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Comment. Math. Helvetici 52 (1977) 129-144 Birkhâuser Verlag, Basel

Jordan-Hahn décomposition of signed weights on finite
orthogonality spaces

GOTrFRIED T. RÙTTIMANN

1. Introduction

Let (X, #) be a finite orthogonality space with at least one weight and V(X, #)
the real vector space of signed weights on it. If A is a non-empty convex subset

of weights on (X, #) then (lin A, A) is a base normed space. There exists a unique
(base norm continuous) linear functional e such that e(A) {l}. If we order
(lin4)* as follows: /^g:O/(û>)<g(û>) for ail <oeA (/, ge(\inA)*), then the

triple ((lin^l)*, <, e) becomes an order unit normed space.
Define /mM: Ix€c v(x) where v e lin A, Me<£(X,#) and CeC(X,#) such

that C** M, then the éléments of the logic of the orthogonality space are

represented as linear functionals in the order-interval [0, e]. The interval [0, e] is

a convex subset of (lin A)* and (ext [0, e], <) is a subposet of ((lin A)*, <) with
smallest élément 0 and largest élément e (for définitions see sections 2 and 3).

In this paper we are concerned with the problem of the logic (££(X, #), < of a

finite orthogonality space (X, # being order isomorphic to the poset (ext [0, e], ^
Key notions in thèse investigations are a generalized version of the Jordan-
Hahn décomposition of signed measures and ultrafulness of the subset of weights
under considération. We study the interplay of thèse two notions and in thèse

terms we give a necessary and sufficient condition for (i£(X, #), <) to be order
isomorphic to the poset (ext [0, e], < If this condition holds then, among other

interesting properties that follow from it, the orthogonality space will be a Dacey

space and therefore its logic an orthomodular poset.
This study stretches into several branches of mathematics insofar as it relates

graph theory and orthomodular structures to convex set theory and certain parts
of functional analysis. However, the motivation for this research was originally
derived from the foundations of quantum mechanics [10,11] and empirical logic
[4, 5, 12, 13]. Application of thèse results will be done elsewhere.

The author would like to thank T. A. Cook for valuable discussions and

helpful suggestions.
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130 G T RUTTIMANN

2. Orthogonality spaces

By an orthogonality space we mean a pair (X, #) where X is a non-empty set
and # a non-reflexive symmetric binary relation on X. An orthogonal set is defined
to be a subset A of X such that x#y holds for ail jc, y e A with x# y. C(X, #)
dénotes the set of ail orthogonal subsets and ^(X, #) the set of ail maximal
orthogonal subsets of X. Note that for every Ce©(X, #) there exists an Ee
%(X, #) such that CqE. The mapping A -> A* : {x e X | x # y for ail y e A} for
AçXhas the following properties: (i) A D A*= 0, (ii) Açfî implies J3*g A#,
(iii) A c A*#, (iv) A# A***, (v) 0# X and X# 0, (vi) (A U B)* A*H £*. If
for two subsets A,B^XA^B* holds, then we say that A is orthogonal to B and

write A#fî.
Intuitively we may think of X as the outcome set for a collection of physical

opérations (experiments) and of # as an "operational rejection." The éléments of
%(X, #) may be considered as the opérations identified by their possible outcomes
and the éléments of 6(X, #) as the events. By a generalized proposition we mean a

subset of X consisting of ail the outcomes which reject ail the outcomes that
reject some event. Set-theoretical inclusion of propositions may then be inter-
preted as "logical implication."

Therefore we refer to (2(X,#), g) where ^(X,#): {MçX| there exists

Ce©(X,#) with C** M} as the logic of (X,#). Note that X, 0ei£(X,#) since

0** X*=0 and E**=0* Xfor £eg(X,#). If M#N, M,N€2(X,#), then
the supremum MvN exists in the poset (i£(X, #), ç) and is equal to (CUD)**
where C, D are éléments of 0(X, #) such that M C** and N D**. Clearly, the

mapping M-» M# is an orthocomplementation for the logic (i£(X, #), ç) if and

only if to every Me5£(X,#) there exists a Ce0(X,#) such that M*=C**. An
orthogonality space is said to be a Dacey space [2] provided it has the following
property: if x non-# y, then for every E e %(X, #) there exists a z e E such that z

non-# x and z non-# y. Actually one can prove [2,12]: (X, #) is a Dacey space if
and only if M-> M* is an orthocomplementation that makes (££(X, #), ç into an

orthomodular poset; i.e.: (i) if Mc JV* then MvN exists in (i?(X, # c and (ii)
if M ç N then there exists an élément P e £(X, #) such that M c P* and M v P
N [3]. Every orthocomplete orthomodular poset arises from a (however not
uniquely determined) orthogonality space.

