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Comment. Math. Helvetici 52 (1977) 49-87 Birkhduser Verlag, Basel

Exponential sums associated with the Dedekind zeta-function

by K. CHANDRASEKHARAN AND RAGHAVAN NARASIMHAN

(To Carl Ludwig Siegel for his eightieth birthday)

§1. Introduction

Let K be an algebraic number field of degree n, and let {x(s) be the Dedekind
zeta-function associated with it. For Re s> 1, {kx(s)=Yr=; axk™, where a, de-
notes the number of integral ideals in K with norm k. The function {x(s) is
meromorphic in the complex s-plane with a simple pole at s = 1. If r; denotes the
number of real conjugates of K, and 2r, the number of imaginary conjugates, and

D the discriminant, {x(s) satisfies the functional equation £(s)= &(1—s), where
£(s)=I"Gs)IM(s)B "Lk (s),

with B =2"7"?(|D|)""?, r;+2r, =n. It is known that a, = O(k®), for every ¢ >0
[2, p. 55], while

' Z a; = Ax + O(xn /(v

k=x

where A is a positive constant determined by the field K [5, §2.6].
Our object is to prove the following

THEOREM. If n=3, n real, n#0, then

Y. a exp QmikV" Vn) = O(x! 2D 156 x),

k<x

for x=2, the ‘O’ depending on .

The case n =2 was considered by us in two previous papers [3, 4]. In [3] we
showed that there was a connexion between the order of magnitude of the
corresponding sums and the existence of an infinity of zeros of the associated
zeta-function on the critical line. In [4] we proved an approximate reciprocity
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50 K. CHANDRASEKHARAN AND RAGHAVAN NARASIMHAN

formula for the sum Y, <, a; exp (2wikn). For n =3 we begin in the same way as
before, and relate the sum Y <, ax exp (2wikn) to the sum

Z | K@D g exn (2arik V"D L VD L Ep)

k<cox™~

where H is a constant. The difference between the two sums can be expressed as a
sum of terms for each of which we determine the asymptotic behaviour, which is
different in different ranges of k. The principal terms in the asymptotic expansions
give the required result with x°, for any positive 6, instead of log x. Replacing the
asymptotic expansion, in some places, by a direct estimate, which is slightly more
sophisticated, we get the stated theorem.

§2. Preliminaries

It is known that the functional equation for {x(s) implies for p =0, p integral,
the identity [1, (4.23)]

1 -
Mo 7T, A =0+ 2 ad L), @

for x>0, provided that p>3(n—1). The dash in the summation on the left-hand
side of (2.1) indicates that if p=0, and x = A, the last term should be halved.
Here A, =B - k, B being defined as in §1, and

x**° ds,

CQ,(x)=

C2mi

1 LB”‘(ZK(S)F (s)
I'(s+p+1)

where € is a curve which encloses all the singularities of the integrand. Clearly

Q,(x)=cx'**+ i cxP 7,
j=0

where ¢ equals the residue of {x(s) at s =1 multiplied by {BI'(p+2)}" ', The
function I, in (2.1) is defined, for x >0, by

‘ 1 I'(1-s)A(s) g T P
I,,(x)-—zm_ L‘; To+2=9a0—5) X ds, A(s)=T"Gs)I(s), 2.2)
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where €/, denotes the path of integration extending from ¢, — i to ¢, — iR, thence
to ¢, +r—iR, ¢, +r+iR, ¢, + iR, and ¢, +i®, with r and R chosen suitably large,
and with ¢, =3+ (p/n)—¢, 0<e <1/2n.

The following asymptotic formula plays a key rdle here:

m

L(x)= ), elx® ™" cos (hx'" +m,) + O(x® "1/, (2.3)
v=0

where w, =3—(1/2n)+p(1—=(1/n)), h =n2""2"" @, =7,(p) = —7((n/2) +(p/2) +
Hri+3)—(¥2)). It was proved in [2, Lemma 1] for p=0. But the formula and
the proof are, in fact, valid for all real p.

Since Iy(x) is continuous at x =0, with the value I;(0)=A4(1)/A(0),

J. (x)dx—>0 as &£—->0+, (2.4)
0

where I stands for the derivative of I,. Clearly Ij(x) = I_,(x), for x>0.

§3. Some basic lemmas

We shall obtain an expression for the sum Y.<, &, exp (2miAm), with an
arbitrary n>0, and A, =B - k, as a sum of three sums of integrals, and then
estimate those integrals separately.

Let ap=0, A;=0, and

AX)= Y a A =0, for 0<x<A,. 3.1)

A =<x

Let f(t)=exp 2mint), n>0, t=0. Let B be a smoothing function defined as
follows: B(t)e C*(—», ), B(t)=1 in a neighbourhood of t=<An (where N is a
fixed positive integer), B(t) =0 in a neighbourhood of t=An.1, and 0<B(f)<1
everywhere. Since An.; — An is bounded below by a positive constant, 8 can be so
chosen that all its derivatives are bounded in (—, «). We then have

o0

Y af(A)B() = f f(OB(1) dA(D). (3.2)

k=0

Integrating this by parts r times, where r is an integer so large that the infinite
series in (2.1) converges absolutely, and uniformly, for x>0, and p=r>0, we
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obtain

[ 78 aaw =1y [ a0 gwpay an (3.3)
where

A'(1) =r(r+1)k,§, a(t— A

Writing F(t) = f(t)B(t), we have, from (2.1),
o« AN+l
(=1) L AT(1) - FT0(1) dt = (-1) L FO0(1) - Qu(1) dt
Ans1f &
+(—1)'j (Z ak)le"lr(z\kt)) - FUO(1) dt. (3.4)
0 k=1
Consider that part of the last integral given by

-1 X akAE1°'LW FO0(t) - L) dt.

