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Comment. Math. Helvetici 52 (1977) 49-87 Birkhàuser Verlag, Basel

Exponential sums associated with the Dedekind zeta-function

by K. Chandrasekharan and Raghavan Narasimhan

(To Cari Ludwig Siegel for his eightieth birthday)

§1. Introduction

Let K be an algebraic number field of degree n, and let ÇK(s) be the Dedekind
zeta-function associated with it. For Res>l, £K(s) Zk=i Qkks, where ak de-
notes the number of intégral ideals in K with norm k. The function Ck(s) is

meromorphic in the complex s-plane with a simple pôle at s 1. If rx dénotes the
number of real conjugates of K, and 2r2 the number of imaginary conjugates, and

D the discriminant, ÇK(s) satisfies the functional équation £(s) £(l-s), where

with B 2r27Tn/2(|D|)"1/2, ri + 2r2 n. It is known that ak O(fce), for every e > 0
[2, p. 55], while

where A is a positive constant determined by the field K [5, §2.6].
Our object is to prove the following

THEOREM. Ifn^3,r} real, tj^O, then

X ak exp (27rifc1/(n-1)îî) O(xl~(1/2(n-l)) log x),
fc=sx

for jc^2, the 'O' depending on 17.

The case n 2 was considered by us in two previous papers [3, 4]. In [3] we
showed that there was a connexion between the order of magnitude of the
corresponding sums and the existence of an infinity of zéros of the associated
zeta-function on the critical Une. In [4] we proved an approximate reciprocity
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50 K CHANDRASEKHARAN AND RAGHAVAN NARASIMHAN

formula for the sum £k<x ak exp (2mkr\). For n ^ 3 we begin in the same way as

before, and relate the sum XkaSx ak exp {lirikt]) to the sum

where H is a constant. The différence between the two sums can be expressed as a

sum of terms for each of which we détermine the asymptotic behaviour, which is

différent in différent ranges of k. The principal terms in the asymptotic expansions
give the required resuit with xe, for any positive 0, instead of log x. Replacing the

asymptotic expansion, in some places, by a direct estimate, which is slightly more
sophisticated, we get the stated theorem.

§2. Preliminaries

It is known that the functional équation for ÇK(s) implies for p 2*0, p intégral,
the identity [1, (4.23)]

00

- I ak(x-Àk)p QP(x)+ X afcÀi:1-%(À)cx), (2.1)

for x>0, provided that p>|(n-l). The dash in the summation on the left-hand
side of (2.1) indicates that if p 0, and x Ak, the last term should be halved.

Hère Àk =B • fc, B being defined as in §1, and

where ^ is a curve which encloses ail the singularities of the integrand. Clearly

where c equals the residue of ÇK(s) at s l multiplied by {Br(p + 2)}"1. The

function Ip in (2.1) is defined, for x>0, by

xl+P~Sds Ms) rih)r>(s), (2.2)
-s)
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where <#£ dénotes the path of intégration extending from cp - i<*> to cp - iJR, thence
to cp + r- iR, cp + r+ iR, cp + iJR, and cp + ï<», with r and i? chosen suitably large,
and with cp=è + (p/w)-e, 0<e<l/2n.

The following asymptotic formula plays a key rôle hère:

(2.3)

where wp=è-() p(()), (p) (p)
i(ri + 3)-(iV2)). It was proved in [2, Lemma l) for p^O. But the formula and
the proof are, in fact, valid for ail real p.

Since I0(x) is continuous at jc O, with the value

Io(x)dx-*0 as e--»0 + (2.4)

where Fo stands for the derivative of Jo. Clearly I'o(x) I-i(x), for jc>0.

§3. Some basic lemmas

We shall obtain an expression for the sum Xk^x #k exp (2-77^17), with an

arbitrary tj > 0, and Àk B • fc, as a sum of three sums of intégrais, and then
estimate those intégrais separately.

Let a0 0, Ào 0, and

A(x) 0, for 0^jc<Al (3.1)

Let f(t) exp(2mrit), 17>0, r^O. Let /S be a smoothing function defined as

follows: j3(r)e C°°(-oo, 00), /3(f) l in a neighbourhood of r^Àjv (where N is a

fixed positive integer), (3(0 0 in a neighbourhood of t^\N+1, and 0^)8(0^1
everywhere. Since ÀN+1 - \N is bounded below by a positive constant, |8 can be so

chosen that ail its derivatives are bounded in (-00, °°). We then hâve

£ ak/(Àfc)0(Àk)= f f(t)p(t) dA(t). (3.2)
:=0 JOfc

Integrating this by parts r times, where r is an integer so large that the infinité
séries in (2.1) converges absolutely, and uniformly, for jc>0, and p^r>0, we



52 K. CHANDRASEKHARAN AND RAGHAVAN NARASIMHAN

obtain

f(t)p(t) dA(t) (-l)r £ Ar(t) • (/(O0(O)(r+1) dt, (3.3)

where

a r / .\ *¦ \ '

r Ak«t

Writing F(t) f(t)p(t), we hâve, from (2.1),

r°° fÀisr+i

(-l)r Ar(r) • ^^^(r) dr (-l)r ^r+1)(0 • Or(0 dt
h Jo

afcAk1~rIr(Ak0 ' F(r+1)(0 dt. (3.4)

Consider that part of the last intégral given by

(-Dr I <

Ak>y

This is

« E ûkAfc1"1" Ak'(l + 0Wp* (see (2.3))