An example of a Dacey space which is indeed prototypic for the mathematical
foundations of quantum mechanics is given as follows: Let J{ be a von Neumann

algebra. Dénote with 9 the set of non-zero, orthogonal projections in N (i.e.:
0t*P P-P* P*). Standard arguments show that (0>,#) where Pl#P2:<Z>
Pi* Pi-Ois a. Dacey space. Furthermore, the orthomodular poset (i£(X, #), c, *)
is ortho-order isomorphic to the projection lattice of N with P -» 1 - P as

orthocomplementation.
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We will assume that the orthogonality spaces that appear in the sequel hâve

finite cardinality.
By a weight co on the orthogonality space (X, #) we mean a mapping

o>:X-»[0,1] such that Y,x<=eo(x) 1 for ail Eg^(X,#). A signed weight v on
(X, #) is a mapping v : X -» R which has the property that £xeE v{x) (JE e %(X, #))
is independent of the particular choice of Ee«(X,#). The set T*(X,#) of ail
signed weights on (X, #) is a real vector space (addition and scalar multiplication
defined as usual), the signed weight space of (X, #). The set of ail weights Q(X, #)
forms a convex subset of V(X, #). fî(X, #) is either empty, contains exactly one
élément or contains infinitely many éléments [6, 7]. Let A be a convex subset of
(2(X, #). A weight <ogA is called pure (with respect to A) if (o tû)i + (l-t)(o2
(o>ï, fc>2 g 4, r e (0,1)) implies that io o>i û>2. A weight that is not pure is called a

mixture. We can easily extend the signed weights to functions on 0(X, #) by
putting *(0): O and i>(C): =IxgC *« (CeO(X,#)\{0}).

We can consider the weight functions as complète stochastic models for the

expérimental setting given by (X, #), in the sensé that (o(x) is the "long run
relative frequency" with which the outcome x occurs as a resuit of the exécution
of an opération for which x is an outcome.

We say that 4çfi(X,#) is a full (resp. strong) set of weights for the

orthogonality space (X,#), if for ail pairs x, y € X with x non-# y there exists an

a) g A such that 1 < co(x) + <o(y) (resp. <o(x) 1 and co(y) ï 0). The subset A is said

to be unital for (X, #) provided for every x e X there exists an cogA such that
(o(x) 1. Let C € €(X, # and A ç Q(X, # we define C1 : {<o g A \ o>(C) 1} and

C°:={(oeA \ <o(C) 0}. The subset A is said to be an ultrafull set of weights for
(X, #) if (i) A is a full set of weights for (X, #) and (ii) for ail QDg 0(X, #),
C1 c D1, C°çD° implies that D1 g C1, D°ç C°. We hâve the following implications:

strong => ultrafull => full and strong => unital.
We need the following lemma [4]:

LEMMA 2.1. Suppose that (X, #) admifs a /m// se* o/ wdghfs A. Then (X, #) is

a Dacey space.

Proof. Assume that for x, yeX, Ee«(X,#), £ç{x}#U{y}# holds. Dénote
C: Efl{jc}# and D : E\C. Then cu(E) 1 <o(C) + (o(D) for ail wei Clearly,
Cc{jc}# and Dç{y}#. Let F, G€«(X,#) such that CU{x}çF and DU{y}c&
Then co(C) + <o(jc)< <o(F) 1 and o>(D) + <o(y)< w(G) 1. We add thèse ine-

qualities and get 14- <û(x) + <o(y)< 2 or <o(x) + <o(y) =s 1 for ail weA. Since 4 is full
we conclude that x#y.

Examples show that the converse of Lemma 2.1 is not true [7]. Again let

,#). We say vG\\nA admits a Jordan-Hahn décomposition (with respect
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to A) [9,16] provided there exist De0(X,#), <ûUa)2eA, tut2>0 such that
û>i(D)=1, û)2(D) 0 and v t1(o1-t2ù)2. The subset A is said to have the
Jordan-Hahn property if each élément velinA, v^tw (teR,<oeA) admits a

Jordan-Hahn décomposition.
A signed state \i on the logic i£(X, #) is a mapping /x : ££(X, #) —» R satisfying

(i) fi(0) O, (ii) if M#N then /ll(MvN) jll(M) + /ll(N). A signed state /ut for
which n(X) 1 and /i(i£(X, #)) c [0,1] is called a state. In section 5 we establish a

connection between signed weights and signed states, resp. weights and states.

3. Base normed and order unit normed spaces

In the présent section we give the définitions and the basic properties of base

normed spaces and order unit normed spaces [1,14,15] and prove two theorems

concerning the extrême points of the unit bail of an order unit normed space. We
will end this section with a list of facts on convex sets in finite dimensional vector
spaces. We rely on thèse results in the following sections.

Consider a pair (E,A) where E is a real vector space and A a non-
empty convex subset of E such that K: ={veE \ v tco, (oeA and t>0} is a

generating cône for E with A as a base. Then U: con(AU-A)
{tù)i-(l-t)o)2 | o>i, (o2eA and te[0,1]}) is convex, circled and absorbing and

the corresponding Minkowski functional \\v\\B : inf {t ^0 | ve t • U} becomes a

seminorm. If || • ||B is indeed a norm for E, then we call (E, A) a base normed space
and refer to || • ||B as the base norm. Let BB dénote the unit bail of the base

normed space (E, A), then BB£ U^BB. Note that there is exactly one base norm
continuous linear functional e such that e(A) {1}. Also note that ||û>||b 1 for ail

Let (F, < be an ordered real vector space. An élément e > 0 is called an order
unit provided Un=i [-ne, ne] F. Clearly, [-e, e] is convex, circled and absorbing.

A triple (F, <, e) where F is a real vector space, < a partial order on F and
e e F an order unit such that the Minkowski functional || • ||o on [-e, e] becomes a

norm is called an order unit normed space; \\v\\o is called the order unit norm.
Similarly, B%^[—e, e]çBo where Bo dénotes the unit bail in the order unit
normed space (F, <, e).