A >y

This is

AN+t
< Z ak)\il"[) w1+ dt (see (2.3))

A>y

Anta
& Z akAE((1/2)+(1/2n)+(r/n))L (1+t)(1/2)+r(l—(1/n))—-(1/2n) dt
A>y

& Z akl\;((1/2)+(1/2")+('/"))- Agf%-f—r(l——(l/n))_(l/z")

A > y
&« y(1/2)—(1/2n)~(r/n)AgE%+r(1—(1/n))—(1/2n). (35)
Choose N and y such that
ANSX<Ani1,  y=Cox" T, g6>0. (3.6)

Then (3.5) is

& x(3/2)+r(1-—(1/n))—(1/2n)—(r/n)(n——1+eo)+n((1/2)~(1/2n)) if £0< 1,

b

&« X 1 +(n/2)—(re(,/n)

K x4

’



Exponential sums 53

for a given q >0, if r is chosen large enough. Hence, for any q >0,

NG aml"LM FOO(1) - L(At) dt = O(x ™) 3.7)

A >y

for r=r(q). Using (3.7) in (3.3) and (3.4), we get

f f(OB(1) dA(t) = (-1) J "UEOY(n) - Q1) de+ O(x7Y)
+(-1) ) @A L L(At) - FOO(1) d. (3.8)

The last sum of integrals equals

AN+l
Y ai! L F(t) - Io(Akt) dt

A=<y

== ) @ i Li(\d) - F(1) dt— ), ﬂ-IO(O)

A=<y A=<y Ak
1 A]\l '\N+l
== - Z ai I (At)f(2) dt— Z ax J I (At) - f(2) - B(1) dt
A=<y A=<y AN
a
_ Z )\_k - In(0). (3.9
A<y \k

From (3.9), (3.8), (3.6), and (3.2), we have

N

Zsj af)= X, af(h)
= kil a;. exp (2minAy)
= () L Fo*(1) - Q1) dt + O(x~)
- =sz"_1“0 a LAN exp (2mint) I_1(At) dt

AN+~1
= Z a J I1(Act) - f(1) - B(t) dt
A=y =c0x""1“0 AN

— Y 2. 10 (3.10)
A

A=<y
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Now let

o= (2’:"')", (3.11)

where h is defined as in (2.3). Then A <cox"~ '™ implies that
1-(1/n)+e’ h 1/n )
p<nx , Where u=—- A" g'=—, (3.12)
2 n

Then the first sum on the right-hand side of (3.10) equals

AN
Z ax J; exp (2mint) I_1(Agt) dt
Akscoxn—l—*eo

- % o+

Ar=<cox" !  cox"Tl< A=cox" 10

A]‘1
= [ Z + Z ]a;c L exp (2mrimt) I_1 (A\t) dt
n=nx —(1/n) nxl,—(l/n)<“Snx1—(1/")+t'

- Z , % L exp (2mrint) I-1(\et) dt

n=nx

- Z ag J €Xp (27711']0 I_1(Akt) dt
~(1/n)

p=<nx! AN

+ Z ax LAN exp (2mint) I_;(Akt) dt, (3.13)

nx 1—(1/n)<us”x 1—-(1/n)+e’

provided that the integral from 0 to « converges, which we shall prove (in Lemma
2). Combining (3.13) with (3.10), we obtain the following

LEMMA 1. If ¢’ is arbitrary with 0<e'<(1/n), and AN <x <An41, then

N

Y. ax exp (2mink) =(—1)'L T EO() - Q) di+ 07
k=1

AI\l+fl
- Z a I I_1(Axt) exp 2mimt) - B(¢) - dt
“snxl—(lln)*-e' AN
a
- X =I0)

n<nx 1—(1/n)+e’ A'k

- z Qi L exp (27Ti1]t) I__l(MJ) dt
“€M1~—(lln)
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+ Z ax J exp 2mint) I_(At) dt
w=nx 1-(1/n) AN

AI\I
- Z Ay L exXp (21Tl1']t) I_l(/\kt) dt,

nx 1-‘(l/n)<"‘ snx\v(l/u)-ﬂa'

where m is real, >0, B(t)e C*(—x,»), B defined as in (3.2), F(t)=
exp (2mint) B(t), and u = (h/27m) - A" (n defined as in (3.12) and h as in (2.3)).

LEMMA 2. The integral
L exp (int) I_,(t) dt

converges for n>0.

Proof. We first observe that
I t* exp (i(nt £ ht'™)) dt
1

converges if a <0. For, if u(t)=(nt+ht'"), then

du

‘ n/(n—1)
-Zi-? = n —-.."_l. t(l/n)—-l ?%n, if = (3.,}:) ,

n nm

so that, if R and R’ are large enough, we have, by the second mean-value
theorem,

a a

J' t® cos{u(t)}dt‘Szfn2 .

R

(R R
I t* sin {u(t)} dtlszn

R

and, in particular,

R’
I t® exp (iu(t)) dt=o0(1), as R,R'—x,

R

Now from (2.3) we have

I_1(t)= Z e:,t“’—l—("/") cos (htlln +7Tv)+ O(tw“_(m+1)/n),
v=0
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and
J- tw_l—(lln)(m+1) dt <o
b
1
if m is large, while w_; —v/n<0 for »=0. Hence

r’ exp (int) I_,(t) dt

converges. On the other hand, the limit

1
51..13(1)14_ L exp (int) I-1(t) dt

1

= E%l+ {(I6(1) exp (in) — Io(e) exp (ine)) — inj I(t) exp (int) dt}

exists, and is finite, since Iy(t)'is continuous at t=0 (as remarked in (2.4)).

We shall now express the integral in Lemma 2 as a contour integral in the
complex s-plane.

LEMMA 3. For £>0, we have

- _ 1 [ A@IQ-s) (5)8—1
J; exp (i¢t) I_,(¢) dt = 5t Lo A(—3) i ds,
where A(s) is defined as in (2.2), and €, denotes the path of integration indicated in
the diagram, with 0<c <1, and k a large, negative number.
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Proof. Because of Lemma 2,

L exp (i&) I_,(t) dt = liI(I)l J exp (i&t) I_(t) exp (—et) dt
e—0+ Jg

[+ ]

= lim exp (—zt) I,(t) dt, (3.14)

z2—>—ig

where z =¢—i¢ £>0. Now

L[ Aw
L(W=5= L Ad-s5' &

since A(s)/A(1—s) has no singularities in‘Re s> 0. If « is large, and negative, the
integral from k +i to k +i%, and the integral from k —i% to k —i converge abso-
lutely, since

| A(s)
A(l1-5s)

&« (1 + ITI)na-—(nIZ)’

where s = o +it. Moreover Re s <c¢ <1, everywhere on 4,. Hence

> 1 l A(s) L‘” _
— I_ = — s
L exp (—zt) I_(t) dt 2l e, A(1—3) ds | exp(—zt)t*dt, Re z>0

1 L A(s)(1—s)
2mile, A(l—s)

2 ds. (3.15)

Let z =|z| - exp (i0). Then |z°7'|=|z|° "' - exp (—07). Since Re z> 0, we have |8]| <
2, so that |z°7'|<|z|" ' exp = |7]). On the other hand,

I't-s)A :
P8O o exp (el o0, g [r] oo

A(l—5s)

Hence_the integrand in (3.15) is O(|7|" V™™ Y2)= O(|7|™), if « is large and
negative, and |7| large. Thus the integral in (3.15) converges uniformly for
Re z>0.

