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Homotopy dimension and simple cohomological dimension of
spaces

KeNNETH S. BROWN* and PeTER J. KAHN*T

Introduction

Throughout this paper all spaces will be assumed to be connected CW-
complexes. We define the homotopy dimension of a space X, denoted ho dim X,
by

ho dim X =min {dimension Y},

where Y ranges over all complexes homotopy equivalent to X. We define the
simple cohomological dimension of X, denoted cd; X, by

cd; X =sup {i: H'(X; A)#0 for some abelian group A}.

In both cases we allow ® as a possible value.

Clearly c¢d, X=hodim X, and it is well known that equality holds if X is
1-connected. The purpose of this paper is to prove that equality also holds for
certain classes of non-1-connected spaces. In particular, our main result (Theorem
5.1) is that cd; X =ho dim X if X is nilpotent and 7 = 7 X is finitely generated.
This was conjectured (without the finite-generation hypothesis on ) by Mislin
[12].

Our proof makes use of a result of Wall ([17, 18]) which relates ho dim X to the
cohomological dimension of X with respect to local coefficient systems. More
precisely, if we set

cd X=sup{i:H'(X; M)#0 for some mX-module M},

then Wall proves that hodim X =cdX, provided c¢d X>2. (If cd X =2, Wall

* Partially supported by a grant from the National Science Foundation.
t Part of this research was done while the second author was the recipient of an Alexander von
Humboldt Award.
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112 KENNETH S. BROWN AND PETER J. KAHN

proves only that hodim X =3.) This reduces us, essentially, to the algebraic
problem of proving that cd X =cd; X under suitable hypotheses on X. For this
purpose we study the behavior of cd X and cd, X under passage to covering
spaces; we then deduce the desired equality from the (trivial) fact that cd = cd, for
1-connected spaces.

The paper is organized as follows. §1 is primarily concerned with a finite regular
covering X — X of finite-dimensional spaces. After a preliminary proposition, we
prove a technical result about the transfer map (Prop. 1.2), which may be of
independent interest, and we use it to study the relationship between cd, X and
cds X. In §2 we study nilpotent spaces X with cd X =<2. In particular, we show
that ho dim X =cd X, so that the low-dimensional ambiguity mentioned above in
connection with Wall’s Theorem does not occur in the nilpotent case.

In §3 we use the results of §§1 and 2 to prove that ho dim X =cd, X for
certain classes of spaces (including the nilpotent spaces) with finite fundamental
group. In order to handle the infinite-dimensional case, we need two technical
results, Propositions A and B, whose proofs are postponed to §4. We also give in
§3 some examples of spaces such that ho dim X# cd, X.

In §5 we extend the results of §3 to nilpotent spaces with finitely-generated
fundamental group. As a bi-product of the proof, we obtain (Cor. 5.4) a lower
bound on the dimension of a nilpotent space with given fundamental group.

In §6 we use the results of §5 to study the effect of localization on homotopy
dimension. If X is a countable nilpotent complex and P is a set of primes, we
prove that ho dim Xp <ho dim X + 1. This improves a result previously obtained
by the second-named author (Notices Amer. Math. Soc., August 1975, p. A-529).
For the proof, we need to work with homological dimension rather than
cohomological dimension. The necessary results relating the two are given in
Appendix A.

Finally, we include a second appendix, in which we indicate how some of the
results of §1 can be extended to certain infinite covering spaces.

At this point, the second author would like to express his appreciation to the
Mathematics Institute, University of Heidelberg, for its hospitality. Also, he
would like to thank R. Strebel, Heidelberg, and G. Mislin, Ziirich, for a number
of helpful conversations and comments.

1. Cohomological dimension and simple cohomological dimension of
finite covering spaces

We begin by recording some well-known facts concerning cohomological
dimension:
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PROPOSITION 1.1. (i) Let C be the chain complex of the universal cover of X.
Then C, regarded as a complex of free Z[ 7, X]-modules, is homotopy equivalent to
a complex C' of projective modules with C;=0 for i>cd X.

(ii) If X is an arbitrary covering space of X, then cd X =cd X.

(iii) If cdd X< and X—> X is a finite covering, then cd X=cd X.