Let (E, A) be a base normed space, E* the Banach dual (usual sup-norm) and

e the unique base norm continuous linear functional such that e(A) {l}. Then

/<g:O/(ci))<g(a>) for ail <oeA (/, geE*) is an ordering on E* and e is an
order unit of (E*, <) such that (E*, <, e) becomes an order unit normed space
with H/Ho =suppeB|4 \f(v)\. Note that [-e, e]= Bn.

Let (F, ^, e) be an order unit normed space. Clearly, [0, e] is closed under the
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mapping /—»/': e -/. A point in a convex subset P of a vector space is called
extrême provided it is not properly contained in a Une segment whose endpoints
lie in this convex subset. The set of extrême points of P is denoted by ext P.

LEMMA 3.1. Let (F, <, e) be an order unit normed space. If /eext[0, e] then

f € ext [0, e\ Moreover 0,ee ext [0, e].

Proof. Let /eext[0, e]. Assume that f =tg + (l-t)h where g, he[0, e] and

re(0,1). Then f=e-f'=te + (l-t)e-(tg + (l-t)h) t(e-g) + (l-t)(e-h)
fg' + (l-f)h'. Since g', Ji'g[0, e], *€(0,1) and /eext[0, e] we conclude that

/ g' h', hence f=g=h. Therefore f € ext [0, e].

Assume now that eéext[0, e]. Then there exist /, ge[0, e], fît g such that
e=è/+ig? hence /=2e-g. But e<2e-g /<e, hence /=e and similarly g e

which is a contradiction. Hence e e ext [0, e], and thus 0 e'e ext [0, e].

LEMMA 3.2. Lef (F, <, e) be an order unit normed space such that [-e, e]

Bo. If /g ext [0, e] and fï 0 then \\f\\o 1.

Proof. Let /e[0, e], fïO and suppose that ||/||o^l. Note that f/\\f\\oeBo
[-e,e] and 0</, hence //||/||o g [0, e]. Since [0, e]ç=[-e, e] Bo we get ||/||O<1.
Now / ||/||o(//||/||o) + (l-||/||o)0 with f/\\f\\o*0 and ||/||Oe(0,1). Therefore

/é ext [0,e].

THEOREM 3.3. Let (F,<,e) be an order unit normed space such that

[-e, e] Bo- Then (ext[0, e], <) is an orthocomplemented poset with /->/' as

orthocomplementation.

Proof. (ext[0, e], <) is a poset with smallest élément 0 and greatest élément

e; furthermore f->f'is an involution on this poset. It remains to show that for ail

/eext[0, e], /a/' exists in (ext[0, e], <) and is equal to 0. We have 0</,f.
Assume that there is an élément ge[0, e], g#0 such that g^f,f then 0<g<
ïf+ïf è(/+/') èe. Therefore 0#||g||o^i Hence géext[0,e] by lemma 3.2.

This proves the theorem.

LEMMA 3.4. Let (F, ^,e) be an order unit normed space. The mapping
<P:F~* F, given by 4>(/) •=/"/'> is an order isomorphism from [0, e] onto [-e, e]
and $"1(g) (g + e)/2. Moreover, the mappings <P and (p'1 préserve convex corn-
binations and

Proof. Note that <P(f) f-f' 2f-e.
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Under the mapping /—? -/ ([-e, e], ^) becomes an involution poset with smallest
élément -e and greatest élément e. The foregoing results lead immediately to

THEOREM 3.5. Let (F, <,e) be an order unit normed space such that
[-e, e] Bo> Then f—>—f makes (ext [-e, e], < into an orthocomplemented poset
(e: greatest élément, -e: smallest élément) ortho-order isomorphic to the orthocomplemented

poset (ext[0, e], <, '). The ortho-order isomorphism is given by <P.

In view of the results in the last section of this paper, we would like to point
out that examples of order unit normed spaces for which (ext [0, e],<,') is not an
orthomodular poset are easily constructed.

We now give some basic facts on finite dimensional convex subsets and their
facial structure (see e.g. [8]).

Let E be a finite dimensional real vector space and F a convex subset of E. A
convex subset F of F is said to be a face of F provided tv1 + (l-t)v2eF, vu
v2eP, te(0,1)'implies that vu v2eF. Note that 0 and F are faces. A face

F# 0, F is called proper. If Ft is a face of F2 and F2 is a face of F, then Fi is a
face of F. Clearly, if v is an extrême point of F then {v\ is a face of F. A face that
is maximal in the poset ({F | F face of F, F^ F}, c is called a facet of F. Assume
that for fe E* there exists s e R such that /(F) ç (-oo, s] then /"^(s) H F is a face

of F. A face that arises in this manner is called exposed. Correspondingly, v e F is

called an exposed point of F if {v} is an exposed face; exp F dénotes the set of
exposed points of F.

Let F be a non-empty compact convex subset of E. Then 0 7e exp F c ext F
and F con ext F cl con exp F (Theorem of Minkowski-Carathéodory and
theorem of Straszewicz). F is said to be a polytope provided ext F is finite. Note
that in the case of a polytope every face is an exposed face: in particular
ext F exp F. A polytope may be equivalently defined as the convex hull of a

finite, non-empty set or as a bounded, non-empty set which is the intersection of
finitely many closed half spaces. Since the convex hull of a compact set is closed

we can say a non-empty compact convex subset F of E is a polytope if and only if
exp F is finite. Note that a proper face of a polytope is a polytope in its own right.
A face of a polytope is a facet if and only if dim F dim F-1 (affine dimensions).