Now let z — —i§ £€>0. Then

Lo L AGLA~-s) .y, _ 1 L A(s)r(l—s)_(g*)s—* i

i 2 A(l—s) T 2mi Al—-s) \i

Comparing this with (3.14) and (3.15), we get the lemma.
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§4. Some asymptotic expansions

LEMMA 4. We have

L exp (2mint) I_1(Act) dt

1 m
mi(z—n)/Z(n—l))—(V/(n—l))

—_2—; v=0
x{c, cos (qmi " P+ 7w’ +37v) —id, sin (gmi "V + mo’ +imv)}
1 A(D- - <—27rin)"‘ + O (my+2mrm=)
Ak 1=i<((n+2m)/2(n—1)) A(l - l) * (l_ 1)! Ak

where m>0, m =AJ2mm, q=(n—12""""Y co=do=7""(n—1)""22"2""D
w'=—3+r/4, | integral.

Proof. Let
* . Ak
J= L exp (2mint) I_1(Akt) dt, m, = , n>0.
21
Then

_1 * . _1 1 A(s)F(l—s).( 1 )3“1 -
)&Jo exp (m)La(1) di == 52 Lo Ad—s) \im/) %

after Lemma 3. Deform the path of integration 6, into €’, by choosing p to be a
sufficiently large integer, and p<k+r<p+1, as indicated in the diagram.

W = c+i




Exponential sums 59

(gl

A

Wl WAl +{
A

WA - -1

\

We then have
1T A(s)F(l—s).( 1Lyt o AWM )T (—2min 1—1]
J—/\k [217’1 L' A(l"S) lmk) ds 1; A(l—l)(l—l)'( Ak )

—( i ) 1 L A(S)r(1~s)~m"s(cos-ls—l&nlrf)ds
2w/ 2wk A(l-5s) 2 2

1 [e _AOCEDTY (=2min 1—1]
Ak L; AQ-D-(1-1) < Ak ) ) “.2)
We seek an expansion for
(i) 1 A(s)F(l—s)_ — ws_ . . TS
J = (277"1) P L AL—3) my (cos > i sin > ) ds. (4.3)
Since
‘ s T sin ™
BT s\J1 s\’
F(z*z)‘(i‘i) ’( )f(l“)
we have
- 4.4
5= (m) = | - ivion i ds (4.4)
where
- rl-s)A
Vi(s) = Ird-s)acs) Vils)= (1-5)A(s)

s D)

aua-orfz+3)r-3)
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Choose
1 —~s . 1 r
Uo(s) = - b™°I'(S)sin{w (S +w")},

Ui(s) = % - b°I'(S) cos {m(3S + ')},

where

1
S=(n-1)s-3n+1, w’=—-5+%, b=(n-1)""1'-2".

By comparing the Stirling expansions of V,, and U, on the one hand, and of Vi,
U, on the other, we get (as in [2, Lemma 1])

m

Vo(s) = b”zUO(s){1+ Z E—E+ O(lsl“"‘_l)}

v=1

b(1/2)-s ) (WS ) { m e . }
== . —+ " - ome
— + I(S) sin {2+ 7w H,,; =+0(s| ™y,
and
Vl(S)zbl/zUl(S){l“’ Z %"’ O(Isl_m_l)}
v=1
(1/2)—s m ’
T R(s) cos (E‘S+ m:‘)'){l+ Yy 2y O(ISI"'"”l)}-
w 2 _ v=19S

Now, following the same procedure as in [2, Lemma 1], we can get
1 3 g n—1))—v/(n— : n— wv
— J Vo(S)x—s ds = — Z dvx((l Y2(n—=1))—v/(n—-1) sin (qxll( L4 'n'w'+——)
270 Jg yeer 2
+ O(x—((n+2m)/2(n~1))) (45)

and

1 _ S _ Y (vl — _ v
— | Vi(s)x*ds= Z ¢, x (TR0 o0 | gx D 4 ey’ +—
2 g’ =0 2

+ O(x—((n+2m)/2(n——1))), (4.6)
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where

~((n/2)-1) 1/2
_ pl/n—1) _ r/(n—1) _q b
q=>b =(n-1)2 , €= -

=d
n—1 T o

provided that

n+2m
2(n—1)"

p=
From (4.4) we have

1 1
Ji=— - — L {Vi(s) +iVo(s)tmi* ds.
2n 2 ke
From (4.5) and (4.6) we therefore obtain

m
2m - Jy = Z mgz—n)/z(n—x))—u/(n—1)
v=0

v _ o -
X {c,, cos (qmi’(“‘1)+ 7rw'+?) —id, sin (qmi’( Dy 'n'w’+—2—)}
+ O(mg((n+2m)/2(n—l))) (4 7)

where c¢o=d,. However, from (4.2) we have

J=J1

1 o Al (-1 (-—27rin)’”1’ (4.8)

ThESA-D- -1\ A
for a suitably chosen integer p. Now (4.8) and (4.7) give us the required result.

