let T"(X) be the inverse limit of the diagram

T(6(X))
TX —=T°X

¢ (TX)

The construction of T™(X) is a functorial in X; moreover, since (¢T)o ¢ =
T(¢) < ¢, T"(X) comes equipped with a natural map ¢"(X): X — T"(X) such that
the obvious diagram
o THX)
£
X
SO

T(X) commutes.

2.2. Collapse Lemma (cf. 3.6). If $(X): X — TX has a left inverse, then the map
¢"(X): X - T"(X) is an isomorphism.
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Proof. Let s : TX — X be a left inverse for ¢(X), and let i : T"(X)— TX be the
natural map. Then it is easy to see that s i is a two-sided inverse for ¢"(X).

2.3. Bousfield Objects. Let E be a distinguished class of morphisms of C called
equivalences (or homology equivalences). An object Z € C is said to be Bousfield if
any equivalence f: X — Y induces a bijection Hom (Y, Z) —» Hom (X, Z). The
class of Bousfield objects is closed under inverse limits. A localization map for
X eCis amap e: X — Z such that e is an equivalence and Z is Bousfield. Such a
Z is called a localization of X; if one exists, it is unique up to a canonical
isomorphism.

2.4. Assumption. Every object X € C has a localization.

Suppose that I, is some naturally given class of basic Bousfield objects. By
induction, for each ordinal @ >0 let I, denote the class of all objects which can be
written up to isomorphism as lim. D where D is a small diagram of objects in
C each of which belongs to I; for some B <a.

2.5. Assumption (cf. 1.2). For any Bousfield object X € C there is an ordinal B
such that X € I.

2.6. A Long Localization Tower (cf. §6). Suppose (R, ¢) is an augmented functor
on C such that

(i) for any X € C, RX is Bousfield, and

(i) if f: X — Y is an equivalence, then Rf:RX — RY is an isomorphism.
Thus R fails to be a localization functor only because ¢(X): X — RX need not be
an equivalence. Suppose that (R, ¢) satisfies the additional restriction

(iii) if X € I, then the natural map ¢(X): X — RX has a left inverse. Define a
long tower {(T,, ¢.)}. of augmented functors by transfinite induction as follows.
The pair (To, ¢o) is (R, @). If a=B+1 is a successor ordinal, then (T,, ¢,) is
(Tg, ¢p). If @ is a limit ordinal, then (T,, ¢,) is the inverse limit of (T, ¢g) over all
ordinals B <a.

2.7. PROPOSITION. Forany X € Cthere is some ordinal a such thatforall > a
the natural map ¢g(X): X — TgX is a localization map.

Proof. Let e: X — Z be a localization map for X. It follows from 2.6(ii) that e
induces isomorphisms T,X— T,Z for all ordinals «; thus it suffices to show that
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there is some ordinal o such that for all 8 =« the map Z — TzZ is an isomorph-
ism. This follows from 2.5 and

2.8. LEMMA. If ZeT,, then ¢p(Z):Z— TyZ is an isomorphism for all
B=a+1.

Proof of Lemma. The technique is transfinite induction on a. The case a =0
follows from 2.6(iii) and 2.2. Pick X e I,, >0, with X =lim. D, where D is
some diagram of objects each of which belongs to Iz for some B <a. Consider
the commutative diagram

X — TX

LI

lim D — lim T,D

where the horizontal maps are induced by ¢,. The induction hypothesis shows
that the lower horizontal arrow is an isomorphism, since ¢.(Y): Y— T,Y is an
isomorphism for each object Y in the diagram D. Thus ¢,(X): X — T,X has a
left inverse, and the inductive step follows from 2.2.

2.9. Remark. The above program does not lead to an inverse limit construction
for homology localizations only because the homotopy category of the category S
of spaces is not closed under inverse limits. This paper is guided around that
obstacle by the principle that the notion of homotopy inverse limit [3, XI] in S
provides a natural substitute for the missing notion of inverse limit in HoS.

3. Categorical preliminaries

3.1. Restricted Cosimplicial Spaces. A restricted cosimplicial space X is a ‘“‘cosim-
plicial space without codegeneracies,” that is, X consists of

(i) for each integer n =0 a space X", and
(i) for each pair (i, n) of integers with 0=<i=n coface maps

d: X" X"

such that d’'d' =d'd"™" if i<j[3, p. 267].

The object X is said to be augmented by X' if there is a map d°: X' — X°
such that d°d°=d'd*: X' > X"
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It ..c same way in which cosimplicial spaces are associated to triples on S [3,
pp- 20, 323], restricted cosimplicial spaces are associated to

3.2. Augmented Functors. An augmented functor (T, ¢) on S is a pair in which
T:S— S is afunctor and ¢ : 1s— T is a natural transformation. The fact that ¢ is
a natural transformation implies that (T(¢))° ¢ =(¢T)° ¢.