Z«

<<c (l/2)-(l/2n)-(r/n)^(3/2)+r(l-(l/n))-(l/2n) ,~ -v

Choose JV and y such that

kN^x<\N+1, y coxn~1+e°, eo>0. (3.6)

Then (3.5) is

« x&M+r(1-^lny>-W2n)-(rln)(.n-l+eo)+n{(\l2)-O.I2n)) |j g < 1

<<xl+(n/2)-(reo/n)
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for a given q > 0, if r is chosen large enough. Hence, for any q > 0,

(-Dr I ak\~kx~r fW f*r+1)(f) • Ir(Xkt) dt O(x-«) (3.7)
\k>y JO

for r=r(q). Using (3.7) in (3.3) and (3.4), we get

+ (-Dr I akX^-r f Ir(Xkt) ¦ I*rhl\t) dt. (3.8)

The last sum of intégrais equals

- E * f*"" i-i(At0 • F(t) A- I 7e • Io(0)
Àk^y JO Afc=Sy Afc

- Z * f NI-i(*kt)f(t)dt- S afc f
"N+I

JLxUfcf) •/(()• |8(0 dr
Ak=ey Jo A.jc'Sy Jan

-Ir /o(0). (3.9)

From (3.9), (3.8), (3.6), and (3.2), we hâve

N
Z akf(\k)= Z akf(Xk)

kk^x k=0
iV

X ak exp (27n'rïAfc)

Rr f ^r+1)(r) • Qr(t) dt+O(x-q)

2- ak\ exp (27rirjr) /-i(Akr) dr
Àks£y=c0xn~~1+eo Jo

Z flfc f
"+1

J-i(AkO • /(0 • P(0 dt
Ak«y=c0xn-1 + eo Jàn

- Z rAfc
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Now let

where h is defined as in (2.3). Then Àk«cox"~1+e° implies that

Hlw+£', where ,*=-*-. a*", e'=-. (3.12)
2ttt\ n

Then the first sum on the right-hand side of (3.10) equals

Z ak exp (liririt) I_i(Akf) dt
Xk«coxn-1+eo Jo

Z + Z Ufc | exp (27mîO I_! (Afc0 dr

/•oo

Z «k exp (27n*i70 J_i(Afcr) dr
M«nxT-(1/n> Jo

JPooI

exp (27riT70 /-i(Akr) dt

exp (27717,01-i(Afcr)^, (3.13)

provided that the intégral from 0 to °° converges, which we shall prove (in Lemma
2). Combining (3.13) with (3.10), we obtain the following

LEMMA 1. If e' is arbitrary with 0<e'<(l/n), and \N^x<\N+1, then

Z akexp(2iriTïAfc) =(-l)r [^ F<r+1\t) • Qr(t)
k=i Jo

ak I-i(Akr

- Z ak\
u^nx1-™^ Jo

exp

exP (27miO I_i(AkO dt
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J-ooJ exp (27rn7f) I-i(Àkf) dt

(2mr\i) I-i(\kt) dt,

r] is real, tj>0, p(t)e C°°(-«>, »), 0 defined as in (3.2), F(O

exp (2ttït70 0(0, and jit W2m\) - \{/n (ijl defined as in (3.12) and h as in (2.3)).

LEMMA 2. Tne intégral

/*oo

exp (ïtjO ^-i(0 dt

converges for 17 > 0.

Froo/. We first observe that

Ji

converges if a<0. For, if u(t) (r}t±ht1/n), then

so that, if R and R' are large enough, we hâve, by the second mean-value
theorem,

I

I

and,

r
in

ta cos{u(t)}dt

particular,

2Ra
asin{u(f)}dt

21?a

f taexp(iu(t))dt o(l), as R,R'
JR

Now from (2.3) we hâve
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f
if m is large, while (o-i — v/n<0 for v^O. Hence

exp (ity) J_i(0 dt
h

converges. On the other hand, the limit

f1
lim exp (rrçf) J-i(r) dt

e-*0+ Je

lifti {(Io(l) exp (rr?) - I0(e) exp (iîje)) - itj Jo(0 exp (ïtjO dr}
e-*0+ Jg

exists, and is finite, since I0(t) 'is continuous at ï 0 (as remarked in (2.4)).

We shall now express the intégral in Lemma 2 as a contour intégral in the

complex s -plane.

LEMMA 3. For£>0, we have

4 (s) is defined as in (2.2), and ^o dénotes the path of intégration indicated in
the diagram, with 0<c<l, and k a large, négative number.

X-i

>

C+i

c-i
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Proof. Because of Lemma 2,

exp (i&) /_i(r) dt lim exp (U>t) J_i(f) exp (-et) dt
e-*0+ Jo

lim [ exp (-zt) h(t) dt, (3.14)
z—i* Jo

where z e - i£, e>0. Now

rsds,

since 4(s)/4(l —s) bas no singularities in'Re s>0. If k is large, and négative, the

intégral from k + i to k + i<», and the intégral from k - i°° to k — i converge abso-

lutely, since

«d+lrir-(n/2),

where s cr+ ir. Moreover Re s ^ c < 1, everywhere on ^0. Hence

-zt)t~sdt, Rez>0

Let z |z|-exp(W). Then Iz5"1^^^"1 -exp(-^T). Since Rez>0, wehave
27T, so that |zs""1|^|z|Œ"1 exp (Jtt |t|). On the other hand,

V2tt • exp (-57T |t|) • |Tp--—'—, as |r| -^ oo.