LEMMA 5. Let a be a real number, a#0, p=(h/2man)AL", >0, and
h=n2"""2" Let o(t)=¢(t, n)=1t—ut'’", Fo(t)=Fo(t, u)=t*¢'(t), F1(t)=
Fioq(t, u)=1/¢'(t) - (d/dt)Fi(t), for 1=0,1,2,.... Then

(_];. I.Lt(lln)_l)k
ta—-l l n

Fi()=r——= Clk )
(@' (M) o (1 ___'1; ut(l/n)—l)k
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with Co,():l, Cz,_1=0, C¢,1+1=0, and

S S A A 1 Y

fork=0,1,...,1+1.
Analogously, if

YO =gt p)=t+p’,  Go()= Golt, n) =.'/7f(7)’
1 d
G =Gt w) ZW 7 Gi(1),

for1=0,1,2,..., then

1 k
t(”")“l)
= L (n

Ry d
(lll’(t))l+l k;O Lk (1 +_]; ut(lln)—l)

n
with do,o = 1, dl,—l = 0, d1,1+1 = 0, and

dis k= d;,k{(a— D+ k(l—%)}-k d, k_l{(l+ 1)(1—;1'-)+(k— 1)(1—%—)}.

The proof follows by induction on I

Gi(t)=

b

LEMMA 6. Leta=a(v)=w_1—v/n, forv=0,1,2,.... If §>0, & sufficiently
small, and 0<mo<m, and p<(n—38)x* "™, we have

& (1)''F, L (x)

r t* exp (2mine(1)) dt = exp 2ing(x)) ),

1=0 (27Tiﬂ)l+1 +O(x“‘L—1),

where the ‘O’ depends on L and 8, but is uniform in u, and F, , is the function F, of
Lemma 5, with a = a(v).
Analogously we have

v 1)'"'Gy (x)

I t* exp 2miny(t)) dt = exp Qminy(x)) zZ

' (27Ti7])l+1 + O(xa_L_l)a

where G, , is the function G, of Lemma 5, with a = a(v).
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Proof. We note that w_; =(1/2n)—3, and that x is bounded below. Since t= x,
we have

[=2]

1 _KE F1m=-15 4 _K xam-159
n n n

and

[ {(1/m=1 glj xm=1 1
n n

Hence, from Lemma 5, we have
F .)=0(@*""), t=x, pus(m-8§x'"",

where the ‘O’ depends on q, [, and §, but not on ¢, x, or . By partial integration,
we have

a

t
@'(1)

Jm t* exp mine(t)) dt = Im -exp Qmine(t)) - ¢'(t) dt

L ()L, (DM
<o Qain)'tt Qg™

= exp (2mine(x))

X j " Fran ) - 0'(0) - exp (2mine(t) de

< (“DHIF:, %)

= exp 2mine(x)) ),

=6 Qmin)'t! FOG*.

Replacing L by L +1, we get the lemma.

LEMMA 7. Under the same conditions as in Lemma 6, we have

n(m+1) m+1

| L exp (2mrint) I_;(Act) dt = Ap-em Y
1=0

X (exp 2mine(x)) * by, F), (x)+exp 2ming(x)) bi .Gy .(x))+ O(x“™™),

v=0

where w_,=(1/2n)—3, and F,,, G, stand for the functions F,, G, defined in
Lemma 5, witha=a(¥)=w_1—(v/n), v=0,1,2,....
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Proof. On using the asymptotic expansion for I_,(t), we have

J exp Ramint) I_1(At) dt = Z e:}J (At)@-1~01m

v=0

x exp (2arint) cos (hAY™ " + 11,) dt + O, (Ax) -~ (m+D/m*,

where h =n2"""?" and m, = 7,(—1)=—wGn+(r,/4+3)— (v/2)). Thus

J exp (2mint) I_1(Akt) dt

L4

oo

=2 A:~l’("’"’(bvj 1= exp (2mint — hA™tV") dt
v=0

X

+ b:, J' tw_’_(v/n) exp (27"7”_'_ h/\;lc/ntl/n) dt) + Om((AkX)w_l—((m+l)/")+1).

If we now use Lemma 6, we get

® . S o (—1)'"F (x)
J exp (2mint) I_1(At) dt = Z A‘,:'—l—(”/"){b,, exp (2mwine(x)) Z e
x v=0 1=0 (27Tl’n)
L 1+1
R (—1) Gl v(x) — —L~ }
+ :’ 2 ’ g ®_, (v/in)—L-1
b!, exp Qminy(x)) ;0 pym O(x )

+ O (xw_l—-((m+1)/n)+1)
m .

If L=[(m+1)/n], then L+1>(m+1)/n, hence

v=0 O=sl=<(m+1)/n

j exp (2mint) I_y(Aet) dt = Y, A‘.:’—f("’“’(exp Qumine(x)) ), by F(x)

+exp (2mwiny(x)) Z e v(x)) + 0, (x@-1~(nFDmT1y

osls(m+1)/n
Replacing m by n(m+1), we get the lemma.

Our treatment of the estimates for the range u = (n+8)x' "™ is based on the
next two lemmas.

LEMMA 8. For a fixed &, such that 0 < &< §¢< &, we have, as p — o, the
following asymptotic expansion (in decreasing powers of w):

R W= (5 ‘i;’,"+o(u-'~)),

where the d, , are continuous functions of & for 0< < é<é,.
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Proof. We have only to use the formula

go {Z (% ug(lln)—-l)m
F, (¢, R - »,m s
& w) (@'(€)"" m=o © (1 1 Mé—(l/n)—l)m
n

(see Lemma 5) and the Bionomial Theorem.

LEMMA 9. Suppose for a fixed integer K =0, we have
flw)=fx, )= L 1™(a(€)+ bi(®) exp (iuf) + bi(&) exp (~ind) + o(w™),

as pu — o, where no>n,;>n,> - - - — —o, for fixed x in a compact set in R,, and
this holds uniformly in & for a < ¢<b, where a, (&) and by (&) are continuous in &,
and the function f(x, u) is independent of &, then a,(£) is a constant, say a,, and
b (&) =bi(£€)=0 for all k<K.

Proof. By hypothesis,
p"of () = ao(€) + bo(€) exp (iné) + bo(€) exp (—iné) +o(1),

as u — o, uniformly in £ Integrating this with respect to & we get
8

(B~a)p "f(n) = j ao(§) dé+o(),

a

as w— o, for a<¢<pB<b, because of the Riemann-Lebesgue Lemma. Hence
the limit lim, .. u~ "f(n) exists, and equals, say, ¢ which is independent of & It
follows that ay(£) = c. Hence

1{@ {bo(&) exp (iné) + bo(£) exp (—iné)} =0,

or lim, .. bo(&) exp (2iné) + bo(€) = 0. Again, by integration, we see that bp(£)=0,
hence also bo(¢)=0. A repetition of the argument leads to the lemma.