Let (T,¢$) be an augmented functor on S and let XeS. The restricted
cosimplicial resolution of X with respect to T is the augmented restricted
cosimplicial space TX given by

(TX)k — Tk+1X

in codimension k, and
(TX)* 25 (1X)%) = (TFX 2255 T X)),

3.3. T-Completions. Let A, denote the restricted simplicial category, that is, the
category whose objects are the finite ordered sets [n]={0,1,...,n} (n=0) and
whose morphisms are strictly monotone maps. The restricted cosimplicial space
TX (without its augmentation) can be thought of as a functor

TX:A:— S.

The T-completion of X, denoted T"(X), is defined to be the homotopy inverse
limit of TX [3, p. 295]:
T"(X)=holim TX.

The augmentation ¢(X):X—> TX=(TX)° induces a natural map
¢ (X): X — T?(X). There is also a natural map T"(X)— T(X) which induces a
morphism (7", ¢") — (T, ¢) of augmented functors.

3.4. LEMMA. If the spaces T"X (n=1) are fibrant, then the natural map
T*(X)— TX is a fibration.

This is proved below in 3.11.

3.5. A Collapse Criterion. Let (T, ¢) be an augmented functor on S. It is useful to
have a criterion that guarantees, for a given XeS, that the map
¢"(X): X — T"(X) is a homotopy equivalence.

3.6. Collapse Lemma. Suppose that T"X is fibrant for all n=1 and that the
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natural map &(X):X — TX has a left inverse. Then the completion map
¢ (X): X — T"(X) is a homotopy equivalence.

3.7. Relationship to Cosimplicial Constructions. Let A denote the full simplicial
category, that is, the category whose objects are the same as those of A,.,, but
whose morphisms are all weakly monotone maps. If (7, ¢, ¢) is a triple or monad
on the category of spaces [3, p. 13], Bousfield and Kan associate to any space X a
cosimplicial resolution with respect to T [3, pp. 20, 323]; this is a cosimplicial space,
or, equivalently, a functor

T*(X):4 — S.

Let (T, ¢) be the underlying augmented functor of (7T, ¢, ¢), and let J: A5 —
A be the obvious inclusion functor. For any X there is a commutative diagram

J
Arest —s 4

TJ‘(\‘ / T*(X)
S

which induces a natural map [3, p. 316]
ho(l_im T*(X) — holim TX = T(X).

3.8. LEMMA. If T"X is fibrant for all n=1, then the map
holim. T*(X) — T"(X) is a homotopy equivalence.

If (T, ¢, ) is a triple, let T.X denote Tot (T*(X))[3, p. 17].

3.9. COROLLARY. IfT*(X)isa fibrantcosimplicial space [3,p.275], thereisa
natural homotopy equivalence T.X — T"(X).

This follows from [3, p. 300].
The rest of this section contains the proofs of 3.4, 3.6 and 3.8.

3.10 The Over Category. Suppose that C and D are categories, and that J:C— D
is a functor. For each d € D the over category J/d is defined as having one object
for each pair (c,f) where ceC and feHomp (J(c),d), and one morphism
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(¢, f)— (c', f') for each g€ Homc (c, ¢") such that

J(g)

J(c)—= J(c)

N,/

commutes. The composition rule in J/d is induced by the rule in C.

If C is small, then J/d is small and thus has a nerve or spatial realization, which
is a space also denoted by J/d [3, p. 29]. In general we will make no notational
distinction between a small category and its spatial realization. For instance, if C
is a small category and ceC, C/c will denote (the spatial realization of) the
category 1¢/c, where 1c is the identity functor on C. Similarly, C/- will denote the
functor C— S which assigns to each object ¢ € C the space C/c.

3.11. Proof of 3.4. Let V(n, k) denote the space formed by the boundary of
the standard n-simplex with the k’th face deleted [7, II, 2.1]. There is a
cofibration V(n, k) — A[n], where A[n] is the standard n-simplex itself. To prove
the lemma it is enough to show that the dotted arrow exists in any diagram of the
form

Vin, k)= T(X)

-,
-
-
-
-
-
v
.

A[n]’ — T(X).

By an adjointness argument [3, p. 296] this comes down to showing that there is a
map g:A[n]x(A s/ —)— TX which extends both the given map

A[n] = A[n] X (Arest/[O]) - TX
and the map
f' : V(ny k) X (Arest/-) g TX

which is adjoint to f.
The map g is built up by using induction on m to construct its components

gm : A[n]X (Ares/[m]) > T X.

