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A Poncelet theorem in space

PuiLLir GrIFrITHST and JOE HARRisTT

One of the most important and also most beautiful theorems in classical
projective geometry is that of Poncelet concerning closed polygons which are
inscribed in one conic and circumscribed about another.” His proof was synthetic
and somewhat elaborate in what was to become the predominant style in
projective geometry of the last century. Slightly thereafter, Jacobi gave another
argument based on the addition theorem® for elliptic functions. In fact, as will be
seen below, the Poncelet theorem and addition theorem are essentially equival-
ent, so that at least in principle Poncelet gave a synthetic derivation of the group
law on an elliptic curve.

Because of the appeal of the Poncelet theorem it seems reasonable to look for
higher-dimensional analogues. Another motivation comes from trying to under-
stand ‘‘addition theorems” pertaining to higher codimension.”” Although this has
not yet turned out to be the case in the Poncelet-type of problem, what did turn
up is a class of closed polyhedra in three space which are both inscribed in and
circumscribed about a pair of quadric surfaces in general position. These figures
are thus even more symmetric than those arising from the classical Poncelet
construction, and the object of this paper is to show how again they may be
constructed analytically from elementary properties of the group law on an elliptic
curve.

In Section 1 we shall discuss the classical Poncelet theorem in the plane in
such a way that similar considerations will apply to the analogous problem in
space. In Section 2 we prove a Poncelet-type theorem for the polyhedra in space,
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7T NSF Predoctoral Fellow.

'J. V. Poncelet, Traité des propriétés projectives des figures, Mett-Paris 1822.

>C. G. J. Jacobi, Uber die Anwendung der elliptischen Transcendenten auf ein bekanntes Problem
der Elementargeometrie, Gesammelte Werke, Vol. I (1881), pp. 278-293.

3 P. Griffiths, Variations on a theorem of Abel, Inventiones Math. Vol. 35 (1976), ppg. 321-390. This
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146 PHILLIP GRIFFITHS AND JOE HARRIS

and discuss some matters concerning actually constructing the figure which are
obvious in the plane case. Because of the elementary character of the question
we have attempted to keep the discussion reasonably self-contained in the hope
that the proofs can be understood by nonspecialists in algebraic geometry.

It is a great pleasure to thank Robert Steinberg for helping us past a
preliminary false version of our theorem and providing an important observation
which appears in Section 2 below.

1. The classical Poncelet theorem

This deals with the following question: Given two smooth conics C, C'in the plane
R? with C lying inside C’, when does there exist a closed polygon® inscribed in C’
and circumscribed about C? Rephrased in terms of a construction the problem
goes as follows: We first note, as is clear from Fig. 1 below, that through every
point of C’ there will pass two tangent lines to C and each of these lines will meet
C’ in two points. Beginning with a point Poe C' and tangent line L, to C passing
through P,, we let L, be the other tangent line through P, meeting C' in P,, L,
the other tangent line through P, meeting C' in P,, and so forth. Let Il(p 1,
denote the configuration of lines {L;};—o,1, ... obtained in this way. It is clear that
any closed polygon inscribed in C’' and circumscribed about C which contains P,
as vertex must be the configuration IIp, ;. Consequently, our question is
equivalent to asking when IIp, 1, is finite—i.e., when does L, = L, for some n?
Although it seems difficult to write down an explicit general answer to this
problem,T Poncelet did succeed in proving the beautiful and remarkable

Figure 1

* We shall allow the polygon.to have self-intersections.
t c.f. footnote '? at the end of this paper.
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THEOREM. For any pair of ellipses as above, there exists a closed polygon
inscribed in C' and circumscribed about C if, and only if, there exist infinitely many
such polygons, one with a vertex at any given point Pe C'.

In other words,

The condition that the configuration Ilp, 1, be finite is independent of the
starting point (P, L).

As mentioned before, the original proof by Poncelet was synthetic, and we
shall follow the lead of Jacobi and give an analytic discussion of the question
based on elliptic functions. Consequently, we consider the problem in the projec-
tive plane P? over the complex numbers. Let x =[xo, X;, Xx,] be homogeneous
coordinates and consider a plane conic C given by a quadratic equation

(Qx, x)= Z giixix; = 0,
i, j

where the coefficient matrix Q =(q;) is symmetric. The condition that the
algebraic curve C be smooth is that the matrix Q be nonsingular. In this case C is
a complex submanifold of P?, and therefore defines a Riemann surface.