4. The signed weight space

For the remainder of this paper we assume that the (finite) orthogonality
spaces (X, #) under considération possess at least one weight. We are going to
study the base normed and order unit normed spaces "generated" by suitable
subsets of
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With every x g X we can associate a linear functional fx on T(X, #) by defining
fx(v) : *>(x), v g T(X, #). The linear functional e : ZX€Ê fx is independent of the

particular choice of E e %(X, #), by définition of a signed weight, and e((o) 1 for
ail (o g f2(X, #). Clearly, fx(v) 0, ail x e X, implies that v 0, hence {/x | x € X} is

a finite total set of linear functionals on T(X,#) and therefore T*(X,#) and

finally Y(X, #) is finite dimensional. A local base for the unique compatible
Hausdorff topology on T(X, #) (e.g., Euclidean topology) is given by the sets

{N(e, x) | x g X, e > 0} where JV(e, x) {i> g T(X, #) | |/x(i>)| < e} together with their
finite intersections. Note that vn —» v in the Euclidean topology if and only if
vn{x) -> v(x) for ail x g X. This shows that f2(X, #) is a closed subset of T(X, #).

THEOREM 4.1. Le* A be a non-empty convex subset of Jf}(X,#). Then

(lin 4, 4) is a base normed space.

Proof The set K:={v£\inâ\v tco, f>0, wg^I} is a generating cône for
lin A since A is convex and 0 é A. To show that A is a base for K, assume that

where t1,t2>0 and a)i,û)2eA. Then fi e(fiah) e(t2<o2) t2 since

1. Thus (Oi œ2.

To prove that the Minkowski functional on l/ con (<dU-^) is indeed a

norm, it is enough to show that |H|B=0 implies that v 0. So assume that
IMIb =0. Then \\tv\\B t\\v\\B =0 for ail teR. But U is circled, hence tve 1 • U.

Therefore \fx(tv)\ <1 or |/x(z/)|<l/r for ail t>0 and xgX. Thus fx(v) 0 for ail

x g X. The set {fx\xe X} being total, we conclude that v 0.

The linear functional e takes the value 1 on il and therefore, in its restriction
to lin 4, serves as an order unit in ((lin A)*, < that makes ((lin A)*, <, e) into the
order unit normed space corresponding to (lin A, A) (see section 3).

If A is closed (e.g., (on(x) -> v(x) for ail x g X, (on g 4, implies that veA) then
(7 con (A U -4) is closed and, by the introductory remarks in section 3, U BB.

It should be noted that BB(^linA) and J3O =l~e, e](ç(Hn 4)*) are compact
since they are unit balls of finite dimensional normed vector spaces. The map <P~l

is affine, thus [0, e]= <J>-1[-e, e] is compact too. Also note that since e(A)-{\)
we hâve 0éaff4 and therefore dim U dim A + l.

Now we are going to investigate the relation between exposed linear functionals

of [-e, e] and a certain class of faces of U. As we will see in the next section,

this relationship in présence of the Jordan-Hahn property, plays a fundamental

rôle.

LEMMA 4.2. Let A be a non-empty convex subset of I2(X,#). Then fe[-e, e]
is an exposed point of [-e, e] if and only if there exists an élément v e lin A with
IMIb 1 such that {f} {ge [-e, e] | g(v) 1}.
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Proof. Assume that fe exp [-e, e]. By définition there exists v e (lin 4)** and

seR such that v([-e, e])ç(-oo, s] and {f} {ge[-e, e]\ i>(g) s}. Clearly,
suphe[-e,e] Hh) s. Note that i># 0 since {/} # [-e, e]. Recall that (lin A)** in the

sup-norm is isometric to lin A in the base norm under the évaluation map.
Therefore there exists a (unique) y e lin 4 v^O such that v(h) h(v) for ail
h g (lin 4)*. Since -[-e, e] [-e, e] we get \\v\\B suphe[_e,c] \v(h)\
suphe[-e,e] Hh) 5. Now vo: v/s is the desired élément since ||i>o||b 15 /(^o)
f(v)/s v(f)/s s/s l and if g(vo) l, ge[-e, e] then Hg) gM s hence

g /. The converse follows immediately.

LEMMA 4.3. Let A be a non-empty convex subset of f2(X,#) and fe[0, e].
Then

(i) f'œ H 4, r^O) n ^l are exposé /aces o/zi and U; furthermore f\l) CiA
<P(f)~Hi) n ^ and rHo) n a -[tfK/T^D n -A].

(ii) *(/)"1(l)fl 17, <P>(/)"1(-l)n U are exposed faces of U différent from 17;

furthermore
and <P(f)-\-i)nu=

The proof of Lemma 4.3 is straightforward and is omitted.

THEOREM 4.4. Let A be a non-empty closed convex subset of Jf2(X,#). If
fe exp [-e, e] then /~1(1) H 17 is a maximal proper exposed face of U.