The map g, is given. The space A,./[m] is the first barycentric subdivision
sdA[m] of the standard m-simplex and the prescription of g,_; determines the
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restriction of g, to A[n]xsd(A[m]), where A[m] is the boundary of the m-
simplex. In addition, the requirement that g extend f’ determines the restriction
of g to V(n, k) xsdA[m]. Thus g, must be constructed as the dotted arrow in a
diagram of the form

(V(n, k) x sdA[mDU(A[n]x sdA[m]) — T"''X

_________ ]

A[n]xsdA[m] = *

where * is a one-point space. The existence of such a dotted arrow follows from
the fact that the right vertical arrow is a fibration while the left vertical arrow is a
cofibration and weak equivalence.

The proofs of 3.6 and 3.8 depend on a basic property of homotopy inverse
limits. Recall that a functor J:C — D (C small) is said to be left cofinal if for each
d € D the space J/d has the weak homotopy type of a point.

3.12. COFINALITY THEOREM (3, p. 316]. Suppose that C and D are
small categories, and that

c—2sp

W

is a commutative diagram such that

(i) J is left cofinal, and
(i1) for each de D, G(d) is fibrant.

Then the induced map holim._ G — holim._ F is a homotopy equivalence.

We will apply 3.12 by showing that appropriate functors with domain 4, are
left cofinal. The simplest way to do this is to interpret cofinality geometrically.

3.13. Restricted Simplicial Sets. A restricted simplicial set X is a “‘simplicial set
without degeneracies,”” that is, X consists of

(i) a set X, (of n-simplices) for each n=0, and
(il) maps d;: X,— X,—1, 0<i=n, such that dd, =d;_,d, if i <j [3, p. 230].

Restricted simplicial sets can be identified in the usual way with functors
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(Arest)®™ — Sets. A restricted simplicial set X has a natural enveloping space,
denoted R(X), defined by

R(X)=(]_[ X,,xA[n]>/~.

n=0

Hence A[n] is the standard n-simplex and the equivalence relation ~ is gener-
ated by

(dix, s)~(x, 8's)  x€Xnn
seAln]

where 8':A[n]— A[n+1] is the i’th face inclusion.

The functor R is the left adjoint to the forgetful functor from simplicial sets to
restricted simplicial sets. It is not hard to see that the nondegenerate simplices of
R(X) are in one-one correspondence with the simplices of X itself.

3.14. LEMMA. Let J:A,.«.— D be a functor, and let deD. Then J/d is
weakly homotopy equivalent to R(X), where X is the functor (A,.:)”® — Sets given
by

X([n])= Hgm (J([n), a).

Proof. A calculation shows that for any small category C and functor J:C —
D, the space J/d is isomorphic to

(H Hom (J(c), d) X (C/c)) / ~.

ceC D

Here the equivalence relation ~ is generated by

(foJg, s)~ (£, 8xs)

where fe Homp (J(c,), d), g€ Home (¢4, ¢2), and g« :C/c; — C/c, is induced by g.
The proof consists in applying this to A,... and using the fact that for each n the
space A,../[n] is isomorphic to the first barycentric subdivision of the standard
n-simplex.

An augmentation for a restricted simplicial set X is a map do: Xo — X_; such
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that dodo=dod:: X; — X_;. A contracting homotopy for an augmented restricted
simplicial set X is a family of maps s: X, — X, . such that

(1) d,+1s =identity, n=-1, and
(i) dis=sd;, 0=i=<n.

In the statement of the following lemma, the set X_,; is identified with the
discrete space it represents.

3.15. LEMMA. If X is an augmented restricted simplicial set with a contracting
homotopy, the induced augmentation map R(X)— X_, is a weak homotopy
equivalence.

Proof. Since R commutes with disjoint union, it is enough to prove the lemma
when X_, is a single point. In this case one computes that the fundamental group
of R(X) is trivial and that s induces a contracting homotopy on the normalized
integral chain complex of R(X).

3.16 Proof of 3.6. Let A, denote the augmented restricted simplicial categ-
ory with a contracting homotopy, that is, Ay consists of

(i) one object [n] for each n=-1,
(ii) for every pair (i, n) of integers with 0=<i=<n coface maps

d :[n—1]—[n]
such that d'd'=d'd’ ' if i<j, and
(iii) for each n=0 a map
s:[n]—>[n—-1]
such that

sd"” =identity, n=-1
sd'=d's, i<n.

There is an obvious inclusion functor J:A;ew—> Ajeer. Suppose that the map
d(X): X — T(X) admits a left inverse r:T(X)— X. The resolution functor

+

TX:A.— S can then be extended to a functor T" X : A, — S by setting

T (r)

(T X[n]—-—>T'X[n-1])=(T""X—T"X)
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and

d $(X)

(T X[-1]-55 T X[0]) = (X &5 TX).