Proof. We may assume that cd X =n <. For (i) we can take C’ to be the
complex

..._>0_)Cn/Bn_)Cn_l__)...__)CO,

where B, is the module of n-dimensional boundaries of C, cf. [4], §1, proof of
lemma. (ii) is an immediate consequence of (i). For (iii) one proves, exactly as in
[15], 1.3, proof of Lemma 2, that the transfer map tr: H*(X; M) » H™(X; M) is
surjective for all 7-modules M. Hence cd X =cd X, whence (iii). [J

Now assume that X — X is a regular finite covering, with cd X <o, In this
case we will make more precise the result on the transfer map which we cited in
the proof of (iii), and we shall use this to obtain results about cd, X.

Let #=mX, and let G = u/#, the group of deck transformations. For any
m-module M there is an action of G on H*(X; M), defined as follows. Let C be
as in 1.1(i) and let 7 act on Homg (C, M) in the usual way: (yf)(c)=v-f(y 'c)
for ye m, fe Homy (C, M), c € C. Then the submodule Hom » (C, M) = C*(X; M)
inherits an action of G = #/, and hence so does H*(X; M). The transfer map has
the property that tr (g- u) =tr (u) for ge G and u e H*(X; M), and so it induces
by passage to the quotient a map r:H*(X; M)g » H*(X; M). (Here, as usual,
(=) =Ho(G, —)=Z®z5—.)

PROPOSITION 1.2. Let X — X be a regular finite covering with group G, and
assume cd X <o, Let M be a w-module and n an integer such that H(X;M)=0
for i>n. Then H'(X; M)=0 for i>n, and 7:H"(X; M)g — H"(X; M) is an
isomorphism.

Specializing to the case where 7 acts trivially on M, and taking n = cd, X, we
obtain:

THEOREM 1.3. Let X — X be as in 1.2. Then cd, X =cd, X, with equality if
and only if the G-module H"(X; A) is not perfect for some abelian group A, where
n=cd, X.

(Recall that a G-module L is perfect if L =0.)
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An important special case is that where G acts nilpotently on Hy X, i.e., each
H,X has a finite filtration by G-submodules such that G acts trivially on the
successive quotients. In this case we will say that X — X is homologically
nilpotent. It follows easily from the universal coefficient theorem that H'(X; A) is
a nilpotent G-module for any abelian group A if X — X is homologically
nilpotent. Since it is clear that only the zero module can be both perfect and
nilpotent, we obtain from 1.3:

COROLLARY 1.4. Assume, in addition to the hypotheses of 1.2, that X — X is
homologically nilpotent. Then cd; X = cd, X.

The proof of Proposition 1.2 will use two lemmas, valid for any regular finite
cover X — X with group G and any m-module M. Recall first that a G-module is
said to be induced if it is isomorphic to ZG® A, for some abelian group A, and
that induced modules are trivial for Tate cohomology: H*(G,ZG® A)=0 (cf.
[5], chap. XII, or [14], chap. VIII).

LEMMA 1.5. The cochain module C*=C%X;M), q=0, is an induced
G-module. In particular, H*(G, C*)=0.

Proof. We must show that Hom; (F, M) is an induced G-module, where F is a
free Zm-module and M is an arbitrary m-module. It suffices to do this for F=Z.
Let A be the underlying abelian group of M. Then there is G-isomorphism

¢:Hom; (Zw, M)— Homg (ZG, A),

defined by ¢(f)(g) =(g f)(1).! This is valid whether or not G is finite, and it shows
that Hom; (Zw, M) is ‘“co-induced.” When G is finite, we clearly have
Homz (ZG, A)=ZG ® A, whence the lemma. [

LEMMA 1.6. Let Z be the module of cocycles Z4(X; M). If H'(G, Z*)=0 for
j =—1,0, then 7:HY(X; M)g — H%(X; M) is an isomorphism.

Proof. Clearly C*(X; M)=(C*)°, where C*= C*(X; M). Hence Z%(X; M) =
(Z%)°, and we have an exact sequence

(C*™H% > (Z2%)° - HY(X; M)— 0. (*)
On the other hand, from C? ! — Z9 — H%(X; M) — 0 we obtain

(C* N = (Z%)6 — HY(X; M) — 0. (% %)

1 Here, as usual, G acts on Homgz (ZG, A) by (g - h)(g') = h(g'g), for g, g'€ G, he Homy (ZG, A).
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Now for any G-module L the norm operator N=),.cg induces a map
Ls — L®, whose kernel and cokernel are H (G, L) and H%(G, L). In view of 1.5
and the hypothesis on Z9 it follows that N induces an isomorphism of (* *) with
(*), and the lemma follows at once. [

