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Comment. Math. Helvetici 52 (1977) 177-184 Birkhduser Verlag, Basel

Ueber die Darstellungen der Automorphismengruppe einer
Riemannschen Flache in den Eigenraumen des Laplace-Operators

Heinz Huser (Basel)

1.1 Es sei § eine kompakte Riemannsche Fliche vom Geschlecht g> 1. Sie
besitzt genau eine Metrik konstanter Krimmung —1, die mit ihrer konformen
Struktur vertraglich ist. Wir betrachten die Eigenrdume

& ={ue C°@) | Agu+Au=0}
des zugehorigen Laplace-Beltrami-Operators Ag, wobei komplex-wertige Funk-
tionen u zugelassen werden. Die Eigenwertmenge {A € C|dim &, > 0} ist unend-
lich, diskret und reell; dimé,=1, dim %, =0 fir A <O0.

Da jeder konforme Automorphismus ¢ von % zugleich eine Isometrie ist, so
gilt

Ag(u o @) =(Agu)° ¢,
und daher ist

u—uce, uecé,,

eine bijektive lineare Abbildung von €, auf sich. Wenn also A ein Eigenwert und
U ein Spaltenvektor ist, dessen Komponenten

U, ..., Ug, d =dim g, <o,
eine Basis von ¢, bilden, so gilt
Uec¢o=RU
mit einer regularen d X d-Matrix R,,.
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178 H. HUBER

Die Gruppe @ aller konformen Automorphismen von § ist endlich ([3] p.
159-165). Ist @’ eine beliebige Untergruppe, so ist die Abbildung

¢ — R, ped, (1)

eine Darstellung von &'—die zur Basis U von ¢, gehorige Darstellung. Wir
interessieren uns fiir ihre irreduziblen Komponenten. Sei

¢—> M, ped, (2)

eine vorgegebene irreduzible unitire Darstellung vom Grade n und v(A) die
Anzahl derjenigen Komponenten der Darstellung (1), welche aequivalent zu (2)
sind. Dann stellt sich die Frage, ob es immer Eigenwerte A mit »(A)=>1 gibt. Fir
die Losung dieses Problems ist es entscheidend, dass v(A) als Dimension eines
gewissen Vektorraumes interpretiert werden kann. Wir betrachten

- N 7
‘9)'\=TV= [vi € €, Vop=M,V checb'r (3)
. i J
und zeigen:
v(A) =dim %,. (A)

In der Tat: Wenn v(A)=v =1, so besitzt €, eine solche Basis U, dass die
zugehorige Darstellung (1) die Gestalt

R,=M,®---®M,D -+ (vmal)

hat. Setzen wir dann

U Upn+1

Un Uzn Upn

so sind Vi,..., V,e% und linear unabhingig: dim %, = v(A). Sind andererseits
Vi,..., V,, linear unabhangige Spalten in %,, so ist gewiss v(A)=m, wenn ihre
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mn Komponenten linear unabhingige Funktionen sind. Wir bendtigen also
folgendes

LEMMA. Sind V,..., V,€%, linear unabhdngig und gilt
C¥Vi+: - +CEV,.=0, GCe% (4)

so folgt: Ci= -+ =C, =0. (Dabei ist € der Raum der Spaltenvektoren mit n
konstanten komplexen Komponenten; der Stern bezeichnet den Uebergang zur
konjugiert-transponierten Matrix.)

Beweis. Wir betrachten die Funktion
f=Y CHV,
i=1

mit zunichst beliebigen C,e€. Da die Darstellung (2) unitar ist, gilt fir alle
oD

fopl= ; C¥(Viop )= ; C’,~"M;1V,-=Z:1 (M,CG)* V..

Daraus folgt aber:

1.2 Ist{C,,..., G,} eine Losung von (4), so ist {M,Cy, ..., M,C,} fir jedes
¢ € @' ebenfalls eine Losung.

1.3 Jetzt beweisen wir das Lemma fiir m = 1. Sei

C€'={C1€ € l C’fVl =0}

Wegen 1.2 ist €' ein invarianter Unterraum von € beziiglich der irreduziblen
Darstellung (2). Daher ist entweder €' ={0} oder ¢’ = €. Im letzteren Falle wire
aber V; =0, entgegen unserer Voraussetzung.