Since C has degree 2, every line L in P?> meets this conic in two points
counting multiplicities. Taking a fixed point Pye C and line L, not containing P,
the stereographic projection mapping P — Q establishes a biholomorphic map-
ping C— P' between C and the line L, (c.f. Fig. 2).

At a point P e C with coordinates x the projective tangent line Tp(C) to C at

Fo

Figure 2
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P is given by the equation

0=%Z 5(1— (Qx, x)y; = Z (Z xi‘lﬁ))’f =(Qx, y).

j i

Consequently, in terms of the dual coordinates & =[§&, &;, £&,] on the dual projec-
tive space P** of lines in P2, the Gauss mapping P — Tp(C) is given by £ = Qx. It
follows that the dual curve C* < P** of tangent lines to C is again a smooth conic
with equation (Q7'¢, £€) =0, where Q' is the inverse matrix to Q. Dualizing Fig.
2, we find that through each point P € P? there pass two tangent lines to C, again

Figure 3

counting multiplicities, and C* may be rationally parametrized by the mapping
P — T, where P varies on a fixed tangent line T, and T is the other tangent to C
passing through P as depicted in Fig. 3.

Now let C’ be another conic in the plane P? and assume that C and C’ are
nowhere tangent, so that they meet transversely at four points. Then the same will be
true of the dual curves C* and C'* in P**, and in the product C'x C*=pP'x P*
we consider the incidence correspondence E ={(P, L): Pe L} of points Pe C' and
tangent lines L to C such that Pe L. It is clear that E is the basic variety
underlying the Poncelet construction. E is an algebraic curve in P'XP'; the
transversality of C and C' assures that for every point (P, T) € E at least one of
the coordinate axes {P}x C* and C’'x{T} through (P, T) meets E in two distinct
points, from which it follows that E is nonsingular. The adjunction formula for
curves on an algebraic surface then gives that the genus of E is one.

These facts will also come out directly during the proof of the Poncelet
theorem. Namely, the construction in Fig. 1 suggests considering the pair of
involutions

i:E—-E and i":E—E
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defined respectively by
i(P,L)=(P,L") and i'(P,L)=(P',L)

where P’ is the residual intersection of L with C’ and L' is the other tangent to C
through P as depicted in Fig. 4. In terms of the notation in Fig. 1,

i(P, L;) = (P, Lis1), i'(Py Livq) = (Pis1, Li.y),

so that the composition j=i'ci satisfies j(P, L;)= (Pi+1, Li+1). Consequently,
j"(Py, Lo) = (P,, L,), from which we conclude that:

The configuration Il p, 1, will be finite exactly when j"(P,, Ly) = (Py, L) for
some integer n.

Figure 4

Evidently now our problem is equivalent to looking for fixed points of the
automorphism j" on the curve E, to which we now turn. Taking the quotient of E
by the first involution i is the same as considering the map E — C* given by
(P, L)— L. This realizes E as a 2-sheeted covering of the Riemann sphere P'.
The branch points correspond to the fixed points of i, and these occur for the lines
L which are tangent to C' as well as to C, i.e., to the four distinct points in
C™ N C*. 1t is now clear that E is a nonsingular Riemann surface with Euler
characteristic y(E) =2x(P')—4=0, and, consequently, E has genus 1.

The basic deep fact underlying Poncelet is that there exists on E a nonvanishing
holomorphic differential @ such that the map

up)="

Po
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gives an analytic isomorphism of Riemann surfaces E — C/A where A is the period
lattice of w.

Now the involutions i and i’ on E are induced by automorphisms i and i’ on
the universal covering C of E; we can write

i(wW=au+r, "(W=a'u+r.

Then, since i°=0, we have i*(u)=a’u+(a+1)7=u+A for some A€ A. Thus
a=1=1, and in fact a =—1 since otherwise i would have no fixed points in
contradiction to Fig. 5. It follows that j"(u)=u+n(+'— 1), and hence j"(P,L)=
(P,L) if, and only if, n(+'—7)e A. This condition is clearly independent of
(P,L)e E and so the Poncelet theorem is proved.