This gives a commutative diagram

J +
Aeest > Arest

S
The category A,.: has [—1] as an initial object, so the canonical map
X=T"X[-1]=limT" X — holim T"X

is a homotopy equivalence [3, p. 299]. (This can also be derived from the fact that

+

the inclusion of the singleton category [—1] into A/ is left cofinal.) Thus, by
3.12, it is enough to show that the functor J is left cofinal.
Pick [m]e A If the restricted simplicial set X given by

X[n]=Hom (J([n],[m]
is furnished with the augmentation
X[0]—=> Hom (~11, [0])
Alest

induced by composition on the right with d°, then composition on the left with s
provides maps

X[n]— X[n+1]

which give a contracting homotopy for X. By 3.15 R(X) is contractible, and the
lemma thus follows from 3.14.

3.17. Proof of 3.8. Let J:A,.«— A be the inclusion functor. According to
3.12, it is sufficient to show that J is left cofinal. Pick [m]e A4 and let X be the
restricted simplicial set with

X[n]=Hgm J([nD,[m].
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It is clear that X is just the underlying restricted simplicial set of the standard
m-simplex A[m]. An easy calculation shows that R(X) is simply-connected; in
addition, since the normalized integral chain complex of R(X) is the same
as the unnormalized integral chain complex of A[m], the reduced integral hom-
ology of R(X) vanishes. Therefore, R(X) is contractible and the lemma follows
from 3.14.

4. A tower lemma

4.1. Fibrant Towers. A tower of spaces {X,}a<g Of length B is a functor {23 — S,
where (23 is the full subcategory of (2 containing all ordinals less than . Unlike
long towers, towers are small diagrams of spaces and thus have both inverse limits
and homotopy inverse limits.

The tower {X,},<p is said to be fibrant if

(1) Xo is a fibrant space, and
(ii) for each a < B the natural map

Xx - h(_I_n {X'y}'y<a
is a fibration.

4.2. FIBRANT TOWER LEMMA. If {X,}.<g is a fibrant tower, then the
natural map

lim {X, }a<g — holim { X, }. <g

is a homotopy equivalence.
The function complex Hom ({A,}a <g, {Xa}a<p) Of maps between two towers is
the space whose n-simplices (n=0) comprise all tower maps

{Aa X A["]}a <g > {Xa}a<3

and whose face and degeneracy operators are induced by the standard inclusion
A[n]— A[n+1] and the standard collapses A[n]— A[n—1][3, p. 295]. If {*}.<g
is the constant one-point tower, then

Hom ({*}a <Bs {Xa}a <B) = lg_n {Xa}a<[3
while if {2s/a}s<p is the tower of 3.10, then

HOm ({ﬂBla}a <@ {Xx}a <B) = ho(l_lm {Xa}a <fA-



198 E. DROR AND W. G. DWYER

4.3. LEMMA. Suppose that {A,}a<g = {Ba}a<g is a tower map which induces a
trivial cofibration A, — B, for each a <. Then for any fibrant tower {X,}o<p the
restriction map

Hom ({Ba}a <B> {Xa}a<ﬂ) — Hom ({Aa}a<B, {Xa}a <B)
is a trivial fibration.

4.4. Remark. A fibration or cofibration is trivial if it is also a weak homotopy
equivalence.
Lemma 4.2 is proved by applying 4.3 twice: first to the obvious map

{Qo/a}ta<g— {26/0}0<p

where the second tower is constant, and then to any inclusion

{*}a<p = {26/0}a<p.

Note that each of the spaces {Jg/a is a contractible by [3, p. 293].

Proof of 4.3. The conclusion of 4.3 holds if and only if a dotted arrow exists in
every diagram of the form [7, II, 2.1]

-
-
-’
-
.=
-

A[n]— Hom ({Aa}aqa, {Xota <3)

where A[n]— A[n] is the inclusion of the boundary of the standard n-simplex. By
an adjointness argument this is equivalent to showing that the dotted arrow exists
in each diagram

{Aata<p— {Hom (A[n], Xo)}a<e

-
.
-
-
-
-
-
-
-
-,

{Bu}a<p— {Hom (A[n], X)}a- s

where in this case Hom denotes the standard function complex of maps between
spaces [6, p. 16]. This second dotted arrow is constructed by an induction on e.
The case a =0 is straightforward and uses the assumption that X, is fibrant. The
induction step for a >0 depends on the existence of yet another dotted arrow in
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the diagram
A, >Hom (4[n], X,)
Boz - hg_n {Hom (A[n]9 Xy)}'y<a X lim {Hom (A[n],X,)}1,<a Hom (A[n]9 Xa)

This dotted arrow exists because the left vertical map is a trivial cofibration and
the right vertical arrow is a fibration.

5. R-Bousfield spaces

The purpose of this section is to prove 1.2. The proof is based on Bousfield’s
algebraic characterization of R-Bousfield spaces [1, §5].

We will use the terminology of [2] except that HR-local groups and HZ-local
m-modules will be called R-Bousfield groups and Z- Bousfield w-modules. Recall
that R is a subring of the rational numbers or a finite field of the form 7Z/pz, p
prime.