COROLLARY. If

f(w)= Y n"{a()+bi(£) cos (u*&)+ bi(&) sin (uE)} + 0(u™),
k=0
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for a >0, uniformly in £ for a < §<b, as u — =, then a; (&) is independent of & and

bi(§)=bi(£)=0.

LEMMA 10. If 6>0, and sufficiently small, and 0<mo<mn, and u=
(n+8)x" Y™ we have

L exp (2mint) I_1(At) dt

I(0 3
o© , ,\;g—r(”’")(bv exp (2mine(x))
Ak r=0 :

1)lGl, v(x’ “’)
(27Tin)l+l

o (=1)'F,.(x, n)
;) (2in)'*!

+ b:, €Xp (27Tl'f]lll(X)) lz (_ )+ O(‘L“L—l) + O(Alt:o—(m/n)——l),

where wo=3%—(1/2n) (as in (2.3)), and w_,=1/2n)—3. If L=m, the term
O(u™""") can be dropped.

Proof. Let £ be a number such that A; < £<3A,, say. Then

Lx exp 2mint) I_1(Act) dt = f + r.
3

If a=a(v)=w_;—(/n)=(1/2n)—3—(y/n), for v=0,1,2,..., we obtain by par-
tial integration,

j t* exp 2mine(1)) dt
(3

_ . ¢ CD'Fiu(xp) : v CD'FLAé 1)
= exp (2mine(x)) Z iy~ exp 2mine () ,;) e
L+ * F +1, ¢ t, ' .
+(-DF! J; = (;W(in)‘i):f @ exp 2mine(t)) dt.

To estimate the last integral, we use, after Lemma 35,

{

@' (OF()=r———% L ¢k
‘ {e' (O} 1 1_1 pt/m=1
n

Here t<x, and p=(n+8)x "™, so that

1 1

_ n+é é
- Mt(lln) 1 >_ “x
n n

=1+—-,
n n

(1/n)—1 >
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while
t—l B 1 B 1 B _nt—lln
"ty 1 1 Cu—nt W
¢ ( ) t(l'—"‘ ‘Lt(lln)_l) t—— “tl/n ©w
n n

For 1< ¢=<t<1x, the numerator is bounded, while

=M, ng _ Su
n+é n+é’

since nx'" Y™ < nu/(n+8). Hence

t! < n(n+8) gm
¢'(1t) 8 T
so that
tTh\k %
(¢ﬂ(0) =0(u™),

provided that k=1, A, <£&<2A,. On the other hand,

1 _
il }Lt(lln) 1
h

S =—(1+

1 . 6
= +__._
1 1), with u=1 ,

1 _l ‘Lt(lln)—l u— h
n

hence

1 _
- “t(lln) 1
n .

1 <, say.
1 —— t(lln)"l
n “w

Thus ¢'(t)F(t)= O(t*un ™), for k=1. It follows that

x

(et [P b)) exp ming( o= Of [ 1w+ et
£

min)-*! ¢
— O(;L_(L'H)) . (xa+1_§a+1)
— O(xw_x+1u~(L+1))

1 1
W 1=-.

- O(“n(w“1+l)/(n-—-1)—(L+1)),
2n 2
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Thus we obtain (after replacing L by a larger L' if necessary),

% L 1\l
J * exp (2ming (1)) dt = exp 2mine(x)) ), 1) F.l’ ”(11’1“)
A (27rin)

=0

—exp 2ming (@) Y. ("(1; fm ")(5’1") O™, (4.9)

1=0

for u=(n+8)x"™, where the ‘O’ does not depend on &.
If we replace ¢ by ¢, we obtain an analogue with G, ,(x, n) instead of

F, (x, w). It follows that
J exp (2mint) I (At) dt
3

L {
& _ . (=1)Fy (x, n)

= ) AL (’”")(b,','ex 2mine(x, e
,,Zo % p Cmine(x, 1)) 1;) Qi)™

F .,
— b, exp 2ming (& w)) 120( D'F, )(1‘%1_”)>+O(M—L*1)
3 w_,—(v/n) m . (-1) Gl, v(x, "")
+V;O AR (b,, exp 2miny(x, w)) ;0 Qi)
{
—b,’exp 2miny (£, w)) ZO( DG, 3(,51 ”))4' O(p ™Y

+ Oy 1 mrom),

On the other hand

£
L exp (2mint) I_1(Akt) dt

_ Ly(A§) exp 2ming)  1o(0)  2in
I\k )\k Ak

£
J; exp (2mint) Io(Akt) dt,

where

Ii(Akt) - exp (2':z'l'nt)]“E
Ak 0
§2 -
- L ;"n - Ii(Akt) - exp (2mwint) dt

k

_ Z Cv(f)I (Akﬁ) (Alk)mJ; Qarin)™ - Ln(Aet)

¢
L exp (2mint) Io(At) dt = [

v=1

x exp (2wint) dt.
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Since
Lu(x) = O((1+x)oma=am),

and ¢ is bounded, we have

. § m 14 §
_2’"’7] exp (2mint) I(At) dt = ), i@%@+ O(_Tn!'ﬁ) J | L (Aict)| dt
Ac o v=1 Ak Ak °

S+ O ™),
v=1 )‘k

Thus altogether we have

£ _
L exp (2mint) Ly(At) dt= ), c(E)L(Mé)  1(0)

v+1
Mo Ak Ak

+ O(Ago /™1 (4.10)

the ‘O’ being independent of ¢.
Combining (4.10) and (4.9), we get

J; exp (2mint) I_,(Akt) dt

I0) | $ cUOLOE)

+ O(Azo—(m/n)'!—l)
A w0 At )

L {
\ — . (_1) Fl v(x’ u')
w_,—@in)| »
+VZ_:0 AR (bv exp 2ming (x, 1)) l;g 2min)™!

" . 3 (——1)lFl, v(ga “’)
— b, exp 2mine(§ w)) 1;0 Qarin)™! )

L {
\ - . (_1) Gl u(xa u')
w_,—(v/n) " »
+Vz=:0 ’\k <bv exP (277'"”’()‘, ‘1’)) 1;0 (27”-_")[+1

" . 3 (—1)lGl, v(g’ “’))
— b, exp Qming(§ w)) ;o_ Zarin)!