Cl

Figure 5

We want to discuss this condition in more detail. Given our plane conics C
and C’, by linear algebra we may change coordinates so that

c={}2: x?=o}, C'={i 3ix,-2=0},

i=0 i=0

where B =[Bo, B1, B-] is a point in P{;,. The resulting map P{z) — {pairs of conics}
is generally finite, and those pairs of conics for which n(7'—7)e A determine an
algebraic curve V, cPf,. In fact, it is clear that V, is locally determined by one
analytic condition on B, and also that V, is globally of an algebraic character.
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Consequently:

The Poncelet condition holds for pairs of conics corresponding to a countable
set of curves in the parameter space P(s).

2. Poncelet theorem for quadrics in space

Following the Poncelet theorem in the plane it seems natural to look for
polyhedra in R’ which are inscribed in one surface and circumscribed about
another. At first glance this doesn’t seem to work, since there are in general o'
tangent planes to an algebraic surface passing through a point in space. However,
upon closer inspection it is possible to generate polyhedra from a pair of quadric
surfaces, and the question of whether or not we obtain a finite figure turns out to
again repose on elementary properties of elliptic curves. We now describe how
this goes.

Let x =[xo, X1, X2, x3] be homogeneous coordinates in complex projective
space P>. A quadric surface S is defined by

(Qx, x)= Z qiix:x; = 0,
i

where Q =(q;;) is a symmetric matrix. S is nonsingular exactly when det Q# 0,
and in this case S is a complex submanifold in P?. As before, for Pe S with
coordinates x the projective tangent plane Tp(S) to S at P is given by the
equation (Qx, y)=0. Denoting by &=[&, &1, &, &) the dual coordinates in the
dual projective space P** of planes {Y;-o &x; =0} in P, the Gauss mapping of S
to its dual surface S* of tangent planes to S is given by ¢ = Qx. Consequently, S*
is a nonsingular quadric surface with equation (Q7'¢ &) =0.

If S and S’ are two quadric surfaces meeting transversely, then the same is
true of the dual surfaces $* and $™*.”” In this case the intersections

cC=8Sn¢s, E=S*NSs"™*

are nonsingular algebraic curves. Geometrically, E is the set of bitangent planes to
the pair of surfaces S and S'.

Especially noteworthy about a smooth quadric surface S are the lines con-
tained in it. These may be described in the following three steps:

(i) Since S has degree 2, any line meeting S in three or more points must lie

*This may be verified analytically using the equations of S and S’ given below.
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entirely in the surface. Therefore, if Q is any point in the intersection S N Tp(S) of
S with its tangent plane at P, the line PQ will lie in this intersection. It follows
that:

The intersection S N Tp(S) consists of two straight lines; any line lying in S and

passing through P must be one of these®

Figure 6

(ii) To describe all lines lying in S, we pick one such L,, and call any line L an
A-line if it is either equal to or disjoint from L, and a B-line if L meets L, in one
point. In this case L and L, span a 2-plane L A L.

If two lines L, L' # L, meet in a point, then the plane they span must meet L,
in a point, and so one of the two is an A-line and the other a B-line.” Conversely,
if L is an A-line and L' a B-line, then the plane LoA L’ will meet L in a point
which must therefore be a point on LN L'. In summary,

The lines on S fall into two disjoint families, the A-lines and B-lines. Each
A-line L meets each B-line L' once at a point P=LNL"' whose tangent plane
Tp(S) is LAL'. Two distinct A-lines or B-lines fail to meet.

Since any B-line meets L, once, it follows that the A-lines and B-lines are
each parametrized by P'. In this way S is a doubly ruled surface, i.e., it is the
surface traced out by ' lines in two distinct ways. This also shows that, as a
complex manifold, S=P"'x P'.

(iii) For any line L < P> the set of all planes containing L is a line L™ in the
dual projective space P>*. The line L lies on S if, and only if, L* lies on S*. If this

® We note that S N Tx(S) is a plane conic containing a line, and hence must be two lines through P
as in Fig. 6. These lines are distinct since det Q#0.

"Since SN (L A L") contains and therefore is equal to the plane conic L+ L', it follows that LAL’
is the tangent plane to S at L N L'. In particular, L, does not lie in L AL’ nor pass through LN L".
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is not the case, then L* will meet S* in two points. Thus:

Through a line L < P> not lying on S there pass exactly two tangent planes to S.
Any plane T containing a line L = S is tangent to S somewhere along L.