5.1. PROPOSITION [2:3.10, 2.6]. The R-Bousfield groups form the smallest
class of groups such that

(i) the class contains the trivial group,
(ii) the class is closed under inverse limits of arbitrary towers,
(ii1) if Y is in the class and 1 > W — X — Y — 1 is a central extension with W
an R-module, then X is in the class,
(iv) if X is in the classand 1 > W — X — Y — 1 is a short exact sequence with
Y abelian and an R-module, then W is in the class.

Let 7 be a group and let M be a w-module. Then M will be called an R-Bousfield
m-module if

(i) M is R-Bousfield as an (abelian) group, and
(i) M is Z-Bousfield as a w-module.

It is not hard to prove using [2:8.9, 7.3] that
5.2. LEMMA. The R-Bousfield mw-modules form the smallest class of -
modules such that

(i) the class contains the zero m-module,
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(ii) the class is closed under inverse limits of arbitrary towers,

(iti) if Y is in the class and 0 > W — X — Y — 0 is an extension of w-modules
with W simple (= trivial w-action) and an R-module, then X is in the
class,

(iv) if X is in the class and 0 > W — X — Y — 0 is a short exact sequence with
Y simple and an R-module, then W is in the class.

In fact, it is clear that the class of R-Bousfield w-modules contains the class
described in 5.2. If R = Q the opposite inclusion follows easily from the fact that
by naturality the HZ-tower of an R-Bousfield m-module M is itself a tower of
R-modules. If R=7/pZ it is possible to use the natural action of 7 on the
HR-tower of the underlying abelian group of M and to show by transfinite
induction that each 7-module in this tower belongs to the class described.

5.3. LEMMA [1, §5]. A fibrant space X is R-Bousfield if and only if for every
i =2 and every choice of basepoint x € X,

(i) m(X, x) is an R-Bousfield group, and
(i) m(X, x) is an R-Bousfield w(X, x)-module.

5.4. Proof of 1.2. Let C denote the union of the classes I,. It is necessary to
show that every R-Bousfield space X belongs to C. Note that by definition C is
closed under arbitrary homotopy inverse limits.

Let 7 be a group and let M be a w-module. For n =1, L(w, M, n) denotes the
split fibration over K(, 1) with fibre K(M, n) which is determined by the action
of m on M.

Every fibrant space X is homotopy equivalent to the homotopy inverse limit of
its Postnikov tower {P,X}..<., where w is the first infinite ordinal. Moreover, if B
runs through a selection of basepoints for X, one for each path component, there
are homotopy fibre squares

P.X— [ K(m(X, b),1)
1 beB 1

P, 1 X — |] L(m:(X, b), (X, b), n+1).

beB

Thus by 5.3 it suffices to show that for each fixed n=1 every space which is a
disjoint union of spaces of the form L(m, M, n) for various R-Bousfield groups =
and various R-Bousfield m-modules M belongs to C.

This is done by induction on n. We will assume n>1 and prove that every
(connected) space of the form L(m, M, n) belongs to C. The general case can be
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proved in the same way by using the fact that homotopy inverse limits over
categories with connected nerves commute with disjoint unions. The initial case
n=1 is similar to the case n > 1 but simpler.

Let 7 be an R-Bousfield group. It is easily seen that the class of R-Bousfield
m-modules M such that L(m, M, n) belongs to C satisfies parts (i), (iii) and (iv) of
5.2, so it remains to show that if {M,},<p is a tower of R-Bousfield 7-modules
such that each L(m, M,, n) belongs to C, then L(m, M, n) belongs to C, where
M =1lim. {M,},<p. This is done as follows. Using bar construction techniques [6,
p. 83] one devises a way of constructing the spaces L(m, M,, n) which is functor-
ial in M,. Thus the tower {M,},<g of m-modules gives rise to a tower
{L(m, M,, n)}.<g of spaces. Let X denote holim_ {L(m, M,, n)},<p. The space X
belongs to C and by [3, p. 309] and naturality there are w-module isomorphisms

T X~=M

mX=0, i>n.

Note that the homotopy groups of X actually are m-modules by virtue of the fact
that the composite

f: X — L(m, Mo, n) = K(m, 1)

has a section K(m, 1) — X.

Let P,_,(f) denotes the n—2 stage in the Moore-Postnikov factorization of f
[6, p. 34]. The inductive hypothesis implies that P,_,(f) belongs to C, so the space
Y which is defined as the homotopy inverse limit of the square

Y — X

.
K(777 1) - Pn—-2(f)
also belongs to C. Up to homotopy the space P,_;(g) is a split fibration over

K(m, 1) with K(,,-,(Y), n—1) as the fibre, so, by induction, P,_;(g) belongs to C
too. The proof is finished by noting that there is a homotopy fibre square

L(m,M,n)— Y

|

K(7T: l) - Pn—l(g)'
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6. Construction of the tower

The object of this section is to construct for each a € {2 an augmented functor
(Ty, ¢o) on S and compatible morphisms (7T, ¢g) = (T,, do) for B>a. For Xe S
the augmented long tower X — {T, X}, is the R-homology localization tower of X.