1.4 Wir nehmen nun an, es sei m =2 und das Lemma sei richtig fiir m—1 an
Stelle von m. Wir betrachten den Raum €’ derjenigen Ce€ €, zu denen es
mindestens eine Losung {Cy, ..., C,} von (4) mit C, = C gibt. Wir haben zu
zeigen, dass €' ={0}. Wegen 1.2 ist €' invarianter Unterraum von € beziiglich
(2); also ist €' ={0} oder €' = €. Wir zeigen, dass der zweite Fall nicht eintreten
kann. In diesem Falle gibt es wegen der Induktionsvoraussetzung zu jedem Ce €
genau eine Losung {C;,. .., C,} mit C, = C, und die Abbildungen

C—->C, i=1,...,m—1,
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sind linear. Somit gibt es n X n-Matrizen L., ..., L,,_; derart, dass gilt: Fiir jedes
Ce¥€ ist {L,C,....,L,_1C, C} die einzige Losung von (4) mit C,, = C. Daraus
und aus 1.2 folgt:

M,L,=LM, Veed, i=1,...,m—1.

Dann gibt es aber nach dem Schurschen Lemma komplexe Zahlen wi, ..., phy_1
derart, dass L; = u;xX Einheitsmatrix. Somit ist {w;C, ..., w,-1C, C} eine Losung
von (4) fiir jedes Ce €:

C*( Vit -+« + fim—1 Vino1+ Vi) = 0.

Dann wiren aber Vi,..., V,, linear abhangig.
1.5 Auf Grund der Gleichung (A) kann das asymptotische Verhalten von

Ya<: v(A) mit Hilfe der Uniformisierungstheorie und der Selbergschen Spurformel
[2] studiert werden. Wir zeigen in Abschnitt 2:

év(}\%(g dg’,’ fir t— +oo. (B)

Daraus folgt nun insbesondere, dass es tatsachlich unendlich viele Eigenwerte A
mit v(A)=1 gibt! Wenn die Gruppe @' in h Klassen konjugierter Elemente
zerfallt, so besitzt sie genau h inaequivalente irreduzible Darstellungen. Ihre

Grade seien ny, ..., n,, und es sei v;(A), 1 <i< h, die Anzahl der Komponenten
von (1), die aequivalent zur i-ten Darstellung sind. Dann ist nach (B)

(g—n;
;é, %(A) Ord @’ .

Daraus folgt wegen
h
dim €, = ), mwi():
i=1
Z dim €, ~

Ast . Od(b'(zi ) )

Andererseits ist nach Gauss-Bonnet der Inhalt von § gleich 47(g — 1) und daher

Y dim &, ~(g—t. (6)

A=t

Aus (5) und (6) folgt Ord @'=Y!_; n?, in Uebereinstimmung mit einem Kklassi-
schen Satz der Darstellungstheorie endlicher Gruppen.
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2. Beweis von (B)
2.1 Wir versehen die obere Halbebene
H={z=x+iy|y>0}
mit der Differentialgeometrie
ds =y '\dz]|, (7)

welche die konstante Krimmung —1 besitzt. Der zugehorige Laplace-
Beltramioperator ist

62 62
A= 2(——+-—).
y ax2 " ay>

Da das Geschlecht g von § grosser als 1 ist, gibt es eine konforme Ueber-
lagerungsabbildung P: H — §. Die zu P gehorige Deckgruppe I ist eine Unter-
gruppe der Gruppe @ aller konformen Selbstabbildungen von H. Da @ Unter-
gruppe der Isometriegruppe von (7) ist, konnen wir mit Hilfe von P die Differen-
tialgeometrie (7) von H auf § verpflanzen; das ergibt gerade die in 1.1 charak-
terisierte Metrik von §. Fiir Funktionen v € C*(&) gilt dann

(Agv)o P=A(v° P). (8)

I' wirkt fixpunktfrei und diskontinuierlich auf H und besitzt einen kompakten
Fundamentalbereich 2. Nach dem Satze von Gauss-Bonnet gilt

A(Dr):= J j y 2dxdy=4m(g—1). 9)

Dr

2.2 Nun sei I'y der Normalisator von I' in @. Dann gibt es zu jedem ye I,
genau ein y € @ derart, dass

Poy=%°P, (10)
und die Abbildung

Y=, ve I, (11)
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ist ein Homomorphismus von Iy auf @ mit dem Kern I (Vergl. dazu [3] p.
159-165). Es sei I' das Urbild von @' unter diesem Homomorphismus. Dann ist