Now we can describe the analogue of the Poncelet construction relative to a
pair of smooth quadric surfaces S and S’ intersecting transversely in P*.*® Letting
E =S$*N S§’* be the curve of bitangent planes, each plane T € E will meet SU S’
in a figure of the sort consisting of the pair of lines Lo, Lg on S, together with a
pair of lines L, L% on S'. This is by (i) above. The four lines are distinct since S
and S’ meet transversely, and P=L, N Lg, P'=L%\ N L% are the points where T
is tangent to S, S, respectively.

Figure 7

According to (iii) there will be one plane T other than T passing through L,
and tangent to S’, and by (iii) again this plane will be tangent to S somewhere
along L,. The picture of T, together with T, is something like that shown in
Fig. 8. There we are letting

TNS=Ls+Lg, TNS' =L%+L%
TNS=La+Lls, TNS'=Li+Lj
I:A‘—‘ La
It is important to note that by (ii) the line L’z meets L, = L4 in the same point as

[\, etc., so that when flattened out the shaded regions form a configuration as
shown in Fig. 9. We set T=1i,(T), and in this way define four involutions

8 We will comment on the construction in R’ at the end of the paper.
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'.‘r’

Figure 8

ia, iB, ia, ip ON the curve E. We may think of these involutions as reflections in the
four sides of the shaded quadrilateral in Fig. 7. If we begin with a fixed bitangent
plane Tp€ E and successively apply all these reflections we generate a polyhedral
figure I1(T,).

What makes this configuration so remarkable is that the polyhedron is both
inscribed in and circumscribed about the pair of quadric surfaces S and S'. More
precisely,

The planes T € II(T,) are all tangent to both S and S’, and the vertices of II(T,))
are all points lying on SN S'.® The edges of II(T,) are lines lying alternately on S
and S'.

L:A L'B
LB La=| LA Ly
' LA

Figure 9
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Naturally we now ask whether or not our configuration may be finite. By
analogy with Poncelet in the plane we shall prove the

THEOREM. For S and S’ smooth quadric surfaces meeting transversely in P>,
there exists a finite polyhedron both inscribing and circumscribing S and S’ if, and
only if, there exist infinitely many such.

In other words, the question of whether or not I1(Ty) is finite is independent of
the initial bitangent plane T,. Contrary to the plane case, it is not immediately
apparent that there exist § and S’ generating finite polyhedra, especially since at
first glance this seems to impose three conditions on the 3-parameter family of
pairs S, S’. This important point will be discussed following the proof of the
theorem.

The proof is essentially the same as before. The four involutions generate a
subgroup G < Aut (E) of the automorphism group of the Riemann surface E, and
we are asking whether or not the orbit G - {To} is finite. If we apply the adjunction
formula’® to each of the two inclusions E < $* = P>*, we find that the canonical
bundle of E is trivial. Hence the genus of E is 1 and the argument proceeds as in
the plane case.

For later use, it is of interest to prove this in a more elementary fashion.
Instead of E we consider the curve C=SNS' and the mapping 74 :C— P’
sending a point P € C to the A-line L on S which contains P. Since L meets S’ in
two points, 74 is a 2-sheeted covering, and branching occurs exactly over those
A-lines L < S which are tangent to S’. To show that the genus of C is 1, it will
suffice to prove that there are four such branch points. Dualizing, we then obtain
that the genus of E is 1.

Now the other projection g : C — P' given by sending P € C to the B-line on
S containing it is again a 2-sheeted covering, having by symmetry the same
number of branch points as 7. Thus, it will suffice to prove that there are exactly
eight lines on S which are tangent to S'.

If a line L< S is tangent to S’ at P, then Pe SNS’ and T(S')e S* by the
second statement in (iii) above. Conversely, if Pe SNS’ and Tx(S') = Tp(S) for
some P'e S, then the line P'P lies in S and is tangent to S'. If Pe SNS’ has

° The vertices are where three or more planes meet. In Fig. 8 these are the vertices of the shaded
quadrilaterals.