Proof of Prop. 1.2. We may assume that X is a CW-complex of finite
dimension d. For n=q=d we have an exact sequence of G-modules

0295 Ci5C"' ... 5 C'>0,

where C* and Z“ are as above. Using 1.5 we conclude that H*(G, Z%) = 0. By 1.6
r:HY(X:M)g — HY(X; M) is an isomorphism, whence the proposition. [J

Remark. There is a convergent fourth-quadrant spectral sequence which can
be used to give an alternative proof of 1.2 and which yields further results relating
H*(X; M) and H*(X; M):

El, = H,(G, H*(X; M))=> H """ 9(X; M).

2. Spaces of cohomological dimension <=2

We will say that a space X is homologically nilpotent if its universal covering is
homologically nilpotent, as defined in §1. If, in addition, 7, X is nilpotent, then X
is called nilpotent. (This is equivalent to the standard definition, cf. [11], Prop.
2.1.) The purpose of this section is to prove:

THEOREM 2.1. If X is nilpotent, or if X is homologically nilpotent and m X
has torsion, then cd X =ho dim X.

This is well known if cd X >2 (cf. Wall’s theorem cited in the introduction).
Hence the theorem follows from:

PROPOSITION 2.2. Let X be a homologically nilpotent space with cd X <2.
Then 7, X is torsion-free, and either X is a wedge of two-spheres (up to homotopy
type), or X=K(m X, 1). If, in addition, m,X is nilpotent (i.e., X is a nilpotent
space), then (a) m X is isomorphic to ZDZ or to a subgroup of Q, and (b)
cd X =ho dim X.

The proof uses the following three lemmas, which will be used again in later
sections.
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LEMMA 2.3. Let X— X be a homologically nilpotent cover with deck-
transformation group Z. If cd X =cd, X, then cd X =cd, X =cd X +1.

Proof. Because cdZ =1, the Cartan-Leray spectral sequence yields a short-
exact sequence

0— H'Z, H" '(X; M)) - H"(X; M) > H%Z, H"(X; M)) - 0, (*)
where M is an arbitrary m; X-module. It follows that
(@ cdX=<cdX+1 and (b) cd,X=cd, X+1.

We claim that equality holds in (b). For if A is an abelian group and n an
integer such that H" '(X; A)#0, then H'(Z, H* '(X; A))=H""'(X; A)z#0.
Hence H"(X; A)#0 by (*), whence the claim. We now have

cd, X<cd X<cd X+1=cd, X+1=cd, X,

and the lemma follows at once. [J

LEMMA 2.4. Let X — X be a finite, homologically nilpotent cover with group
G, and let k be a field whose characteristic is zero or is prime to |G|. Then G acts
trivially on Hy(X; k) and Hyx(X; k)~ H(X; k).

Proof. The first assertion is immediate from the semi-simplicity of kG (Mas-
chke’s Theorem). The second assertion follows from the first and the well-known
isomorphism Hy(X; k)= Hx(X; k). O

If 7 is a group then we set, as usual, cd # =cd K(, 1) and hd = =hd K(, 1).
(Here hd denotes homological dimension, cf. Appendix A). Recall that the rank
(or Hirsch number) of a nilpotent group 7 is defined to be the sum of the ranks of
the abelian groups I'i@/[i.,7, where ([';7) is the lower central series of .

LEMMA 2.5. Let 7 be a torsion-free nilpotent group.

(1) If = is finitely generated, then hd 7w =cd 7 =rank .
(ii) If = is not finitely generated, then hd 7w =rank 7 and cd w =rank = +1.

Proof. (i) is a well-known consequence of a theorem of Malcev [10], according
to which K(m, 1) has the homotopy type of a closed r-manifold, r =rank 7. (See
also [7], §8.8.) The first equation of (ii) follows easily from (i) by a direct limit
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argument. The second equation is also immediate from (i) if rank = =o. If
rank 7 <o, the second equation is proved in Gruenberg [7], §8.8. (Alternatively,
one can again use a direct limit argument.) []

Proof of 2.2. When & = 71X is trivial, it is easy to see that X is contractible or
a wedge of two-spheres, so that in this case the result is immediate. Henceforth,
we assume that 7 is non-trivial.