The construction is by transfinite induction. The pair (7o, ¢o) is the underlying
augmented functor of the triple (R, ¢, ¢) of [3, p. 13]. If « =B +1 is a successor
ordinal, (T,, ¢.) is{T3, ¢); by 3.3 there is a natural morphism (7, ¢o) = (T, @p).
Finally, if « is a limit ordinal the pair (T,,, ¢,) is lim. {(Tg, dg)}s<s; this evidently
comes with a natural map into (T, ¢) for each B <a.

The identification of T, and T, made in 1.5 follows easily from 3.8, 3.9 and
6.1 below. The rest of this section is taken up with proving that the tower {7, X},
has the properties listed in 1.4. Recall the

6.1. Homotopy Invariance Lemma [3, p. 304]. Let D be a small category, let
F,G:D — S be functors, and let 7: F— G be a natural transformation. Suppose
that for all d e D

(i) the spaces F(d) and G(d) are fibrant, and
(i1) the map 7(d): F(d) — G(d) is a homotopy equivalence.

Then 1 induces a homotopy equivalence Holim. F — Holim.. G.

6.2. Proof of 1.4(i). The space ToX = RX is always fibrant, since choice of a
basepoint for X makes RX into a simplicial R-module [3, p. 14]. Using 3.4 it is
easy to show by induction that T,X is fibrant for all a.

For any space X, wmxRX is naturally isomorphic to Hx(X; R) (reduced
homology). This implies that a map f: X — Y induces a homotopy equivalence
ToX — ToY iff it induces an isomorphism Hy(X; R) — Hx(Y; R). Thus 1.4(i)
follows inductively from 6.1 and, in the limit ordinal case, 4.2.

6.3. Proof of 1.4(ii). This follows inductively from the definitions and, in the limit
ordinal case, 4.2.

6.4. Proof of 1.4(iii)). We will show by induction on a that if X € I, the natural
map ¢(X): X — T,X has a left inverse r: T,X— X. The desired result then
follows from 3.6.

In the case «a =0, it is possible to assume that each component of X has the
structure of a simplicial R-module. Thus if X is connected there is an obvious
canonical retraction RX — X given by evaluating formal sums. A retraction in
the disconnected case can be constructed by using the fact that the map
mo(P(X)) = meX — meRX is injective, since it is essentially the Hurewicz
homomorphism X — Ho(X; R).
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Suppose a > 0. It is enough to show that there is a commutative triangle

(XD
xS T x

\ /

in which the map X— W is a weak homotopy equivalence. In fact it is clear that
given such a triangle there exists perhaps another one in which T,X— W is a
cofibration. The map ¢,(X) is a cofibration (since X — RX = Ty X is) so it follows
that X — W is a cofibration too. The fact that X is fibrant then implies that the
map X — W has a left inverse.

Note that the induction hypothesis implies that if 8 <a and Y € I, then the
map ¢,.(Y):Y— T,Y is a homotopy equivalence. This is immediate if o is a
successor ordinal and follows from 4.2 and a tower cofinality argument ([3, p.
317] and 3.12) if a is a limit ordinal.

It is possible to assume that there is some small category C and functor
F:C— S such that

(1) X =holim F, and
(ii) for each ceC there is a B <a such that F(c)e I,.

Consider the commutative diagram

X — holimcon(X) —> holim XxC/- —— holim F

| | | |

T, X— holim con (T.X) PRLE holim T,(X X C/-) — holim T,F.

Here con (X) and con (T,X) denote the obvious constant functors C— S and C/-
is as in 3.10. The vertical maps are induced by &,, the left-hand horizontal maps
by the natural transformation lim. — holim_ [3, p. 298] and the right-hand
horizontal maps by the morphism X X C/-— F which is adjoint to the identity
map X — holim._ F [3, p. 296]. The map s takes fe Hom (C/-,con (X))=
holim._ con (X) to fX id € Hom (C/-, con (X)) X Hom (C/-, C/-) = holim_ X X C/-.
Finally, ¢ is induced by the projection

T(X x C/-) = con (T X).

The composite of the maps on the top line is the identity map, and ¢ is a
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homotopy equivalence by 6.1. Furthermore, the induction hypothesis shows that
the map holim._ F — holim._ T,F is a homotopy equivalence.
Factor the map ¢ as the composite of a trivial cofibration (4.4)

holim T,(X XC/-) > Y
and a trivial fibration
Y — holim con (T, X).
Let Y’ be the pushout of the diagram

holim T(X X C/-) — holim T,F

| l

Y Y’

so that the map holim. T,F— Y’ is a weak homotopy equivalence [7:1, §1, M4].
There results a commutative diagram of solid arrows

b'e Y —~Y’
T..X 5 holim con (T, X)

in which the composite X — Y’ is a weak homotopy equivalence. The dotted
arrow can then be found because the left vertical arrow is a cofibration and the
right vertical arrow is a trivial fibration.