10 This is the formula
Kp = Ky ® [D]D

for the canonical line bundle of a smooth divisor D on a complex manifold M.
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coordinates x, then Tp(S')e S$* if, and only if, Q'x = Qy for some y satisfying
(Qy, y)=0. This is the case if, and only if, (Q'x, Q"'Q’x) =0. It follows that the
points Pe SN S’ for which Tx(S')e S* are defined by

(Qx,x)=0, (Q'x,x)=0, (Q'x,Q7'Q'x)=0.
These are three quadrics meeting transversely'"
what we wished to prove.

Returning to our curve E, the genus is 1 and the quotient by any of the four
involutions is P'. Representing E = C/A as before, we can write

in 22 -2=8 points, which is

iA(u)=_u+Tl, iB(u)=-u+T2a i,’A(u)::—u"'T?,, i;;(u)=~u+1'4.

It is then clear that the orbit G - {To} is finite exactly when the differences

'T,'_TiEQ'A. (l)

Since this condition is independent of T,, we conclude the proof of our theorem
as before. Q.E.D.

We now discuss the conditions on S and S’ which will insure that our
polyhedron is finite. Although (1) seems to impose three conditions on the pair S,
S’, we shall prove the relation

ioig © i’y o is = identity, (2)
or, equivalently,
'7'1+1'2—‘7'3"T4EA, (3)

which shows that (1) contains only two conditions. In fact, using (3) we may
replace (1) by

1 1
71“‘7'26_’/1, T3—T4€—'A
m n

for integers m, n; or, equivalently,

(ia © ig)™ = identity (4)
(i% © iB)" =identity (4"

! That the intersection is transverse follows from the equations for S and S’ given below.
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To prove (2) we enlarge Fig. 9 to contain four quadrilaterals:

LA1 LA A
L L'g =] I !
Ay By7| "B, A,
_ 3
i . 2
il "
o
L <N L=l L — L'
B, 3 Ay | A3 Bjy
L L
82 Ajg
Figure 10

Each quadrilateral represents a different plane, all flattened out as in Fig. 9 to aid
in visualization. The diagram of involutions is

ip’
——

ia | Jio
A
and (2) is equivalent to L%, = L,. This, in turn, follows from the observation that
if an A-line L,, and B-line Lg, meet in a point Pe SN §’, then there is a unique
B-line Ly, = L5, on S’ passing through P.
To show that the condition (4) is nonvacuous, we use the following argument
shown to us by Robert Steinberg. First, by simultaneously diagonalizing the pair

of quadratic forms Q and Q’, we may choose coordinates such that
S={x3+xi+x3+x5=0}

and
S’ ={Box5+ Bixi+ Box3+ Bsx3=0}.

The transversality condition is B/B;# 1 (i#j). Take P=[0,0,0,1], H to be the
hyperplane x;=0, and :P>—{P}— H given by w(x)=[xo/x3, X1/X3, X2/x3] to be
the linear projection. Set C=SNH, so that C={xj+x7+x3=0}. Let C'=
w(SNS’), which is a curve with equation

C'={(Bo— B3)xa+ (B1— B3)xi+ (B>~ B3)x5=0}
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obtained by eliminating the term containing x; from the equations of S and S’
Suppose that Ty is a fixed bitangent plane and consider the sequence

Ty, =(ige i;\)nTo, Ton+1=ia(iBe i')" To.

Letting L,,=Lr, , and Ly,,1=L~,,,,,, we obtain from Fig. 9 the picture

LO L1 L2 L3 Ll‘
/\
To L T T3 T e
Figure 11

Each line L; meets C at a point P; and L; < Tp(S), from which it follows that
mw(L;) is tangent to C. Each intersection L; N L;.; lies on SN S’, so that #(L;)N
7w(Li+1) is a point on C'. Summarizing:

The sequence w(L;) of lines in H forms a polygon inscribed in C' and
circumscribed about C.

Now there are at most two lines in S lying over any line in H and at most two
bitangent planes to S and S’ containing any line of S. It follows that

(i's 0 iB)" = identity for some n if, and only if, the plane conics
2 2
L xi=0 ) (Bi-B)xI=0 (5)

i=0 i=0

satisfy the classical Poncelet condition. Similarly (iscig)™ = identity for some
m if, and only if, the plane conics

(Bi—B3)xi =0 (5"

it

2
Z Bixi2 =0
i=0

satisfy the classical Poncelet condition.