Let X be the universal cover of X. Then, cd X=<cd X <2, so that H,X is
free-abelian.

Suppose = has torsion, and let G be a non-trivial, finite cyclic subgroup. By
2.4 applied to the cover X — X/G, G acts trivially on H,(X; Q), hence also on
H,X. The Cartan-Leray spectral sequence of X — X/G, therefore, has Ei,=
H,G® HqX'. Since cd (X/G)<cd X <2, the ( only non-zero) differential d> gives
isomorphisms H,G=~H, ;G ® H,X for p=4. But this is impossible because,
when p is odd, H,G#0 and H, 3G =0. Thus, = is torsion-free.

Since = is non-trivial, it must contain an infinite-cyclic subgroup C. By 2.3
applied to X X/C, we have ¢d X =cd (X/C)—-ls 1. Hence, X is contractible
and X=K(m, 1).

Finally, suppose that 7 is nilpotent. Then, by 2.5, either = is finitely generated
and of rank 2, or rank 7 =1; (a) follows easily. To obtain (b), we proceed by
cases. If 7 is finitely-generated (non-trivial), then w=Z or Z®Z, and X=
K(m 1)=S" or §'xS’, respectively, and the result is immediate. Otherwise,
may be obtained as the direct limit of a sequence of self-maps of Z, and so X may
be obtained as the infinite mapping telescope of the corresponding sequence of
self-maps of S'. Thus, hodim X=<2. But cd #=2 by 2.5, and so cd X=2=
hodim X. [

3. Homotopy dimension of spaces with finite fundamental group

Throughout this section X will be a space whose fundamental group = is
finite, and X will be the universal cover of X.
Our main result is:

THEOREM 3.1. If X is nilpotent then ho dim X =cd, X.

Our proof of Theorem 3.1 will also show that ho dim X =cd, X for certain
classes of non-nilpotent spaces. (See 3.2, 3.3, and 3.4.)
We consider first the case cd X <« (equivalently, ho dim X <), in which case



118 KENNETH S. BROWN AND PETER J. KAHN

the theorem follows from the following:

PROPOSITION 3.2. Let cd X=d <. Then cd X =cd, X if and only if the
m-module H*(X; A) is not perfect for some abelian group A. In particular,
cd X=cd; X if X is homologically nilpotent, in which case we also have
ho dim X = cd, X.

Proof. We have c¢d X=cd X by 1.1(ii), and c¢d X=cd, X trivially; hence
cd X =cd; X if and only if cd; X =cd; X. The proposition now follows from 1.3,
1.4, and 2.1. O

Remark. If HyX is countable, then cd; X can be computed from H*(X;Z),
and the conclusion of the proposition can be replaced by the simpler statement,
cd X =cd, X if and only if H*(X;Z) is not perfect.

In order to treat the case cd X =, we will need two results about spaces with
a (finite) nilpotent fundamental group:

PROPOSITION A. Suppose that m is nilpotent. For any abelian group A,
H'(X; A) is a perfect w-module for i>cd, X.

PROPOSITION B. Suppose that w is a p-group for some prime p and that
cd X<wo. Then cdX<w if and only if d(X;Z/p)<w, where d(X;-)=
sup {i: H'(X;-) # 0}.

The proofs will be given in the next section.

It follows from Proposition A that if X is nilpotent and cd X =, then
cds X =00, so that the conclusion of 3.1 holds in this case. Hence the only
remaining case of 3.1 is that where cd X = and cd X <. The theorem in this
case follows from:

PROPOSITION 3.3. Suppose cd X = » and cd X <. If X is nilpotent, or if HxX
is finitely generated, then cd, X = .

Proof. For each prime p dividing |7, let =(p) be a p-Sylow subgroup of , and
let X(p) be the corresponding covering space of X. A standard transfer argument
(cf. [14], chap IX, §2, or [5], chap XII, §10) shows that there is an injection

H*(X; M) < pﬂ?ﬂ H*(X(p); M)

for any w-module M. Since cd X =, it follows that cd X(p) = for some p, and
hence, by Prop. B, that d(X(p);Z/p)=~=. We claim that this implies that
d(X; Z/p) =, whence the proposition. '
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In case X is nilpotent, the claim follows from the fact that the map X(p) = X
becomes a homotopy equivalence when localized at p. Alternatively, one can use
2.4 and 5.3 to prove that Hyx(X(p); Z/p)~ Hx(X; Z/p).