Hence the integrand in (3.15) is O(|rr(n~1)~((n"1)/2)) O(|t|~2), if k is large and

négative, and \r\ large. Thus the intégral in (3.15) converges uniformly for
Re z > 0.

Now let z -> -i£, £>0. Then

r i f A(s)rq-s) s_, i [ A(s)rg-s) féy-1lim -— I —— — z as -—; I —— I - I ds.
z-*-i£2m &o A{\ — s) 2m J^o ^1(1 — 5) \i/

Comparing this with (3.14) and (3.15), we get the lemma.
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§4. Some asymptotic expansions

LEMMA 4. We hâve

I
exp (Ivirit) J-i(Afcf) dt

-i m

_ V m((2-n)/2(n-l))-(W(n-l))
2T] v 0

x {cv cos (qml^'V + ttù)'+\ttv) - là» sin (^mfc/(n"1} + ttco'+5

O(mk((n+2m)/2(n"1))),

eu'= —§4-^/4, / intégral

Proof. Let

q (n-l)2ri/

=| exp rj>0.

Then

Ak Jo Ak 2tti h0 A(l-s) \imkj

after Lemma 3. Deform the path of intégration ^0 into ^', by choosing p to be a

sufficiently large integer, and p</c + r<p + l, as indicated in the diagram.

x+i

x-i

Ol

c-i
1
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y

x+i

X-l

>

1

i
1

p

x+r+i

i

x+r-i

We then hâve

4(1-s)
MV-1 y A(l) • (-1)'-1 /-2imA'-i1
\imj S ,f, A{\-ï) ¦ (1-1)! \ Afc / J

/ i \ i f
\^— "^—:\2-n-T)/ 2m iv 4(l-s)

i tts m\
Icos——isin—- )ds
V 2 2/

1 y

We seek an expansion for

i \ If\2tti}/ 2m h'

Since

A(l-s)
ws irs\.
^—'sin—-) ds.
2 2]

(4.2)

(4.3)

7TS 7T 7TS 7T
sin — ¦

we hâve

Ttf\
^~ \ {V0(s)- iVt(s)} -ir-ml* ds,
2m J

(4.4)

where

V0(s) -
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Choose

L/0(s)= --•
7T

Ut(s) - • b~T(S) cos {7r
7T

where

By comparing the Stirling expansions of Vo and Uo on the one hand, and of
Ï7i on the other, we get (as in [2, Lemma 1])

-^- r(s)sin (f+ w
and

Now, following the same procédure as in [2, Lemma 1], we can get

-M V0(s)x-°ds -£ d,x(<2-")/2("-1)W('-1)sin(qx1/<"-1) + 7rW' +
2lTl Jcg> u==0 \

+ O(x-((n+2m)/2(n~1))), (4.5)

and

-^-r f V1(s)x"ïds=
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where

-((n/2)-l) .1/2
q fri/(»-i) (n _ i)2'.'<-», co

^ — • — do,
M — 1 7T

provided that

n + 2m
^ 2(11-1)

From (4.4) we hâve

2r,

From (4.5) and (4.6) we therefore obtain

m

v =0

xicvcos(awik +7Tco +^-)-mv sin '

+ O(mk((n+2m)/2(n"1})), (4.7)

where c0 ^o- However, from (4.2) we hâve

(4.8)
1 f ^W-(-l)'-1 /

for a suitably chosen integer p. Now (4.8) and (4.7) give us the required resuit.

LEMMA 5. Let a be a real number, aïO, ix (h/2irr))\lk'n, 17>0, and
h n2(n-r2)/n ^ ^ ^ ^ % _ ^IM Fo(0 FoU M) (7<p'(0, F, + 1(f)

F(+1(f, M) l/«p'(f) • (dldt)F,(t), for / 0,1,2,.... 77um

Ĥi r
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with co,o=l, Ci,-i 0, Ci, i+i 0, and

^
for fc 0, 1,...,/ +

Analogously, if

/n, G0(t) G0(t, p) -J—,

/or / 0,1, 2,...,

^ i td

with do,o=l9 df,-i O, du+i 0,

di+i.k di.fc{(û-/) + fc(l~)}+^k-i{(/ + l)(l~) + (^

The proof follows by induction on /.

LEMMA 6. Let a a(v) co_i- vin, for v 0,1, 2, IfÔ>0,8 sufficiently
small, and 0<tîo<t/, and fi^(n-ô)x1'a/n\ we have

f ta exp (2wiW(r)) dr exp (2iri I (^)+!^X) ^\Jx Il=0

where the 'O' dépends on L and 8, but is uniform in fi, and Ftj v is the function F\ of
Lemma 5, with a a(v).

Analogously we have

f ta exp (2irfr|*(0) dt exp
1=0

is the function Gf of Lemma 5, vvîtfi a a(i/).
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Proof. We note that û>_i (l/2n)~è, and that x is bounded below. Since t^x,
we hâve

and

Hence, from Lemma 5, we hâve

Fi. v(t) O{ta~\ t^x, il ^ (n - 8)x1-(1/n\

where the 'O' dépends on a, /, and 8, but not on t, x, or fx. By partial intégration,
we hâve

r r ta
ta exp (27rÎTj<p(0) dr -— • exp {2m>r)<p{t)) - <p'(t) dt

Jx Jx (P (0

rx FL+i, v(t) • ç (t) • exp l

exp (2tt/i7<p(x)) J] —7^—rrfe 1" O(xa~L).