Proof. Let /eexp[-e, e] and yelhnl as in Lemma 4.2. Then vef~1(l)C\ U
since U BB> Note that /~1(l)fl 17 is an exposed face of 17 différent from U, by
Lemma 4.3. Assume now that /^1(l)n U s F where F is an exposed face # 17.

Then there exists an élément g€(lhiid)* and seR such that g(l7)c(-c»j s] and

g~1(s)nU F. Note that g(i>) s. Then ||g||o supvelJ|g(v)| supl,€Ug(^) s

since (7=-17. Clearly, s#0, else g 0 and F =U. Now g/s€[-e, e] and

(g/s)(v) 1 hence g/s / since fe exp [-e, e]. Therefore, /"^(l) n 17

5* The logic of an orthogonality space

Assume again that A is a non-empty convex subset of O(X, #). Each élément
of 0(X, #) can be represented as a linear functional on lin A by defining fc :

Ix.c/x, Ce0(X,#)\{4>} and /*=0. Clearly, fc(v) v(Q and /B e for ail
£e?(X,#). Since 0< o>(C) < 1 for ail o> € ^ it follows that each fc is contained m
the order interval [0, e] of the order unit normed space ((lin A)*, <, e). Note that
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and C° fc1(0)DA. Therefore, by Lemma 4.3, C1 and C° are
faces of A.

Next we are going to define an order morphism from the logic (i£(X, #), c
into the poset ([0, e], <). To do so we need the following lemma.

LEMMA 5.1. Let à be a non-empty convex subset of O(X, #) and C,De
0(X,#).

Proof. Since C**<^D** we get D* D***£: C*** C*. Let J5e«(X,#) such
that Dç£. Then E\D^D* hence (E\D)#G Thus there exists an élément

F€«(X,#) such that (E\D)UCçF. Let œeA then oi[(B\D)UC]
C) û>(E)-w(D) + û>(C)<û>(F). Since w(E) o>(F) l we get
or equivalently fcM^fD((o) for ail eue4. Hence Jc^Îd-

Now let M g ££(X, #) and define fM'=fc where C g 0(X, #) such that M C**.
Due to Lemma 5.1, M-» fM is a mapping. Indeed, it is an order morphism from
the logic (i£(X, #), c into the poset ([0, e], < ); the image is denoted by £f(X, #).
We hâve fx fE e.

LEMMA 5.2. Let A be a non-empty convex subset of fî(X, #) and let M, Ne
2(X,#). Then

(i) if
(ii) i/

Proof. (i) There exist QDe 0(X, #) such that M C** and N D**. Now
c## #D## Qr CœC**^D*** D*. Hence CflD 0 and CUDe€(X, #).
/CUD (û>) IxeCUD ^(x) IX€C «U) + IxeD <*>(*) /c(û)) +/D(W) (/C +/D)(û>) for
ail wg4. Therefore /Cud /c+/d and finally, since (CUD)**=MvN, we get
fMvN fM+fN- But fMvN^e, hence /m^/n-

(ii) If ££(X, #) is #-closed, then M -* M* is an orthocomplementation (see

Section 2). Now M#M* and thus MvM* X. By (i) e =fx =/mvm* /m + /m*.

Using Lemma 5.2 (i), one easily vérifies that jjlv(M) : fM(v) defines a signed state

on #(X,#). Furthermore /utv (vGlin 4) is a state on £C(X,#) if and only if i^ei

THEOREM 5.3. Let Abe a non-empty convex subset of Q(X, # The mapping

f:£(X, #)-»«2/(X, #) is an order isomorphism if and only if A is a full set of
weights for (X, #).
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Proof. Assume that /:^(X,#)-*^(X,#) is an order isomorphism. If
y)<l for ail <o€A(x, yeX), then w(x) + û>(y)< 1 ù)(x) + ùï(E-x) where £e

with xeE. Hence û)(y)<co(E-x) for ail coeA, thus /y</E_x or /{y}~^
/(e-x)**- The mapping in question being an order isomorphism, we get {y}##ç
(E-x)** or equivalently (E-x)*ç{y}#, thus x#y. This proves that A is a full set

of weights for (X, #).
Conversely, it remains to show that fM^/n implies that MçN. By assumption

A is full, thus, by Lemma 2.1, (X, #) is a Dacey space and therefore i£(X, #) is

*-closed. Now let fM </N. Then /N /N** f'N*9 by Lemma 5.2 (ii). Thus fM + /n* ^
e. Now let QDe 0(X, # be such that M=C** and N* D##, then /C+/D<eor
equivalently û>(C) + w(D)< 1, for ail wel Therefore x#y for ail xgC, yeD.
Thus C#D and therefore M= C**^D* N** N.

The next two theorems serve us as a key for the main results. They give an

équivalent for the Jordan-Hahn property of a non-empty closed convex subset A

of H(X, #) in terms of the extremal linear functionals in [0, e].

THEOREM 5.4. Let A be a non-empty convex subset of Q(X, #). If A has the

Jordan-Hahn property then ext [0, e]c£f(X,#) and the sets A, U, [0, e], [-e, e]

are polytopes.