In case HyX is finitely generated, we apply the finiteness theorem of
equivariant cohomology theory ([13], Cor. 2.3) to the inclusion (#(p), X) <~
(m, X). We conclude that H*(X(p);Z/p) is finitely generated as a module over
the ring H*(X; Z/p), and the claim follows at once. [J

COROLLARY 3.4. If X is homologically nilpotent and @®; HX is finitely
generated, then ho dim X =cd; X.

Proof. This follows from 3.2 if cd X <® and 3.3 if cd X=. []

We close this section by briefly discussing some examples of spaces X such
that ho dim X# cd, X.

EXAMPLES 3.5. (a) Let v be a non-trivial group with H;(w)= H,(7)=0.
According to Dror [6] there exists an acyclic space X with fundamental group ,
such that = acts trivially on the higher homotopy groups of X. Then X is
homologically nilpotent (cf. [8], II, proof of 2.18), but cd, X = 0 and ho dim X# 0.

This shows that the word “nilpotent” cannot be replaced by ‘“homologically
nilpotent” in 3.1. (Of course, 3.2 and 3.3 show that this replacement can be
made, provided one adds suitable finitenes§ assumptions.)

(b) For any non-trivial group , one can construct a finite-dimensional space
X with fundamental group 7, such that there is an arbitrarily large gap between
ho dim X and cd X. If 7 is finite, X can be taken to be finite. (In this case, by 3.2,
the top-dimensional cohomology group of X will necessarily be a perfect -
module. If 7 is nilpotent, the same applies to H'X for i>cd, X, by Prop. A.)

To construct X we start with an arbitrary finite-dimensional complex Y with
fundamental group m. Choose n>dim Y. Using a construction of Bousfield and
Dror ([3], Lemma 6.2) one can attach to Y cells of dimension n, n+1, and n+2,
with the n-cells attached trivially, to obtain a space X such that Hy(X, Y) =0 but
7x(X, Y)#0. Applying the relative Hurewicz Theorem to (X, Y), it follows' that
H.X#0 for some i=n, hence hodim X=n. But cd, X =cd, Y<n.

4. Proofs of Propositions A and B
See §3 for the statements of Propositions A and B.

LEMMA 4.1. Let X— X be a regular covering whose group G is a finite
p-group for some prime p. Assume that d(X;Z/p)<.
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(a) If IYI is a G-module such that pM =0, then d(X; M)=d(X;Z/p).
(b) d(X;Z/p)=d(X;Z/p).

(In (a) M is regarded as m,X-module via the canonical surjection m, X — G.)

Proof. Since the augmentation ideal of F,G is nilpotent (cf. [14], chap. IX,
§1), any F,G-module M has a finite filtration 0=My,< M, c---<M, =M such
that G acts trivially on Mi/M;_;. One now proves (a) by induction on n, using the
fact that d(X; Mi/M;_,) =d(X;Z/p). For (b), apply (a) with M=F,G. [J

LEMMA 4.2. Let 7 be a finite nilpotent group and L a w-module such that
pL =0 for some prime p. Then L is perfect if and only if L™ = 0. Consequently, if L
is perfect, then any submodule of L is perfect.

Proof. The second statement follows from the first, since the condition L™ =0
is inherited by any submodule. To prove the first statement, let 7' be the (normal)
subgroup of = consisting of elements of order prime to p. Then L, =(L,")~ and
L™ =(L™)™. Since w/m' is a p-group, it follows that L, =0& L, =0 and that
L"=0&L™ =0, cf. [14], chap. IX, §4, Lemme 4. Since |#’'| is prime to p, the
norm operator induces L. ~L™, whence the lemma. [

LEMMA 4.3. Let f:X — X be a finite regular covering map with group G and
let M be a m; X-module.

(@) If H(X; M)g =0 then H'(X; M) is annihilated by |G|.
(b) If H'(X; M)=0 then H'(X; M)g is annihilated by |G|.