+ O(I.L—L—l)+ O()‘c,:_,—(m/n)—(l/n))’

if u=(n+8)x"Y §>0, § sufficiently small, and p = (h/27n) - A"
If we now use the asymptotic expansion (2.3) for I, O0<v=<m, and apply
Lemmas 8 and 9, we get the required result.
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LEMMA 11. If (n—8)x" "V <y < nx' WM — x170/M=Em 55 0,0<2¢/n < 1,

then

J t* exp mine(t)) dt

L ___1 l-rlF g
=exp 2mine(x)) Z CH 7, Ax)

+ OL(xa——L+((L+l)2e/n))
. [+1
= Qmin) N ’

and, for all u>0,

=) 1 l+1G Y
J 1% exp (2miny(t)) dt‘-exp(Zmndl(x))z( () ),'H(x)

+ OL (xa_L)a

where, as before, a=a(v)=w-1~(/n); v=0,1,2,....
If € >0 (and not necessarily 2e <n), we have

I t* exp (2mine(t)) dt < |Fy, o(x)|.
Proof. By partial integration we have

& L _____1 l+1F o
[ exp mine () di = exp impe) T, St

( 1)L+1
(2,m,n)L+1 I Fri,.(t) - ¢'(2) exp (2mwine(t)) dt.
In order to estimate the last integral, in the range under consideration, we have to

estimate F) ,(t) anew. We have

1 1

= ¢1/n)-1 -
pt w 1—(1/n)

n n X /

== = = nxe "’
1 _ _ 1 |
1—-= [Lt(lln) 1 tl /) _ ~ m ol xl (1/n)—e/n

n n n

since TS nxl'—(lln), and tl—(l,ln)__ (u/n)B tl—(l/n)_ xl—(l/n) + (1/n)x1—(1/n)—-(e/n)>
(1/n)x'~ /™M™ for t=x. On the other hand,

ta—-k ta

(@O (-2 )’ ' (1 gom- )

ta

1 kel K
(tlln . xl—(l/n)—(s/n)) » (1K t(l/n)——l
h n
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since

t~ﬁ fln tl/n(tl—(l/n)_&> > ¢l . l x1-Wm—erm).
n n n
Therefore we have

xke/n . ta

F, ()|« — — "
l k, ()| tk/n(xl (1/n) (e/n))k_l‘Pl(t)I

on using the formula for Fy(t) given in Lemma 5. It follows that

() [
PRSIy 51 J Fpi1,.(t) - @'(t)- exp (2mine(t)) dt
Qmin)~"" L
L+ -
—(L+1)/
< (L+1)(l-—(1/n)—(e/n))J’ t* " dt
x p.4
« xa—L+((L+l)2t~:/n)

hence the first part of the lemma.
The proof of the second part is similar. We use the fact that

1
= ppm-1

ta—-k

W

a—k

7 <1, and
1+___ t(l/n)—l
. 15

To prove the final remark, we note that

a

@'(1)

oo x(1+vy)
J t* exp Qmine(t)) dt = J -exp 2mine(t)) - ¢'(t) dt

+ J t* exp 2mine(t)) dt.

(1+v)

Since t%/¢'(t) is decreasing, we may apply the second mean-value theorem to the
first term (that is, separately to the real and imaginary part). To the second term
we may apply Lemma 6.

LEMMA 12. If (n—8)x" Y <u<snx'" WM —x!"W/mW=EMm 0<2en<1, §>
0, & sufficiently small, then we have

m

J exp 2mint) Iy(Act) di= ), AP “”(”’")(bv exp 2mine(x, p))
x !

v=0

3 (_1)l+1Fl, v(x’ “’)
;o (27Ti71)[+1

i ('—l)l+lGl, v(x’ IJ')

- +0 xw_,—((m+l)/n)+1 ,
=0 min)+! ) m( )

+ b3 exp Qa@iny(x, n))
i

provided that L =[(m+1)/(n—2¢)].
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If € >0 (and not necessarily 2e <n), we have

J exp (2mint) I_1(Act) dt < A |Fo, o(x)].
Proof. We use the asymptotic expansion for I_;(A«t), and then Lemma 11
gives the required result.

LEMMA 13. If nx'" WM 4 x1- M- <y < (n+8)x' "M, and 0<y<1, 0<
2e/n <1, then

J exp (2mint) I_1(Agt) dt

1-v)

1)lFl, V(x7 “’)

)l+1

m L S
= ) AP ")(b,, exp 2mine(x ( -
V;O ‘ p 2mine(x)) l;, i

£ (_l)lGl,v(x7 "“)
;) i)' )

+ b}, exp (2miny(x))
i

— z A‘é’"‘""””(b, exp (27Ti7l¢ {X(l _"Y)}) Z (_’1) Ft’y()-C(ll:;Y), I-L)
»=0 =0 (27im)

o (—1'G, (x(1—y), p)
;0 (min)'™*! )

+ b}, exp ming{x(1-v)}) l
+ O(xw_l—((m+1)/n)+1),
provided that L =[(m+1)/(n—2¢)].

If £ >0, then we have

L exp 2mint) I_;(Act) dt < AZ1 |Fy, o(x)).

(1—v)

Proof. We shall first estimate

j t* exp mine(t)) dt, with a=a(¥)=w_, =
x(1—7) n

Here t<x, (“/n) _ tl—-(l/n) > (“’/n)— xl——(l/n); xl—(l/n)-—(s/n)/n’ so that

¥ am-1 [ B
n |l n n x1-am o/n
= = = 1 s nx"".
'1 _ f(1/m=1 f1=/m) N fmml 2 1=(/m)—(e/m)
n ni 1in n
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Hence

(L+1)e/n) | e

|[Fr+1,.(t) - @' ()|«

L+1
f1=am K . {L+Dn
n

& Y THDEm) | ja—(L+D/n) | L ~(L+DA~1/m)~(e/n)

It follows that

J' FL+1, v(t) . ‘P,(t) - exp (Zﬂlﬂ(P(t)) dt < x(L+1)(25/n)~(L+1)(1—(1/n))
x(1-7)

x

X J‘ ta-—(L+1)/n dt
x(1—7)

a—L+(L+1)2e/n)

Lx
Hence
. . B . L« (-D'Fyu(x, p)
J;(l_y)t exp (2mine(t)) dt = exp (2mine(x)) IZ:O Qi)
. . c (—1)IFL v(x(l - Y), "“)
—exp Qming (x(1-)) X, ——5* =

+ O(xa—L+(L+1)(2e/n)).