Proof. Let geexp[-e, e]. By Lemma 4.2 there exists velinA with \\v\\B 1

and {g} {he[-e, e]\ h(v) l}. If v t<o (teR, <oeA) then v ±A, hence g

±e€££/(X, #). So assume that v^ta). Since A has the Jordan-Hahn property,
there exist D e 0(X, #), (ou o)2 e A, tu k ^ 0 such that v fio)2- *2fc>2 anci /d(û>i)
1, /d(g>2) 0. Recall that (lin ^)** is isometric to lin A (sup-norm, base norm) and

note that -[-e, e] [~e, e\ then *i + *2 ^(/D)(^)^suph6[_c,c] feWHMU 1^
^îlkilU + ^H^IIb h + r2. Hence <P(fD)W 1. Since g € exp [-e, e] we conclude

that <P(fD) g. Therefore exp [-e, e]c ^(^(X, #)). The set on the right-hand side

being finite entails that the compact convex set [-6, e] has finitely many exposed

points, hence is a polytope and ext[-e, e] exp[-6, e]. By Theorem 3.5,

ext[0, e] <P~1(ext[-e, e]) thus [0, e] is also a polytope and finally ext[0, e]ç

We hâve also shown that any velinA with ||^||B 1 can be represented as

i> fû>i-(l-0û>2 where a>i,a>2€4 and re[0,1]. Since B°B^ U con(A U-4)s
BB we conclude that t/ BB.

Next we show that A and 17 are polytopes. Since \\v\\B =sup/e[-e,e]/(^) and

/(BB)£[-1,1] for ail /€[-e, c] we get [/= fl/€[-«.•]r^-l, 1]. Since [-e, e] is a

polytope we hâve [-e, e] conext[-e, e] which implies that U

Thus the non-empty, bounded
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sets A and U, both are equal to the intersection of finitely many closed half

spaces. Therefore A and U are polytopes.

THEOREM 5.5. Let A be a non-empty closed convex subset of ft(X,#). If
ext[0, e]ç££/(X, #) then A has the Jordan-Hahn property.

Proof. Let velinA, v^ta) (feR, o>eA). We hâve 0^||i>||B sup/6[_e,c]/(*>).
Since [-e, e] is compact, the supremum is attained at an extrême point. Consider-

ing that ext [-e, e]ç ^(^(X, #)), there exists an élément Ce0(X,#) such that

*(/c)(^) - IIHIb- The set A being closed implies that BB con (A U -A). Therefore
there exist <o1,(o2eA and f€(0,1) such that v/\\v\\B ta)i-(l-t)û)2. Now 1

^(/d)(HIHIb) ^(/d)(co1) + (1-0^(/d)(-o)2) and since <D(/D)(BB)Ç=[-1,1] we
conclude that <£(/D)(ct>i) 1 and <2>(/d)(û>2) -1. Thus

)=1 and similarly /d(û>2) 0. Now

i/ r \\v\\Bo>i - (1 - 0 ||H|bû>2 and f \\v\\B, (1 - 0 ||i/||B > 0.

This establishes a Jordan-Hahn décomposition for v.

EXAMPLE 1. We give a simple example of an orthogonality space (X, #)
with a non-empty closed convex subset of weights that is strong but fails to hâve

the Jordan-Hahn property.
Let X:={xi, x2, x3, x4} with x1#x2 and jc3#x4 (Convention: for pairs not

mentioned hère, the relation # fails to hold). Define <oi(x):=(l for jc jci,
0 for x x2, \ for x x3, \ for x x4), co2(x): (0,1,U), a>3(x): (ii 1, 0),

co4(x): (5,5,0,1). o>i, co2, w3, û>4 are weights for (X, #) and A:
f2û>2 + ^3^3 +14<*>4 | Zf=i A 1, fi ^ 0} is a non-empty closed convex subset of

#). Using co, (i 1, 2, 3,4) one immediately shows that A is a strong set of
weights for (X, #). One easily checks that the signed weight v defined by
v{x)\ (|, -i,i, -\) is an élément of lin 4, but does not admit a Jordan-Hahn
décomposition with respect to A.

THEOREM 5.6. Let A be a non-empty convex subset o//2(X,#). We consider

the following statements:

(i) a) A has the Jordan-Hahn property and

b) C1 s D1 and C°^D° implies D1 c C1 and D°c C° (C, D e 0(X, #));
(ii) ext[0,e] ^(X,#).

Then (i) ^ (ii). If A is assumed to be closed then (ii) ^ (i).

Proof. (i)^> (ii): If 4 has the Jordan-Hahn property then ext[0, e]ç
and [-e,e] is a polytope, by Theorem 5.4. Let Ce©(X,#) then <P(fc)(C1)
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and *(fc)(C°) {-l}. Consider the set F: {ge[-e, e]\ g(C1) {l} and
g(-C°) {l}}. Note that <P(fc)eF. One is easily convinced that F is a face of the
polytope [~e,e] thus is a polytope in its own right and therefore compact. Thus
ext Fï 0. Since ext F c ext [-e, e] c <P(£ef(X, # there exists D g C(X, # such that
*(/D)eextF. Then clearly /D(C1) [(^(/D) + e)/2](C1) {l} and /D(C°)
[(#(/b) + <0/2](C°) {0}. Therefore C1 s /^(l) H A D1 and C° c /^(O) H 4 D°.
By (i)b) we get C^D1 and C° D°, hence /^1(l)n4=/B1(l)n4 and fc\0)D
à =/ô1(0)ni Lemma 4.3(ii) then shows that 0(fc)'\l)n U=4>(fD)~\l)n U.