Proof. Let 7:H'(X; M)g — H'(X; M) be the map induced by the transfer
map, as in §1. Let p: H'(X; M) — H'(X; M)g be f* followed by the canonical
surjection H'(X; M)— H'(X; M)g. It is well-known that tref*=|G|-id on
H'(X; M) and that f*otr is the norm operator on H'(X; M). It follows that
7p=|G|-id on H'(X;M) and that pr=|G|-id on H'(X; M)g, whence the
lemma. [

Proof of Proposition A. We may assume that cd; X =n <o, Assume first that
pA =0 for some prime p. Let #' be as in the proof of 4.2 and let X' be the
corresponding covering space of X. Using 4.1(b) (applied to X' — X), we find
d(X'; A)=d(X';Z/p)=d(X;Z/p)=<n. Since H*(X'; A)=H*(X; A)., it follows
that H'(X; A) is perfect as 7'-module, hence also as w-module, for i = n.

Now let A be arbitrary. For any prime p, let ,A (resp. A,) be the kernel (resp.
the cokernel) of multiplication by p in A. By the previous paragraph the
w-modules H'(X; ,A) and H'(X; A,) are perfect for i > n, hence the same is true
of any submodule by 4.2. Using the long exact cohomology sequences associated
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to the coefficient sequences

0->,A>A5pA—>0 and 0->pASA—>A,—0,

we conclude that the maps H'(X; A)— H'(X; pA) and H'(X; pA)— H'(X; A)
have perfect cokernels, hence they induce surjections H “X; A), — H(X; PA).
and H'(X; pA), — H'(X; A),. Thus H'(X; A), is p-divisible for all primes p.
On the other hand, H'(X; A),, is annihilated by || for i> n, by 4.3(b). Hence it
is zero. [

Proof of Proposition B. It suffices to prove that if d(X;Z/p) < then cd X <,
Let M be an arbitrary w-module. Then d(X; ,M)=d(X;M,)=d(X;Z/p) by
4.1(a). Using cohomology exact sequences as in the proof of Proposition A, we
conclude that H'(X; M) is p-divisible for i > d(X;Z/p). On the other hand, if also
i>cd X, then 4.3(a) shows that H'(X; M) is annihilated by a power of p, and
hence it is zero. Thus cd X <. [J

5. Homotopy dimension of nilpotent spaces

The following theorem, which generalizes Theorem 3.1, is the main result of
this paper:

THEOREM 5.1. If X is a nilpotent space with finitely-generated fundamental
group, then ho dim X =cd; X.

Out proof of 5.1 will also show:

THEOREM 5.2. If X is as in 5.1 and w=mX, then hodim X =
rank 7 +ho dim X", where X'" is the covering space of X corresponding to the
torsion subgroup =" of .

(See §2 for the definition of rank.)
We shall need one lemma. We call a regular covering map X — X nilpotent if it
is homologically nilpotent and the group of deck transformations is nilpotent.

LEMMA 5.3. Let X — X be a nilpotent cover with group G. If N is a normal
subgroup of G, then the cover X/N — X is nilpotent.

Proof. If N is central in G, then one proves the lemma by considering the
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action of G/N on the spectral sequence
EZ,= H,(N, H,X)=> H,.,(X/N).

In the general case we can find a central series {1}=Ny<= N;<---< N, =G, one
of whose terms is N. Using the special case treated above, it follows inductively
that X/N; — X is nilpotent, whence the lemma. [

Proof of 5.1 and 5.2. By 2.1, we may replace ho dim by cd in the statements
of the theorems. We now argue by induction on rank . If rank 7 =0 then 5.1
follows from 3.1 and 5.2 is vacuous. If rank #w>0, let =’ be a normal subgroup
such that /7'~ 2Z, and let X' be the corresponding covering space of X. Then
rank 7' =rank w—1, so we have, by the inductive hypothesis, cd X'=cd, X' =
cd X" +rank 7 — 1. The covering X’ — X is nilpotent by 5.3, so that Lemma 2.3
yields cd X =cd; X =cd X" +rank 7. [

As a corollary of 5.2, we obtain the following lower bound on the dimension
of a nilpotent space with a given fundamental group:

COROLLARY 5.4. Let X be a nilpotent space and let m= 1 X.

(a) hodim X =rank .
(b) If X# K(1, 1), then ho dim X =rank = +2.
(¢) If m has torsion, then ho dim X =rank = +3.

Proof. If o is finitely-generated, this follows from 5.2, together with the
observation that ho dim X** =2 if X# K(1, 1) and ho dim X'**=3 if 7' # 1 (see
2.2). In the general case, we apply what we have just proved to the covering
spaces X' of X with ='= 7, X’ finitely generated. Since ho dim X =ho dim X' and
rank 7 = sup {rank ='}, the result follows. []

This corollary suggests the following problem: Given a nilpotent group 7, find
the minimum dimension of a nilpotent complex with fundamental group .