An analogous result holds with ¢ in place of ¢, and G , in place of F, ,. If we use
the asymptotic formula for I_;(A«t), and choose L =[(m +1)/(n—2¢)], 0<2¢/n <
1, we get the first part of the lemma.

If 2¢/n=1, we simply use the asymptotic expansion for I_;(Axt), and observe
that while

f t% exp 2mwiny(t)) dt| < |Go, o(x)| < |Fo,o(x)],

1—vy)

the second mean-value theorem may be applied to the integral

J' t* exp 2wine(1)) dt.

(1-v)

LEMMA 14. If nx' W™ 4 x1-Wm-Em<  <(n+8)x'", 0<y<1, §>0,
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e >0, then

x(1—vy)
L exp (2mint) I_1(Akt) dt

L), ¥

X /\c’:_l—(v/n)(bv exp (27Tln¢(X(l _ 'Y))) Z ("1) Fl, v(X(l - 'Y))
k v=0 1=0

(27Tin)l+l

>+ O(ARe™mm™h),

A -1 lGl v 1-
+ b} exp Cminy(x(1-1v))) IZO( )(2 AX1—y))

. \[+1
in)
Proof. Since

[ - n
(=P (=)

>(n+8,), say,
an application of Lemma 10 gives the result. Note that w,—(m/n)—1=
w_1—(m+1)/n.

'LEMMA 15. If nx'"" W4 x1-0m-EM< y <(n+8)x Y™, 0<y<1, §>0,
0<2¢/n<1, then

L exp (2mint) I_(At) dt

I,(0) & y CUFi.
_ of )+ Z Aﬁ“_(v/")(bu exp (2mine(x)) ¢§o—(_(—2%——'7;’)l_£zf—) + b}, exp 2winy(x))

Ak v=0

& (—1)'Gp (x
| 0((27)711;)’“(_1 )) + O(xw_l——((m+1)/n)+1)+ O(A(ix_l*((m+1)/n))’

where L =[(m+1)/(n—2¢)].
If €>0, then

I *
—A(—2+ L exp (Rmint) I_1(Agt) dt < A lFO O(x)l-
k

Proof. This results from combining Lemmas 14 and 13.

LEMMA 16. If nx'~WW—x1-/m=CEm ) < ux'~ W™ and 0<y<1, £>0,
then

J t* exp 2mwine(t)) dt

A+vy)

i (—D)'"'Fy (x(1+ 7))

o (2‘”in)l+1 + O(xa-.L—.l)a

=exp 2mine(x(1+7))) z

where a=a(v)=w_1—(v/n); v=0,1,2,....
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Proof. Here we have

1}

n
= —<<pn-—
{x(1+ )= = (1 4 )™ n—35;, say,

so that the required result follows from Lemma 6.

LEMMA 17. If nx' =MW —x!'mWm=CEm < < px' =M™ 0<y <1, vy sufficiently
small, and € >0, then

x(1+vy)
J t* exp 2mine(t)) dt

nxaﬂ{Nf {A,(1+7v) exp 2mind(x(1+v))) — B,(1) exp 2mine(x))}
(2mxm)P*?

-1
=2
p=0

N-1

Z a’, exp mixnP(vo))
N (27rxn)"‘+(1/2)

N-1 :n 2 . T
— Brm exp ( “’xﬂp(”‘))) s 2 exp (2mixns) ds} +O(x*™™),
m=0 (2Wxﬂ)

where P(v)=v" —av, a = uxV7, vo=(a/n)’"" P, +=P(1)- P(vo), and

L s 12 exp 2mixms) ds = O(x~17?),
uniformly in 7. The terms A,, B,, a., Bm depend on «, and, for fixed p or m, are

continuous functions of a in a neighbourhood of the point o = n.

Proof. We have

x(1+vy)
L t* exp 2mine(t)) dt

1+y
=x*! J u® exp Qmixn(u — ux™ - u ) du,  (t=ux)
1
1+vy
=x“+1j u® exp Qmixn(u—au'™)) du
A

(1+p)vm
= nx°*! J exp 2mixnP(v)) v***" T dv. (u=0")
1
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Now: dP/dv =0, for v=(a/n)"’" V=1, In order to make the substitution
P(v) — P(vo) = s, consider the expansion:

P(v)— P(vo) = (f(v — v0))?,

where f(z) is a power series of the form (z/V2)J/P"(vg)+ ---. (Note that
P'(vo) =0, while P'(v)<0 for v <wvg, and P'(v)>0 for v>vy. Further P"(v,) is
close to n(n—1) if x is large, in the range of u under consideration.) We then
have f(v—vo)=s"?. Since there exists an F, such that F[f(z)]= z with

J2

F)= P ST

we have
v —vo = F(s'?),

where F(s) is holomorphic in a neighbourhood of the origin, say in |s|<2R, which
is independent of a. The above integral therefore equals

Inx®*! - exp 2mixnP(vo))
s=P((1+v)V")—P(v,)
xf (vo+ F(s'2)* Vs 712 F'(s'?) exp (2mwixms) ds,
s =P(1)—P(vg)
provided that vy is so small that P((1+y)"")— P(ve) <R, say. Now set
g(s) = (vo+ F(s))*" ™" 'F(s),
" 7=P(1)— P(vo), C=P((1+v)"")=P(vo).

Note that = O(x~>*/"), while C is bounded below by a positive constant. We
then have

x(1+vy)
I t* exp 2wine(t)) dt

C
=3nx**" exp (2mixnP(vo)) J' g(s" z)s”lf2 exp (2mixns) ds.