Replacing L by L + l, we get the lemma.

LEMMA 7. Under the same conditions as in Lemma 6, we hâve

ex

• fez, ,F,, v(x) + exp

or tfte functions Fh Gt defined in
Lemma 5, w/fh a a(v) — co-i - (vin), v 0,1, 2,
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Proof. On using the asymptotic expansion for I~\(t), we hâve

exp (2mrit) 7-i(Àkf) dt £ *C (AkO"-1"0*0
v 0 Jx

x exp (lirivt) cos (/iAi/nr1/n + irv) dt + Om((Àkjcr-*-((m+1>/n)+1),

where h n2in~r*)/n, and ttv 7rv(-l) -ir(èn-h(r1/4 + J)-(i//2)). Thus

exp (2^0 I_i(AfcO dr

I à?--(Wb)( iv r-'-<l>/n) exp {2mt\t - h\llHt1"1) dt
v 0 \ Jx

+ fei | r--(-M) exp (2mt\t + hXllnt1/n) dt) + Om

If we now use Lemma 6, we get

f exp(2iriî,r)J_l(Ak0A= I Àt-.-("/n){^ exp

K exp

If L [(m + l)/n], then L +1 > (m + l)/n, hence

/•oo m

exp (2mt|t) I-i(Akr) df X AÏ-»-W
Jx v 0

Replacing m by n(m + l), we get the lemma.

Our treatment of the estimâtes for the range ^ ^ (n + ô)jc1~(1/n) is based on the
next two lemmas.

LEMMA 8. For a fixed £ swcft fftaf 0<^0^^^65 we haue, as jll-x», the

following asymptotic expansion (in decreasing powers of fi):

the d\>v are continuous fonctions of £ for
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Proof. We hâve only to use the formula

(see Lemma 5) and the Bionomial Theorem.

LEMMA 9. Suppose for a fixed integer K^O, we hâve

k=0

as fji -» oo5 where no> ni> n2> • • • —> -°°, /or /bced x m a compact set in Ri, and
this holds uniformly in £ for a^Ç^b, where ak (£) and bk (£) are continuous in £,

and the function f(x, ix) is independent of Ç, then ak{^) is a constant, say ak, and
bk(Ç) bk{Ç) 0 for ail k^K.

Proof. By hypothesis,

jUL~n°/(/Lt) ao(£) + bo(Ç) exp (/ju,£) + feo(^) ^xp (— î/ll^) + o(l),

as jll -» oo? uniformly in £ Integrating this with respect to £ we get

as /ui—»o°, for a^^=^j3<6, because of the Riemann-Lebesgue Lemma. Hence
the limit linv-*» fi~n°f(fji) exists, and equals, say, c which is independent of |. It
follows that ao(£) c. Hence

lim {bo(& exp (î/if) + b'0(i) exp (-îjxf)} 0,
(X—

or lim^^oo bo(l) exp (2j>|) + foé(^) 0. Again, by intégration, we see that bo(Ç) 0,
hence also fco(£) 0. A répétition of the argument leads to the lemma.

COROLLARY. If
K

fc=O
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for a > 0, uniformly in Çfor a^^b, as ja —» °°, then ak (£) is independent of £ and

LEMMA 10. // 5>0, awd sufticiently small, and 0<tjo^t?, and jz^
ô)

i
exp (2iriTîO J-i(Ak0 dr

È
1=0

t exp (2mit4,(x)) t
n) (as in (2.3)), and co_i (l/2n)-i. If L m, the term

O(jit~1'~1) can be dropped.

Proof Let £ be a number such that Jài^^^Iài, say. Then

I
exp (27ni70/-i(AkOdf= I +

If a a(^) co_i-(i//n) (l/2n)-|-(v/n), for v 0,1,2,..., we obtain by partial

intégration,

ta exp (27mj<p(0) dt
h

exp

To estimate the last intégral, we use, after Lemma 5,

,U/n)-l

Hère t^x, and
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while

1 -nt-1/n

n n

For 1 =ss £ ^ r ^ x, the numerator is bounded, while

since c1"(1/n)^ n/Lt/(n + ô). Hence

-l/n

so that

provided that fe^l, j i. On the other hand,

- -(1+ with

hence

n
< C, say.

Thus <pf(r)Ffc(t)= O(tVk), for fc^l. It follows that

— --.2n 2
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Thus we obtain (after replacing L by a larger V if necessary),

fV exp (2mi\<p(t)) dt exp (27riVcp(x))
1=0

-exp(2,m,y(fl) t '"f^H^ + Q^-1-1), (4.9)

for jLt^(n + Ô)x1~(1/n), where the 'O' does nof dépend on £
If we replace (p by ^, we obtain an analogue with d,v(x, fi) instead of

FltV(x, /ut). It follows that

I exp (2iriTjf) /-i(AkO dr

exp

- « exp

Io

On the other hand

I
exp (2mrit) I-i(Akf) dt

I0(Akg)exp(27rnté) /0(0) 2irir\ f* #w/1 A
^—

i eXp (27nrîr) /o(Ak0 dt,
Afc Ak Ak Jo

where

exp (27nT?f) J0(Akf) d(
Jo L Jo

— I — /i(AkO • exp (27rïrït) dt
h Afc

dt.
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Since

and £ is bounded, we hâve

Afc Jo v l Afc \Ajc / Jo

Thus altogether we hâve

f
the 'O' being independent of ^.