Now <P(fD) e exp [-e, e] ext [-e, e], [—e, e] being a polytope. By Lemma 4.2,
there exists v e lin A with ||i/||B 1 and {<£(/D)} {g e [-e, e] | g(*>) 1}. Thus v e

*(/o)~1(l)n U since BB 17. Therefore <P(fc)(v) i which in turn implies that
*(/c) *(/D). Hence /c g ext [0, e].

Finally we show that if A is closed then (ii)=> (i). By Theorem 5.5, A has the
Jordan-Hahn property. Let C,DeC(X,#) such that ^^D1 and C°çD°. Since

^W ° /c1(0)fl4 and similar for D, we get, by Lemma 4.3(ii),
yWnUïU. Now *(/c)€ext[-e,e] exp[-e,e] thus

by Theorem 4.4, $(/c)~1(l)n 17 is a maximal proper exposed face. Therefore
W t/c ^(/cr^ljn 17. By Lemma 4.3(i), 1 \

(fcr1(i)nunA=fc1(i)nA c1 and

)"'(D nun-4)c -(«(/cr'd) n u n -4) /^

EXAMPLE 2. We give an example of an orthogonality space (X, #) with a

non-empty closed convex subset A of weights that is full for (X, #) and has the
Jordan-Hahn property but ext [0, e] # 5£/(X, #). Let X : {xu x2, x3, x4, x5} with
Xi# x2# x3# Xi and x4# x5 (same convention as in Example 1). Note that (X, #) is

a Dacey space (see Fig. 1). The logic (££(X, #), s is depicted in Fig. 2. We hâve

put: A: ={*!>, fî: {x2}, C: {x3}, D: {x4} hence A# {x2,x3}, B* {jci,x3},
C* {xi,x2} and D* {x5}. Defîne the weights o)i(x): (1,0,0,il), o>2(x):

(0,l,0,iè) and a>3(x): (0,0,l,U). Then i : {Zf-i to I Z?-i t 1; t^0} is

clearly a non-empty closed convex subset of O(X, #) (see Fig. 3). Using standard
criteria one finds that A is a full set of weights for (X, #). Note that dim 4 2,
dim lin A 3 and {<oi, cu2, w3} is a base for lin A. One easily finds that ext [0, e]

{0,/i,/2,/3,/'i,/'2,/3,e} where /, 0 1,2,3) are given by ft(a)k) 8hk

(î, k 1,2,3). Then U=fA, /i=/A*, /2 /B, /2 /b-, /3 /c, /'3 /c*, O /0 and

e =/x. Hence ext[0, c]çiPf(X, #), thus, by Theorem 5.5, A has the Jordan-Hahn

property. Since O^oKx^^l and 0#o>(x5)#l for ail weA, we have

/d, /d* é ext [0, e]. This is also an example of an orthogonality space with a full but
not ultrafull set of weights for (X, #).

If ^ is a non-empty closed convex subset of O(X, #) and ext[0, e] Xf(X, #)
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then A is not necessarily a full set of weights for (X, #) as is shown in the

foliowing example.

EXAMPLE 3. Let (X,#) be the orthogonality space of Example 2. Consider
the weights ûii(jc): (1, 0, 0,1, 0), a>2(*): (0,1,0,0,1) and ù)3(x):

(0,0,1,1, 0). Then A : {£?=i f^ | £?=i f, 1 ; f, > 0} is a non-empty closed convex
subset of Q(X, #). But A is not full since x2 non-# x4 and û)(x2) + ù)(x4)

h +h + h - 1, (oeA. Again dim A 2, dim lin A 3 and {<o1? co2, (*>3} is a base for
lin A. ext[0,e] {0,/1,/2,/3,/i,/LA,e} where /I(xk) ôl,k (i,fc l,2,3). Now
/0 O, /A=/x, fB=fD. f2, fc f3, fA* f[, fB+ fD=f'2Jc. f'3 and /x e.

Therefore ext [0, e] 2/(X, #).

Now the main results of this paper.

THEOREM 5.7. Let (X,#) be a finite orthogonality space with
and let A be a non-empty convex subset of O(X, #). Consider the following
statements:

(i) ^1 is an ultrafull set of weights for (X, #) and has the Jordan-Hahn property ;

(ii) the mapping Me£(X, #)—>/m€[0, e] is an order isomorphism from the

logic (SC(X,#), s) onto tfie poser (ext[0, c], =s).

Then (i) ^> (ii). If A is assumed to be closed then (ii) ^ (i).

Proof. (i) => (ii): Assume that A is ultrafull for (X, #) and has the Jordan-Hahn

property. Since A is also full we get, by Theorem 5.3, M-^fM is an order
isomorphism from #(X,#) onto £;(X,#). By Theorem 5.6, ext[0, e] #/(X,#).

Now we are going to show that (ii) => (i) under the assumption that A is closed.

Assume that M~»/M is an order isomorphism from (££(X, #), ç) onto
(ext[0, e], <). By Theorem 5.3, A is a full set of weights for (X,#). Considering
that ££/(X, #) ext [0, e], we conclude, using Theorem 5.6, that A is ultrafull for
(X,#) and has the Jordan-Hahn property. This complètes the proof of the
theorem.

THEOREM 5.8. Let (X,#) be a finite orthogonality space with fl(X,#)* 0
and A a non-empty convex subset of fî(X, #).