7. An interpretation of the functors T,

The purpose of this section is to show that the spaces T,X of §6 can be
identified, up to homotopy, with the homotopy inverse limits of Artin-Mazur-like
large diagrams of spaces. This is a natural extension of the identification of
R.X(~ Ty X) made in [3, p. 324].

Let (T, ¢) be an augmented functor on S. A space Y is said to admit a
T-structure if the natural map ¢(Y): Y — TY has a left inverse r: TY — Y. For
any space X and ordinal B >0, let T,-g\ X be the category consisting of

(i) one object for each map X — Y of S such that Y admits a T,-structure for
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some a <f, and
(ii) one morphism (X — Y)— (X — Y’) for each f: Y — Y’ in S such that

X
/N
Y—Y'

commutes.
There is an Artin-Mazur functor

AM(X): Ty<g\ X — S
which sends (X — Y) to the target space Y.

7.1. PROPOSITION. For any ordinal B> 0 the space TzX has the homotopy
type of the homotopy inverse limit of AMg(X).

From a qualitative point of view the proposition says that the map X — TgX
comes as close as homotopy theory allows to being universal for all maps X —» Y
with the property that Y admits a T,-structure for some a <.

Part of the work in proving 7.1 is to show that the homotopy inverse limit of
the large diagram AM;(X) is well defined, up to homotopy. Recall that a (large)
category D is said to be left small if there is a left cofinal (3.12) functor J:C — D.
(Note that C, as the domain of a left cofinal functor, is necessarily a small
category.)

7.2. PROPOSITION ([3, p. 321-322]. If D is a left small category and
F:D— S is a functor, then the homotopy inverse limit of F is well defined, up to
homotopy. Moreover, if J:C— D is left cofinal and F(J(c)) is fibrant for each
c € C, then the homotopy inverse limit of F has the homotopy type of holim._ Fo J.

The proof of 7.1 breaks up into two cases.

7.3. The Successor Case. Suppose that B =vy+1 is a successor ordinal. The
argument of 6.4 shows that for any space Y the space T,Y admits a T.,-structure;
in particular, the spaces T7X (n=1) admit T,-structures. Thus the restricted
cosimplicial space T,X together with its augmentation determines a functor

T;X : Arest g Ta<B\X'
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Since each of the spaces ToX (n=1) is fibrant (6.2), it suffices to prove that T.X

is left cofinal.
Pick an object X — Y of T,3z\ X By 3.14 it is enough to show that R(W) is
contractible, where W is the restricted simplicial set given in dimension n by

W,=Hom (X— T;"'X, X - Y).

Ta<ﬂ \x

The space Y admits a T,-structure for some a < vy; this easily implies that Y
admits a T,-structure. Let r:T,Y—Y be a left inverse for ¢,(Y):Y—> T,Y.
Define maps s: W,— W, by

X X
/SN S\
roT,(f)

T-,;+1X_‘L>Y T2+2X"'——““"‘)Y

If W is augmented in the natural way by letting W_; be the one-point set
representing the commutative diagram

X
L
then the maps s provide a contracting homotopy for W. The desired result then
follows from 3.15.
7.4. The Limit Ordinal Case. Suppose that 8 is a limit ordinal. Let

{TotX}a<B : QB X Arest - S

be the functor which assigns to each space X the tower {T,X}.<p of restricted
cosimplicial spaces. As in 7.3 it is easy to see this lifts to a functor

{T;X}a<ﬂ . QB X Arest - Ta<B\X~

Since holim. {T.X}.<s is homotopy equivalent to TgX [3, p. 300, 4.3] it is
enough to show that {T. X}, is left cofinal.

Pick X — Y in T,-gX. We will use the language of homotopy direct limits [3,
p. 325] to sketch a proof that {T.X},<g/(X — Y) is contractible.
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First there is a general observation. Let C be a small category and let
J:C— D be a functor. For any element d € D there is a functor H, : C°* — SETS
sending c € C to the set Homyp (J(c), d). Since any set can be identified with a
discrete space, H; can be thought of as a functor C°®* — S. The following
calculation was implicitly referred to in the proof of 3.14.

7.5. LEMMA. For each d € D there is an isomorphism of spaces

J/d == hO_le Hd.

According to the properties of homotopy direct limits over product categories
[3, p. 331], this implies that

{T%X}azp/(X — Y) =holim F

where F: 5" — S is the functor which sends a € 25" to T.X/(X — Y).