Combining (4.10) and (4.9), we get

I
exp (2mi\t) /-i(Akr) dt

(=0 (ZOTTJ)

t
1=0

- bv exp

if ^^(w + ôjx1^17^, 8>0, ô sufficiently small, and /u, (Ji/27ttj) • \lk/n.

If we now use the asymptotic expansion (2.3) for Iv, O^v^m, and apply
Lemmas 8 and 9, we get the required resuit.
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LEMMA11. If(n-8)xl-(l/
then

ta exp (2mrw{t)) dt

and, for ail fi>0,

f rû exp (27^(0) <*' exp
i=o

where, as before, a a(v) <o-i - {vin); v - 0,1, 2,

If e>0 (and not necessarily 2e < n), we hâve

I ra exp

Proo/. By partial intégration we hâve

f ta exp (27m,<p(0) dr exp (2*riW(jc)) Z (^ !^X)
Jx f=O (277117)

i J FL+1,v(0 • v'(t) • exp (2iriw(r)) dr.

In order to estimate the last intégral, in the range under considération, we hâve to
estimate FktV(t) anew. We hâve

since ^nx1-^"', and t1-(1/n)-(
(l/»)xH1/"Hrf")) for i^.On the other hand,
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since

t — — t1/n t1/n( f1-(1/n) ——
n \ ni n

Therefore we hâve

xke/n • ta

on using the formula for Fk(t) given in Lemma 5. It follows that

¦1)L+1 f°°

«T7)L4"1Jx L+hv

x L + l 1 1 n e/n)) J^

hence the flrst part of the lemma.
The proof of the second part is similar. We use the fact that

"^(1/n)"1
ta~kta

n

To prove the final remark, we note that

ra exp (2mr)<p{t)) dt ——- • exp (2irÎT»<p(0) * <p'(0 <

x Jx <P (0

Jx(
ta exp

Since ta/(p'(t) is decreasing, we may apply the second mean-value theorem to the
first term (that is, separately to the real and imaginary part). To the second term
we may apply Lemma 6.

LEMMA 12. // (n-8)xHV"k^wHVB)-xH1/BH'/B), 0<2e/n<l, S>
0, 8 sufficiently small, then we hâve

m)) X \Jx
exp (2im,f) /-i(AkO A £ Ar-'-^Mfc,, exp

1=0 (ZOTTJj

provided that L [(m +1)1(n - 2e)].
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If e >0 (and not necessarily 2e < n), we hâve

exp (27rir)t) I_i(Afcf) dt« Aï"1 |Fo,o(x)|.

Proof. We use the asymptotic expansion fot /_i(Afcr), and then Lemma 11

gives the required resuit.

LEMMA 13.

2e/n<l, then

c1-(1/n), and 0<y<l,0<

«k(l-Y
exp dt

+ b'vexp (27ni7iA(x)) 2. n .\l+1—

Zxo, ~{vin)lu

v=0 \
2,

provided that L [(m + l)/(n -2e)].
1/ e > 0, fhen we

exp

Froo/. We shall first estimate

(1-1-7)

Hère t^x,

n

ta exp
v

with a a(i>) ûj_i —

so that

n

n n

M»

n

fl-(1M)

,1-d/n)
,<.e/n

n
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Hence

\fl+1,M-<pV)\«
(L+l)(e/n) ^a

(L +D/n

It follows that

fX FL+1. ,(0 • <p'

Jx(l-y)
(0 • exp dt

dt

«xa

Hence

fX t
Jx(l-y)

ta exp exp (2m t
1=0

An analogous resuit holds with i/f in place of <p, and Gj, „ in place of Ftt v. If we use
the asymptotic formula for J_i(Àkf), and choose L [(m + l)/(n - 2e)], 0< 2e/n <
1, we get the first part of the lemma.

If 2e/n^l, we simply use the asymptotic expansion for /_i(Àkf), and observe
that while

IL ta exp (2mrn(/(t)) dt «|Go,o(x)|«|Fo,o(x)|,

the second mean-value theorem may be applied to the intégral

)dt.
Jx(l—y)

LEMMA 14.
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£>0, then

rx(i--v)
I exp (2irîi)0 /_i(Akr) dr

'o(O) » ia> _(v/ £
Ak

Proof. Since

an application of Lemma 10 gives the resuit. Note that to0-(m/n)-l
a)_i-(m+ 1)1 n.

LEMMA 15. // nx1~(1/n) + x1~(1/n)~(e/n)^iu,<(n + Ô)x1~(1/n), 0<y<l, 8>0,
0<2e/n<l, then

I
exp (27ni70 I-i(ÀkO

exp (2mW(x)) Z V^V^^ + W exp

If e>0, then

KO) (x
T~+L ex

Proof. This results from combining Lemmas 14 and 13.

LEMMA 16. If nx^'^-x^'^-^Kti^nx1-^, and 0<r<l, e>0,
then

Jx(l+-> f exp (2ttïtî<p(0)
L

exp (27ni7<p(x(l + y))) Z
1=0

vv/iere a a(v) <o-1-(vln); v 0,1,2,
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Proof. Hère we hâve

so that the required resuit foliows from Lemma 6.