[I[5:I']=0rd @' <, (12)
Also besitzt auch I'; einen kompakten Fundamentalbereich @r;, und es gilt:

[[6: A (Dry) = A(Dr). (13)
Aus (9), (12) und (13) ergibt sich:

A(Dr,)=4m(g—1)/0Ord @'. (14)

2.3 Die Abbildung

y— M;, velb, (15)

ist nun eine unitdare Darstellung von I vom Grade n, welche den Normalteiler I’
von I'} auf die Einheitsmatrix abbildet. Wir betrachten die zu dieser Darstellung
gehorigen Selbergschen Raume

r R
Uy

Fi=4V=| - )|vieC*H),Av; +Av; =0, Ve y=M;VVyel .

—

Un

Wegen (8) und (10) sieht man sofort, dass
Vo VoP, Ve,
eine bijektive lineare Abbildung von &, auf ¥ ist:
dim &} =dim %,. (16)

2.4 Wir wollen jetzt auf die unitire Darstellung (15) die Selbergsche Spur-
formel anwenden. Dazu haben wir die Klassen konjugierter Elemente von I zu
_betrachten: Es sei vy,elp, (i=1,...), ein volles Reprisentantensystem der
primitiven hyperbolischen Klassen; +; ist innerhalb @ konjugiert zu einer Abbil-
dung

z— ez, ,>0.
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€1,..., & sei ein Repridsentantensystem der primitiven elliptischen Klassen von
I't (sofern es solche gibt); m; sei die Ordnung von ;. Dann liefert die Selbergsche
Spurformel (3.2) in [2] mit

h(r) =exp (—sr?), g(u)= exp (—u®/4s), s>0:

\/
2 exp (s/4) Y. (dim #4) exp (—sA) = (s)+E(s)+—2—i/——H(s) (17)
A=0
A@r)n [+ . A@r)n [~exp (—sr
F(s)=—(;:—"—)~'—1j’~oo r Tg (mr) exp (—sr°) dr= (2sr )nL eélz)iz :Trr)dr, (18)
f m-—1 “+o0
B Sp (M%) J’ exp (—2mrk/m;) 2
E(s)= ,Zl ,;1 m; sin (kw/m;) ) 1+exp (—27r) exp () dr, {19)
ki 252
- S S— 20
H(s)= .Zl kzl Sp (M3) gy ©XP (K LE/4s). (20)
Die Reihe
_ S 272 271
h(s) ,Z‘lkzlsl (kl/2) exp (—k21?/4s) (21)

konvergiert fir s> 0. Daraus folgt:

¢ =inf [;>0.
Daher gilt:

exp (—k*I?/4s)<[exp (—c?/8s)] - [exp (—k*I7/8s)], i, k=1. (22)
Da M, eine unitire n X n-Matrix ist, so gilt:

Sp (M5|<n. (23)
Nun ergibt sich aus (20)—(23):

|[H(s)|<nexp(—c/8s) h(2s), s>0.
Daraus folgt

H(s)= O(exp (—c*/8s)) fir s | 0. (24)

weil h(s) fur s >0 monoton wichst.
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Wegen 1< k<m; gilt:

+

lim dr <+

s{0

J”’“’ exp (—2mrk/m;)

oo g *exp (—2mrk/m;)
' 1+exp (—27r) exp (—sr°) dr J

" 1+exp (—=27r)
Somit folgt aus (19):
E(s)=0(), s | 0. (25)

Wegen

lim J'°° exp (—sr?) dr_L“ a1
sioJo Cos? mr Cos*nr

folgt endlich aus (18) und (14):

_2g=Dn 1

ordd 50 VO 26)

F(s)
Aus (17) und (24)-(26) ergibt sich:

. oo B (g—Dn 1
AZ:O (dim &%) exp (—sA) oD s’ s 0.

Daraus schliesst man mit Hilfe eines Tauberschen Theorems von Karamata [1]:

. (g—1n
dim #\~——
Azs;t 7 Ol'd ¢’

t, t — +oo,
Damit ist wegen (16) und (A) der Beweis von (B) erbracht.
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