6. Homotopy dimension and localization

Let X be a nilpotent space, P a set of primes, and Xp the localization of X at
P (cf. [16]). If X is a sphere, then X may be constructed as the infinite mapping
telescope of a sequence of self-maps of X; if X is 1-connected, then Xp may be
constructed inductively by localizing the attaching maps for the cells of X. (See
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[16], §2.) From these two constructions, we can deduce that the relation
ho dim Xp <ho dim X +1 (*)

is valid for all 1-connected X. In fact, easy examples show that (*) is essentially
the only relation between these quantities for 1-connected X.

For non-1-connected nilpotent spaces, the second construction described
above breaks down, since cell-attaching destroys nilpotence. Moreover, the
standard method of localizing non-1-connected nilpotent spaces — namely, induc-
tively, by means of principal homotopy decompositions — destroys all dimension
information. Thus, (*) cannot be obtained in general via known constructions. By
applying the results of §§3 and 5, however, together with Appendix A, we shall
show that (*) does hold for a large class of nilpotent spaces.

THEOREM 6.1. Suppose that X is nilpotent and that either Hy X is countable
or w1 X is finite. Then,

ho dim Xp <hodim X +1.

Remark. If we assume only that X is nilpotent and r; X is countable, then we
can prove the weaker inequality hodim Xp=hodim X+2. The methods are
similar to those of the following proof, but they involve cohomology instead of
homology.

Proof of 6.1. If 7, X is finite, then so is ,(Xp) = (7, X)p. Now, because of the
Universal Coefficient Theorem and the effect of localization on ordinary homol-
ogy, it is clear that

Cds XPSCds X+1,

and so the result in this case follows from Theorem 3.1.

If HeX is countable, then HyXp is countable, and hence m4Xp is countable
(cf. [8], 11, 2.16). Thus Xp has the homotopy type of a countable complex, and we
may apply Al(iii) to conclude that cd Xp<hd Xp+1, where hd is homological
dimension, as described in Appendix A. Since cd Xp =ho dim Xp (Theorem 2.1),
the desired inequality will follow if we prove

hd Xp <ho dim X. (1)

We first prove (1) when #; X is finite. Let X be the universal cover of X. Then,
its localization Xp has the homotopy type of the universal cover of Xp. We may
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assume that ho dim X <. By the first paragraph, it follows that ho dim Xp <.
Thus, we may apply the homology analogue of Proposition 1.1(iii) to the universal
covers, obtaining hd X =hd X and hd Xp=hd Xp. But, clearly hd Xp=hd X, by
the main property of localization, and so we have hd Xp=<hd X =<hodim X, as
required.

Next, suppose that 7= X is finitely-generated. Consider the covering
(Xp)*™ — Xp. Since hd (mp/nmp")=rank (mp/my’)=rank # by Lemma 2.5, the
homology spectral sequence of the cover yields

hd Xp <hd (Xp)*" +rank . (2)
Now, it is easy to see that (Xp)** =(X"")p, and so we have

hd (Xp)**" =ho dim X', 3)
by the previous paragraph. Combining (2) and (3) with the equality hodim X =
ho dim X*"+rank # from 5.2, we obtain (1) as desired.

In general, write 7;X as a union of an increasing sequence of finitely-
generated subgroups, and let

X;>X,—> -
be the corresponding sequence of covering spaces of X. Clearly X =ho-lim X;, the
homotopy direct limit (or mapping telescope) of {X;}. Hence, Xp=ho-lim (X;)p

and hd Xp=<sup{hd(X;)p}. But, by the previous paragraph, hd(X;)p=
ho dim X; =ho dim X, from which (1) follows immediately. [J

Appendix A. Homological dimension

We define the homological dimension of a space X by
hd X =sup{i: H;(X; M)#0 for some m;X-module M}.

The following theorem relates hd X to cd X.