LEMMA 17. //Wx1-(1/B)-jc1-(1/n)-(«/n)<ft^Wjc1-(1/n), 0<7<l, 7 sufficiently
small, and e > 0,

ta exp {2iriT)<p(t)) dt

i a+iPv1 Mp(1 + y) exP (2ttït|<^(x(1 + y)))-Bv(l) exp (2m
ï.nx \ Llp O

7r/jC7]P(i;o)) fT
v^

t;n-ai;, a j*jc(1/b)-\ i;0 (a/n)1^"^ r P(l)-P(i;o), and

uniformly in t. The terms Ap, Bp, a'm, f$'m dépend on a, and, for fixed p or m, are
continuous functions of a in a neighbourhood of the point a n.

Proof. We hâve

ta exp (2mr\<p(t)) dt

fl+7
xa+l ua exp (2mxr)(u - iLtx(1/n)~1 • ulln)) du, (t ux)

xa+1|
y

uaQxp(27rixv(u-au1/n))du

r(i+T)1/n
nxa+1 I exp (2<rrixT}P(v)) van+n~l dv. (u vn)
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Now dP/dv O, for v (a/n)mn~1) v0. In order to make the substitution
P(v) — P(v0) s, consider the expansion:

where f(z) is a power séries of the form (z/y/2)yjP"{vQ) + • • • (Note that
Pf(vo) 0, while P'(v)<0 for v<v0, and Pf(v)>0 for v>vo. Further P"(vo) is

close to n(n-l) if x is large, in the range of fi under considération.) We then
hâve /(i;-î;o) 51/2. Since there exists an F, such that F[f(z)] z with

we hâve

where F(s) is holomorphic in a neighbourhood of the origin, say in |s| < 2R, which
is independent of a. The above intégral therefore equals

a+1 - exp (2nixriP(vo))

rs=p((n-7)1/n)-P(u())rs=p((n-7)1/n)

Js=P(l)-P(t)0)
ds,

provided that y is so small that P((l + y)1/n)-P(v0)<R, say. Now set

g(s) (v0 + F(s))an+n-1F(s),

t P(l) - P(do), C P((l + y)1/n) - P(t;0).

Note that t= O(x~2e/n), while C is bounded below by a positive constant. We
then hâve

r îa exp (27riT)<p(0) dt

5nxa+1 exp (27rixr}P(v0)) g(sin)s~m exp (2^x175) ds.

Now g(s) Xm=ogmSm, uniformly for |s|^C<JR. For N^l, let

00

ccrn-4- / <rçm= / p çm-|- 5«.ti Ç1 ÇflV
m=22V+l

Then the function HN(s)= êv(s)s~1/2 is N times continuously differentiable in



Exponential sums

s 5*0, and the flrst N-l derivatives vanish at 5 0. Hence

"y1 (-l)p exp (2irix7iO Hp(O

77

Now

I HN(s) exp (2irh

w

[ s(m"1V2 exp {2irixr]s)

ds

if m is an odd integer s» 1 ;

(m-l)/2

p=0 (2mx-n)"

ïx 5 exp (2mxt]s) ds,

if m is an even integer ^0.

On the other hand, as x —» <»,

f s exp (2771x175) i/5 ¦
(27rxrî)1/2 r% (27rxr,)r+1

To proye this, one has only to consider the contour intégral J z~1/2 exp (~xz) dz,
for x>0, in the complex z-plane, taken along the rectangle with corners at the

points z 0, -iC, R - iC, and R, with R > 0, and then let jR -+ ». We then get

iy Z S* iy

-IC R-ic

y
1/2

exp (ixy) dy

r3/2[[ 5~1/2exp(-x5)ds-exp(i. (s-/C) 1/2
exp (-jcs) ds]¦
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If we note that the first intégral equals <Jttx~1/2, and integrate the second intégral
by parts a sufficient number of times, we get the resuit.

Putting the above results together, we obtain

f
Ji (2)mHim h (2)«+1 + °{X '

In the same way we see that

fT l/2x -1/2 ,~ • W V fe

+ I o^m,m f 5~1/2exp(2irixr,s)

Thus

r° i/2x -1/2 _/.»_,__ .X ^.V «P(C)exp(27rixT7C)-Pp(r)exp(27rô
exp

o

Hence

fa exp (27n'i7<p(r)) dr

rN~] (Ap(l + 7) exp (27rii7(/>(jc(l + 7)))-Bp(l) exp I

r
{

P

{ lP=o

y a'mexp(2irixr}P(v0)) y D/+ 1 n\ yn+àn) L P'mexp(2TrixriP(vo))
m=0 {ZTTXr}) m=o

x [ s'112 exp (Imxris) dsl 4- O(xû~N),

since jcP((l + 7)1/n)= <p(jc(l + 7)), and xP(l) ç(x). (The constants in the above

formula are independent of N.) We hâve xP(v0) y^^'1^ • n"17^"1^ /x
Afc/n. Note also that if

r,x)=(.s 1/2
exp (lirixris) ds,
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then

jK"(t, x) x1/2 I y
1/2

exp (27rii7y) • x
x

dy x~1/2 y"112 exp (2mr]y) dy.

Since iC(6) |o s~V2 exp (27ns) ds tends to zéro as 6 -> 0 + and K(b) tends to a
finite limit as b —> +oo, K(b) is bounded everywhere, hence

K(rfx)=O(x-m)

uniformly in t.

LEMMA 18. If nx^^)_xlHl/n)Hst

t exp (27rirnl/(t)) dt exp (27rirnl/(x)) ^ ——;— /+1 Y O{xfJx

where a a{v) cj-i — (v/n).