In particular, the conditions (4) and (4') are each satisfied on a countable
union of algebraic surfaces in the parameter space P*(8) for paris of quadric
surfaces.
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It remains to check that the conditions (4) and (4') are not mutually exclusive, i.e.,
the hypersurfaces they define meet somewhere in a pair of nonsingular quadrics in
general position. For this we call S and S’ symmetric if there exists a linear
transformation of P> carrying S to S’ and S’ to S. If S and S’ are given by the
above equations, then the transformation y; =./B; x; takes S’ to S and S to the
quadric Y;_, B7'y7 =0. Consequently, S and S’ are symmetric in case the sets of
complex numbers {B8;}={AB;'} for some A#0, ie. if B;=pB;B/B: for some
permutation (i, j, k, I) of (0, 1, 2, 3). In particular, the symmetric pairs of quadrics
form a hypersurface in the P>(B8) of all pairs of quadrics, and moreover, there
exist symmetric pairs in general position.

Now let P, H, and m:[P>—{P}— H be as above. For a general pair of plane
conics

2 2
={Z x?=0}, C'={Za,.x?=o}
1=0 i=0

in H, we can find a symmetric pair S and S’ of quadric surfaces such that
C=SNH and C'=#(SNS’). Namely, the conditions which must be met are

{Bi—B3=)\ai i=0,1,2
BoB2=B1B3

Writing the first equation as B; = Aa; + B3 and substituting in the second yields
A agas+ A(aoBs+ azBs)+ B2 = Aa,Bs+ B3. Canceling the 83 and writing A = yBs,
both sides are divisible by B3, and the equation becomes 7y aoa,+
v(ao+ az—a;) =0, which has the solution y = (ap+ a2~ a)/aoaz.

Now we are done. Choose C and C' for which the plane Poncelet condition is
satisfied, and then choose a symmetric pair of quadrics S and S’ associated to C
and C’ as above. Then (4') is satisfied for S, S’, and by symmetry (4) is also
satisfied. Summarizing:

The pairs of smooth quadric surfaces meeting transversely in P> and which
satisfy the Poncelet conditions of having a finite polyhedron both inscribed in and
circumscribed about the pair of surfaces form a dense countable union of algebraic
curves among all pairs of quadrics.

Finally, we would like to discuss the second Poncelet theorem over the real
numbers. First, note that the remarks (i) and (ii) above about lines on a quadric
hold for a real quadric S = P? if, and only if S is of hyperbolic type, as in Fig. 6,
that is, given by a real quadratic form Q with two negatlve and two positive
eigenvalues. For such a quadric, moreover, and any line L < P2, there will be two
tangent planes to S containing L if, and only if L meets S.
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Thus, if S and S’ are both of hyperbolic type and meet in a curve—so that
every line lying on S meets S’ and vice versa—we can carry out the Poncelet
construction with S and S’ in P5 to obtain a configuration of real bitangent planes
II(T,) in P3. Now for every bitangent plane T to S and S’, let Ar denote the
interior of the quadrilateral whose sides are the four lines of intersection of T
with S and S’, and whose vertices are the four points of intersection of T with S
and S’, as shaded in Fig. 7. Then, for any bitangent plane T, the regions
{Ar: T e II(Ty)} form a real polyhedron 3(T,) in Pa inscribed in and circumscribed
about S and S'.

Clearly, the figure 3(T;) has a great deal of self-intersection, and so cannot be
readily drawn in full. We can, however, say something about the abstract poly-
hedron 3(T,) in case it is finite: as we have seen, every vertex of 3(T;) lies on
four faces of 3(T,), and conversely, every face contains four vertices. Thus if we
let V, E, and F denote the number of vertices, edges, and faces of the abstract
complex '3(T,), we have V=F and E=2F so that the Euler characteristic
X(Z(Tp))=—E+F+ V=0, i.e., the abstract polyhedron 3(T,) is a torus. In par-
ticular, 3(T,) cannot be a convex polyhedron in R°>.
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21n this connection M. Berger pointed out two papers by Cayley giving explicit conditions for
Poncelet polygon to be closed. The references are Philosophical Magazine, vol. VI (1853), 99-102,
and Philosophical Trans. Royal Soc. London, vol. CLI (1861), 225-239.
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