THEOREM A1. (cf. [1], Prop. 2.4). (i) hd X =cd X.
(ii) If X has only finitely many cells in each dimension, then hd X =cd X.
(iii) If X has only countably many cells, then ¢cd X <hd X +1.
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Proof. (i) follows immediately from Prop. 1.1(i). For (ii) and (iii) we may
assume that hd X =n<w. Then, in particular, HX = H;(X;Z®7)=0 for i>n,
where X is the universal cover of X and 7 = 7, X. Hence the complex C = Cx(X)
gives us a free resolution

T n+1"'>cn_>cn/Bn—)O,

where B, is the module of n-boundaries of C. If M is a w-module and k>0, it
follows that Torz™ (C,/B,, M) = H, .. (C®,.M)=H,..(X; M)=0, hence C,/B, is
a flat Zm-module.

Under the hypothesis of (ii), each C; is a finitely-generated Z w-module; thus
C./B,, is finitely-presented and hence is projective ([9], Cor. 1.4). It follows that C
has the homotopy type of the n-dimensional complex

: '_)Oﬁcn/Bn—')Cn—lﬁ" '_)CO,

hence cd X < n. Under the hypothesis of (iii), C./B, is countably presented, hence
has projective dimension at most 1 ([9], Theorem 3.2). Thus B, is projective and
C has the homotopy type of the (n+ 1)-dimensional complex

""—)O'—>Bn'_>cn—>cn——1'_)"'—9C0a

hence cd X=n+1. [

Appendix B. Dimension of infinite covering spaces

In this appendix we show how to extend some of the results of §§1 and 3 to a
certain class of infinite covering spaces. In particular, we shall consider a regular
coversing X — X with group G, and we shall make the following assumptions:

(a) X is a finite-dimensional complex.

(b) G is of type (VFP), i.e., G has a subgroup G’ of finite index such that Z
admits a finite projective resolution over ZG'. (Such a subgroup G’ is said to be
of type (FP).)

We will denote by n the virtual cohomological dimension of G (ie., n=
cd G'), and we denote by D the right ZG-module H"(G,ZG). In order to
compare the results of this appendix with those of §§1 and 3, the reader should
keep in mind that if G is finite then n=0 and D =Z (with trivial G-action).
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THEOREM Bl1. (a) cd X—-n=cd X=<cd X.

(b) Assume that X is dominated by a finite complex and that Do, the underlying
abelian group of D, has the property that Do @ A# 0 for every non-zero abelian
group A. Then cd X—n=cd X.

Remark. The hypothesis on D, holds, for example, if G is finitely generated
and nilpotent (or, more generally, if G is polycyclic). In this case n =rank G and
Dozz.

Proof of B1. In view of 1.1(iii) and the fact that H"(G,ZG)~ H"(G',ZG") if
(G:G')<», we may replace X by a finite covering space and thereby reduce to
the case where G is of type (FP). In this case we have H"(G, L)= D ® s L for any
G-module L (cf. [2], Thm. 4.2).

Consider now the Cartan-Leray spectral sequence,

EZ'= H?(G, H'(X; M))=> H""(X; M),

where M is an arbitrary r-module. Then E5*=0 unless p=n and q=d=cd X, so
cd X <=d+n. This proves the first inequality of (a), and the second is given by
1.1(i).

By a “corner argument” in the spectral sequence, we deduce further that
HY"(X; M)= H"(G, H*(X; M))~ DQcH*(X; M). In particular, let M=
Z7®;N, where N is a 7-module. Then one can verify (using the finiteness
assumption on X) that H*(X; M)=ZG ® H*(X; N); hence H*'"(X; M)~
Do® H*(X; N), and (b) follows easily. [

In order to study cd, X, we will need the following generalization of 1.2:

PROPOSITION B2. Let M be a w-module and k an integer such that
H'(X;M)=0 for i>k. Then H(X;M)=0 for i>k+n and H""(X; M)~
D®cH*(X; M).

Proof. If G is of type (FP), this is essentially proved in the proof of B1. The
general case can easily be deduced by passing to a finite cover and using 1.2. The
details are left to the reader. [J

Specializing to the case where 7r acts trivially on M, we obtain:

THEOREM B3. One has cd, X=cd, X—n, with equality if and only if
D®gH"(X; A)#0 for some abelian group A, where k =cd, X.
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From this we deduce the following generalization of the “if”” part of Proposi-
tion 3.2:

COROLLARY B4. Suppose that X — X is a universal covering and that
D®cH"(X; A)#0 for some A, where k=cd; X =cd X. Then cd X =cd; X.

Proof. We have cd X=<cd X+n by Bl(a) and cd X +n=cd, X+n =cd, X by
B3. Thus cd X =cd, X, whence the corollary. [J
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