The proof hère is simpler than in the case of <p(t), since i(f(t) t + ixt1/n, so that
if/'{t) is bounded both above and below for t>0. (See Lemma 6.)

LEMMA 19. I/nx^^-x1"^"^^/!^^1"^, e>0, then

> nN N-l

var0 m=0
niV N-l

- Y VLt Le
v=om=o

v=0 m=0

X

niV N-l
'+11

v=0 m=C

s~1/2exp(27r/xTî5)

The coefficients uVfm, u'v,m, Kttn are continuous fonctions ofaforfixed v and m.

The proof follows upon putting together Lemmas 16, 17, and 18, after using
the asymptotic expansion for /-i(Àkf), and then noting that the intégral on the
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left-hand side is independent of y, hence in the expansion for it (obtained with the

help of those lemmas) in decreasing powers of x, ail the terms involving y should
vanish (by the kind of argument used in the proof of Lemma 10).

LEMMA 20. Ifnx'-^Kii^nx^^ + x1-^-*', 0<e'<l, then

f exp {2<îrir)i) I_i(Àfcf) dt

has the same expansion as in Lemma 19, but for the additional summand -Jo(0)/Àk.

The proof follows upon considering the intégrais JS(1~Y) and Jïu-y), with
0< y< 1. The first intégral can be treated as in Lemma 10, and the second as in
Lemma 17.

LEMMA 21. // kN ^ x < kN+u then

exp

x f N"
(t-x)1 • 0(0 • exp (2iriri(t-x)<p'(x)) dt

+ exp (2

x [
N"

(t-x)1

where a (o-i-(v/n), and the summation on the right-hand side extends over:

0^v<n(M+l), 0^/^M, O^q^M, 2^p^M, / + pq /, a// integers, and p is

the fonction defined as in §3.

Proof, From the asymptotic expansion of I-i(t), we hâve

f
N+l

exp (2mrit) I-tfat) • |8(r) df £ etAî?--(v/n) f ™
r-"(vM) • exp (2iri

r 4- £ etAk-l"(Wn) f "" r--(v/n) • exp (2irf
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Now ta xa+I^i c, • xa-'(t-x)J, for AN^f^AiV+1, and (t-x)} O(l), for /
Further

Hence

raexp

I ^a~J f
N+1

(^-^)J exp (2iriw(r)) • /3(r)

exp (2wiw(x)) 2. c;jca-j (r-

xexpf(2iroj)( Z ^^<p(p)(x

exp(2iriiw(*)) I c;,p><,xa-'(<p(p)(

x fÀW+1 (r-x)1 • exp

the last sum extending over: 0^/^M, 2=^p^M, ^^0, / + pq /, ail integers.
Note that the last intégral equals

N"
t1+pq[

N

and, if we integrate by parts, we see that this is also

A similar resuit holds with ij/ in place of <p. If we choose m +1 ^ n(M+1), we
get the lemma.

LEMMA 22. For the first intégral in Lemma 1, we hâve the estimate:

(-l)r fÀN+1 f*r+1)(f) • Qr(t) • dt
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Proof. By partial intégration, we see that

F'(t) • 0o(r) dt -Oo(0) - £ F(0 • Q-xW • dt

- Oo(0)-K0j I exp (2irir\t) dt+\ exp (2im)f) 0(f) df J

since ÀN+i-AN, and /3 are bounded; and

O-i(x) 2^f [ B-'&^x-1 ds, x>0,

so that Q-i(jc) equals J3"1 times the residue of ÇK(s) at s 1, and O0(0) (which is

defined by continuity) equals £k(0).

§5. Proof of theorem

If 0<e'<l/n, À]sr^x<ÀN+i, and tj>0, we have, by Lemma 1,

l ak exp (2mnAk) =W1 + W2+W3+W4+W5 + W6, (5.1)

where

'

F<'+1\t)Qr(t)dt,

forany q'>0,

- V afc I-i(Afcf) • exp (27riTjr) • |3(r) df,

- V O
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We suppose, to begin with, that AN x. By Lemma 22, we hâve

Wi O(l). (5.2)

To estimate W5 we write it as a sum of three separate sums, namely

Now, by Lemma 7, we hâve

/•oo

W5,i= 2* afc I cxp (2irii}t) I-i(kkt) dt
^(n-ô)x1 (1/n) Jx

v^ va V ^, ia/^ v(n/2)—(1/2) /c o\

if we note that, in this range, FOsO(x) O(xa), G0,0(x)= O(xa), (where
a (l/2n)—§), and use the fact that for -Ka^O, we hâve

1 ak\ï~cy1+a, as y^=o, (5.4)

since Z\t«y «k ~ A'y.

By the last part of Lemma 12, we hâve

W5,2« X

1-n'

<<; a+a(n-l)
1

v-z Jl l/nA,-l/n »

with y cojcn~1, z c1xn~1~e/n. (Hère, as elsewhere, we take ôi>0, ô2>0, and

sufficiently small. We adopt the usual convention that an empty sum is zéro and

an empty product is 1.) Since A(f) XAfcS£f ak A'f + .R(0, where JR(O

«
(l-S2)y<Àfc<y-2 1-Afc y J(l-S2)y l-(^/y)ln

r~z dA{t)
J(i-52)y î-(^y)1

i-('/y)1/n
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Now

rz dt -y.U i-(t/y)Vn~ yJ

o(y log ^j Oix"-1 log (1 + x)).