If Y admits a T,-structure, the argument of 7.3 shows that F(«) is contractible
for all a € 23°, a = v. The desired result then follows from the fact that since (2g°
is right filtering, holim_, F is weakly homotopy equivalent to lim_, F [3, p. 332].

8. Examples

The purpose of this section is to extract some information about the behaviour
of the long homology localization tower {T,X}, for certain special classes of
spaces X. In particular, we are interested in how rapidly the tower converges to
Xg. The main tool for studying this is 1.4(iii).

8.1. Nilpotent Spaces. It follows from 1.5 that Xz~T;X (~ =homotopy
equivalence) iff X is R-good in the sense of Bousfield and Kan. In particular,

8.2. PROPOSITION [3, V, VI]. If X is a nilpotent space and R is any of the
admissible rings, then Xg~T) X.

If R =< Q we know of no spaces X for which Xg ~T;X and Xk is not nilpotent.
If R=17/pz, however, there are many such examples ([3, VII], [4]).

8.3. Virtually Nilpotent Spaces. A connected space X is said to be virtually
nilpotent if each Postnikov stage P,X can be finitely covered by a nilpotent space.
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If R =7/pZ, then all such spaces are R-good [4]. The main result of [4] shows that
if X is virtually nilpotent and R < @ there is a homotopy fibre square

XR"'—"“) W1

|

W3 e W2

in which the spaces W;, W, and W; have the homotopy type of homotopy inverse
limits of (cosimplicial) diagrams of simplicial R-modules; that is, W;, W,, Wse I,.
It follows immediately that Xr€l,, so

8.4. PROPOSITION. If X is a virtually nilpotent space and R <Q, then
XR~T3X.

This result may not be best possible. In fact, it is not hard to show that if = X
is finite and R = Q, then Xg~T,X. The argument for this uses [4] and the fibre
lemma of [3, p. 62].

8.5. Pre-nilpotent Fundamental Groups. A group  is said to be pre-nilpotent
[5, 3.1] if the lower central series of = stabilizes, not necessarily at the trivial
group, after a finite number of steps. Let w be the first infinite ordinal.

8.6. PROPOSITION. Suppose that R =7 and that X is a connected space with
a finitely generated pre-nilpotent fundamental group. Then Xg~T,.1X.

8.7. Remark. Analogous results almost certainly hold for other rings. At least
over Z, the finite generation condition can be replaced by the assumption that
H,(X; Z) is finitely generated.

We will only sketch the proof of 8.6, since the main point is purely algebraic.
Assume R =Z. The hypothesis on X implies that 7; Xk is a finitely generated
nilpotent group [1, 7.3, 7.5] so, by 1.4(i)—(iii) it is enough to show that if Y is a
connected R-Bousfield space with a finitely generated nilpotent fundamental
group, then Y e I,. By the Postnikov argument of 5.4 it is enough to show that
whenever 7 is a finitely generated nilpotent group and M is an R-Bousfield
wr-module, then L(m, M, n) € I,, for some integer m.

Let E denote the HZ-localization functor on the category of 7-modules and
let F— M — 0 be an epimorphism from the free 7-module F to the R-Bousfield
w-module M. Since E is right exact [1, 8.11] there is a short exact sequence

0O->K—->EF)->M-—-0
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where K is some R-Bousfield [1, 8.5] submodule of E(F). In view of the
homotopy fibre square

L(mM,n—1)—> K

| J

L(m K,n) —— L(m, E(F),n)

it suffices to prove that both L(m, K, n) and L(w, E(F), n) belong to some I,,.

Let J be the augmentation ideal inside the integral group ring Z[ 7] of 7. Then
[5, 3.1] asserts that there is an isomorphism E(F)=lim_{F/J° - F};-,. Since K is
a submodule of E(F) it is clear that K injects into lim._{K/J® - K}.,. However,

HO(W’ 1!1_1'1 {K/Js : K}s<w) ___h(I_n {HO("T, K/Js ) K)}s<w = HO(W, K)

since 7 is finitely generated and lim: {H,(m; K/J® - K)};<., being a quotient of
limL {H,(m; K)},-., vanishes (compare [5, Proof of 3.7]). It follows from [2, 7.8]
that K =lim_ {K/J® - K},,,.

By 8.2 the spaces L(m, K/J°- K, n) and L(m, F/J° - F, n) belong to I, since
they are nilpotent. The groups

lim{K/J® - K};<, and Lm{F/J* - F},,

vanish, since both of these module towers are towers of epimorphisms [3, p. 252].
Thus [3, pp. 287, 254],

L(m, K, n)~holim {L(m, K/J* - K, n)}s<.€
L(m, F, n)~holim{L(m, F/J* - F, n)}s<.€ L.
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Added note

An alternative approach to constructing the homology localization as an
inverse limit is given in

E. Dror and W. G. Dwyer, A Whitehead theorem for long towers of spaces,
Israel J. Math., to appear.
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