If A is ultrafull and has the Jordan-Hahn property then

(i) (X, #) is a Dacey space and (i£(X, #), c,#) is an orthomodular poset,

(ii) (ext [0, e], <, ') is an orthomodular poset ortho-order isomorphic to

(«#), <=,*),
(iii) A has finitely many weights that are pure with respect to A,



Jordan-Hahn décomposition 143

(iv) for any Ce0(X,#)
A ç afl{(o e A | co pure with respect to A, eo(C) 1 or oj(C) 0},

(v) A is unital for (X, #)

Proof

(i): A is also full. By Lemma 2.1, (X,#) is a Dacey space and finally
(££(X, #), ç *) is an orthomodular poset.

(h). By Theorem 5.7, (i) of this theorem and Lemma 5.2(ii), M->/M is an
ortho-order isomorphism between the orthomodular poset (i£(X, #), g *) and the
orthocomplemented poset (ext[0, e], ^,').

(in): Clear, since A is a polytope (Theorem 5.4).
(iv)- Let Ceû(X,#). Since [-e, e] is a polytope (Theorem 5.4) we hâve

<f>(/c)eexp[-e, e]. By theorem 4.4, (p(fc)~1(l)C) U is a maximal proper exposed
face, hence a facet of the polytope U (Theorem 5 4). Therefore dim
U] dim U-l dimA. Clearly, ext(/
ext[<P(fcr\l)n U]. Since d>(fcr\l)n U
(Lemma 4.3ii) and Af)-A 0 we conclude that extlX/cr^l)!! U]
ext (fc\l) nA)U ext (- (fc\0) H ^1)) (fc\l) H ext A) U (f^iO) D -ext A). This set
contams an affine base for

say {o)1,ù)2, ...,wm, -<om+u.. .,-a)dimA+1} where {<ou com}ç/
and {-ù)m+i, ,-(odimA+i}^f^1(0)f)-extA. One is easily convinced that
{(ou û)2, • • •, û)m, ù)m+u wdim A+i} ç ext A is affinely independent. Hence

aff{û>i,..., cudimA+i}3^. Now wI(C) /c(cu,)= 1 for 1<i< m and a>k(C) 0 for
m +1 < k < dim zl + 1

(v): Assume that there exists xeX such that {jc}1 0. By (iv), A c

by (i) and Lemma 5 2(n) Due to the order isomorphism M-> /M we get {x}* X
or {jc}## X* 0. Which is a contradiction since x €{*}**.

REFERENCES

[1] E M Alfsen Compact convex sets and boundary intégrais, Spnnger-Verlag, New York, 1971

[2] J C Dacey Jr "Orthomodular Spaces " PhD Thesis, University of Massachusetts, Amherst,
Mass (1968)

[3] D J Foulis A note on orthomodular lattices Portugaise Mathematica 21, 65-72 (1962)

[4] D J Foulis and C H Randall Operatwnal statistics I Basic concepts Journal of Mathemati-
cal Physics 13, 1667-1675 (1972)

[5] D J Foulis and C H Randall "The Empincal Logic Approach to the Physical Sciences" in
Foundatwns of Quantum Méchantes and Ordered Linear Spaces Edited by A Hartkampfer and

H Neumann Lecture Notes in Physics Vol 29, Spnnger-Verlag, 1974, pp 230-249



144 G T RUTTIMANN

[6] R J Greechie, and F R Miller "On Structures Related to States on an Empincal Logic I
Weights on Finite Spaces " Kansas State University Technical Report no 14, Apnl 1970

[7] R J Greechie Orthomodular lattices admitting no states Journal of Combinatonal Theory 10,
119-132 (1971)

[8] B Grunbaum Convex polytopes Pure and Applied Mathematics Texts Vol 16, Interscience
Pubhsher, Wiley and Sons, 1967

[9] P R Halmos Measure theory Van Nostrand Remhold Company, New York, 1950

[10] J M Jauch Foundations of quantum mechanics Addison-Wesley Pubhshing Company Read-

îng, Mass 1968
[11] G Ludwig Deutung des Begnffs "physikahsche Théorie" und axiomatische Grundlegung der

Hilbertraumstruktur der Quantenmechamk durch Hauptsatze des Messens Lecture Notes in
Physics Vol 4, Spnnger-Verlag, 1970

[12] C H Randall and D J Foulis Operatwnal statistics II Manuals of opérations and their

logic, Journal of Mathematical Physics 14, 1472-1480 (1973)
[13] C H Randall and D J Foulis "A Mathematical Settmg for Inductive Reasoning m

Foundations of Probability Theory, Statistical Inference and Statistical Théories of Science, Vol III
Edited by A Harper and C A Hooker Reidel Publishmg Company, Dortrecht Holland, 1976,

pp 169-205
[14] H H Schaefer Topological vector spaces Spnnger-Verlag, New York, 1971 (3rd pnnt)
[15] Y C Wong and K F Ng Partially ordered topological vector spaces Clarendon Press,

Oxford, 1973

[16] N Zierler "On General Measure Theory " PhD Thesis, Harvard University, Cambridge,
Massachusetts (1959)

Department of Mathematics and Statistics

University of Massachusetts,
Amherst, Mass 01002, USA

Received March 3, 1975/June 21, 1976


	Jordan-Hahn decomposition of signed weights on Finite orthogonality spaces.