Similarly

Thus we hâve altogether

W5,2=O(x(n-1)/2log(l + jc)), if 0<e^n-l. (5.5)

To handle W5>3 we use Lemma 17, and obtain

/•oo

W5,3 X afc exP (2iriTir) I-i(Akr) dt
nx l-(l/n)_x l-(l/n)-(«/n)<:^ ^nx l-(l/n) Jx

x A ak-Àfc-x
coxn~1-c2xn~1~l!/n<Ak=^Coxn~1

« xy2n X ak\ak« x"'2"^'"-" X Ok, since Àfc«x"

<<c JC(l/2n)+a(n-l)+(n-l-(e/n))<< JC(n/2)-(e/n) /^ ^\

since Zy-Z<xk^ ak c52 + O(y1~(1/n)), say, for 0<z<y. Now (5.6), (5.5), and
(5.3) give

W5 O(x(n-1)/2) + O(x(n"1)/2 log (1 + x)) + O(x(n/2)~(e/n)), (5.7)

if e^n-1.
The estimation of W6 is similar. We first split it up into three parts:

I|A^nx1-(1/n)+e' nx1-(1/n)+x1-(1/n)-(e/n)«

xT-(l/n)+x l-(l/n)-(«/n)
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in each of which there are two summands. We use Lemma 10 in W6A and obtain

W6,i=- Z ak\ exp (2>nir\t) J_i(Àkf) dt
(n+ô)x1-(1/n)^»jt<nx1-(1/")+e' Jb

- o(X *kXÎ • |Fo.o(x)|) o[X ak • À? • x*^ iuix(1/n)-1- l)"']
O(jt(n-1)/2log(l + Jc)), if 0<e^n-l, (5.8)

as in the case of W5t2 (see the proof of (5.5)). Note that the sum -£ akl0(0)/\k
cancels out in this range.

By Lemma 15, we obtain, as in (5.5),

if 0<e*£it-l. (5.9)

Finally, by Lemma 20 we obtain, as in (5.6),

W6t3 O(jc(n/2)"(e/n)). (5.10)

Hence

(1)/2 (/2)(e/n)), 0<e^nrl. (5.11)

To estimate W3, we note that the principal term in the expansion given by Lemma
21 is a constant multiple of

2, ak exp (2iriri<p(x)) \kxa (3(t) exp (27rir\(t-x)(p'{x)) dt,

together with a similar term with i^ in place of <p. It follows that

W3« Y ak-À£-jca+ X

(5.12)

since 0<e'<l/n«(n-l)/n. Note that the estimate of the first sum is similar to

that of (5.3), and that of the second similar to (5.5).

By Lemma 4, we hâve

(5.13)
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where c4 is a non-zero constant, mk kk/2irri, q (n-l)2ri/in~1\ Since —1<

{(2-n)/2(n-l)}^0, for n5*2, we hâve only to use (5.4). Note that
-1 (ak/Ak)Io(0) cancels out +£ A(l)/à(O) • ak/Ak.

Combining (5.1), (5.2), (5.7), (5.11), (5.12), and (5.13), we get

akAic2-n)/2(n"1)exP{-(27r/m^/(n-1) • q)}-c £ ak exp (imiM
M k l

O{x{nf2)-1) + O(l) + O(x~q) + O(x(n-1)/2)

+ O(x(nJl)/2 log (1 + x)) -h O(x(n/2)-(eJn\ (5.14)

where c is a constant, n^2, 0<e=^n-l, 0<6;<l/n, q' is an arbitrarily given
positive integer. If we choose e/n =|, as we may, we get for x AN, n ^ 3,

r^-^ exp {-(27n*Ak/(n-1) • H)} O(x(n"1)/2 log (1 + x)\ (5.15)

where H=q(27Tîî)"1/(n"1), since

exp (27rirjAk) O(x) O(x(n"1)/2),
k=i

for n^3. On the other hand, we hâve, for any ei>0, and x kN,

CoA.Nn~1<^k<CoA.N+in x CoA.Nn 1<A.k<c0AN+in J

^^ v(2—n)/2+e1/ \ n-1 \ n—l\

since An+i^jc + J3, so that \n~+\-Ùn~1«xn~2.
Thus it follows from (5.15) that

rn)l2(n-x) exp {-(27nAk/(n-x) • H)} O(y(n"1)/2 log (1 + y)),
Àfc*£coyn J

for AN ^ y < AN+i. From this we deduce that

I ûfcÀ?--"2*"-» exp {-(27r/Ar-1> • H)} O(y1/2 log (1 + y)),

and this implies, by partial summation, that

I ak exp {-(2mAi/(-1) • H)} o^y1"^-1» log (1 + y)),
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where H=ql(2irr))1/(n~1\ Note that c0 involves 17, where 17 is arbitrary and

positive. By taking conjugates, if necessary, we obtain the theorem.

Remark. It is possible to prove a corresponding resuit for the coefficient sums
of Dirichlet séries satisfying a functional équation of the type treated in [1, 2], The
proof requires no new ideas. In particular, the resuit is valid for the zeta-function
of an idéal class and Hecke's zeta-function with Grôssencharacters.

We note that if n 2, (5.14) reduces to the resuit given in [4].
We also note that considered as a resuit valid for ail n ^ 2, the theorem is a "best

possible" one, after Walfisz [6, p. 566], though the estimate can be improved for
particular values of n. For n^7, for example, partial summation will suffice.
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