I

Now g(s)=Ym-0 gns™, uniformly for |s|< C<R. For N=1, let

=]

g(s)= Z gms™ + Z gms" = Z gns™ + &n(s), say.

m=2N m=2N+1 m=<2N

1/2

Then the function Hyn(s)= gn(s)s™'“ is N times continuously differentiable in
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s =0, and the first N—1 derivatives vanish at s =0. Hence

exp (2mixnC) H,(C)

)p+1

+O(xN .

rC N-1 (—1)?
.L Hn(s) exp 2mixns) ds = Z :
p=0 (2mixn

Now

C
L s V"2 exp (2mixms) ds

-1
1 (m—l)/Z(m >! : _
((m—i/z)q a,(C) exp (2mixnC) (-1 ‘ 2 (exp 2mixnC)—1)

p=0 (27Tix’fl)p+1

(z,n_ix,n)((m-l)ﬂ)—l ’

if m is an odd integer =1;

=< —-1)/2 (—1)w2(m—1)<m—3). ..1
"I al(C) exp 2mixnC) 2 2 2
e (2rixn)?*! (2mixm)™?

C
X J s exp (2mixns) ds,
0

L if m is an even integer =0.
On the other hand, as x — o,

bo Nz‘:l b,(C) exp 2mixnC)
Qmxn)'? S Qmxn)™!

To prove this, one has only to consider the contour integral | z~"/? exp (—xz) dz,
for x>0, in the complex z-plane, taken along the rectangle with corners at the
points z =0, —iC, R—iC, and R, with R>0, and then let R — . We then get

+O(x™ N,

[
L s exp (2mixns) ds =

1

Ay Z=5S+ly

A
Y
7]

v
A
ot
O

-ic

C
J; y~ "2 exp (ixy) dy

= ,"3/2[[0 s exp (—xs) ds —exp (ixC) f’ (s—iC) " exp (—xs) ds].
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If we note that the first integral equals /7x~ "/, and integrate the second integral

by parts a sufficient number of times, we get the result.
Putting the above results together, we obtain

< - . ' a,(C) exp 2mixnC)
L g(s"?) s exp 2mixms) ds = p;o £ P
N ’ N-1 "
+ ot Y, ———4 4 O(x~NY),

moo (2mxn)™ VP " S (2mxm)TH!
In the same way we see that
N-1

4 Nt 2rixnT) al
1/2\ . —1/2 . d — Bp(T) CXP ( e q
L gls™)s exp (2mixns) ds pZO (2’n’i)€17)p+1 q;o (27xm )q+1

N ’ T
+ Z __Bm__ L s 2 exp (2mixns) ds+ O(x™N 1),

m=o (2mxn)™
Thus
c N-1 . .
12y .—1/2 . _ a,(C) exp 2mixnC)— B, (1) exp (2mixn7)
J; g(s¥®)s™ 2 exp (2mixms) ds p;o b
§ o  § B (o n
' Z‘“ @)™ Zom 57V exp (2mrixns) ds + O(x N7).

Hence

x(1+vy)
J: t* exp 2mine(t)) dt

SIS

. {NZ_] (Ap(1+y) exp 27ind (x(1+v)) = B, (1) exp 2 ming(x)))
(2mxn)”™"

N 5’: al, exp 2mixnP(vo))

N
L0 Q) mf__lo B exp (2mixnP(vo))

X L s 12 exp (2ixms) ds} +0(x*™M),
since xP((1+v)'")= o(x(1+7)), and xP(1) = ¢(x). (The constants in the above

formula are independent of N.) We have xP(vo)=u™" P .n VD =
(h/27n) - A¥/". Note also that if

K(t,x)= L s~ exp (2mixms) ds,
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then

TX

K(7, x)=x"? L y Y2 exp Qminy) - x™ ' dy = x"2 L y 2 exp (2mwiny) dy.

Since K(b)=[§ s~ "> exp (27ris) ds tends to zero as b — 0+, and K(b) tends to a
finite limit as b — +o, K(b) is bounded everywhere, hence

K(r,x)=0(x""?)
uniformly in 7.

LEMMA 18. If nx'~ /™ — x1=Wm=m) < px =M >0, then

+ O(xa—L——l)’

* . ) _ . ¢ (1) Gy (x)
Jx t* exp Qaminy(t)) dt = exp 2miny(x)) l;) Cmm)
where a = a(v)=w_1—(v/n).

The proof here is simpler than in the case of ¢(t), since ¢(t) =t + ut'’", so that
¢'(t) is bounded both above and below for t>0. (See Lemma 6.)

LEMMA 19. If nx!~ MW — x1=Wm=Cn) ) < px'=A™ ¢ >0, then

© nN N-1 .
‘ . _ ) €XP (2mine(x))
exp (2rint) I1(At) dt = Uy, mx &7 AGTOM -
jx p 2mint) I_y(At) VZ;M; , k p—
nN N-—1 .
a—@w/n)+1 _ y a—(v/n) €XP (2minxP(vo))
+ go zo u::, mX *i. Ak 4 (277xn)m+(1/2)
+ nzzx:r Nil ur @M ) a—Gm) exp (2minxP(vo))
Louy ™ ) (2 mxn)™

X I s~ 2 exp (2mixms) ds
0

N N-1 {
3 (—“1) Gm u(x) .
+ — e FN Aa*(v/n)+ a—N
v§0 mz=0 (27Ti'n)m+1 k O(X )

The coefficients U, m, Us m, Us, m are continuous functions of a for fixed v and m.

The proof follows upon putting together Lemmas 16, 17, and 18, after using
the asymptotic expansion for I_;(A.t), and then noting that the integral on the
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left-hand side is independent of vy, hence in the expansion for it (obtained with the
help of those lemmas) in decreasing powers of x, all the terms involving vy should
vanish (by the kind of argument used in the proof of Lemma 10).

LEMMA 20. If nx* MW < p<spx!™ W™ 4 x17A/M~¢ 0< ¢’ <1, then

L exp (2mint) I_,(At) dt

has the same expansion as in Lemma 19, but for the additional summand —I,(0)/Ay.

The proof follows upon considering the integrals 5"~ and [%;_,), with

0<vy<1. The first integral can be treated as in Lemma 10, and the second as in
Lemma 17.

LEMMA 21. If Ax < x < Anas1, then
A‘I\l-ﬁ-l . .
J exp (2mint) L (A)B(2) dt = exp Qming(x)) ), €. p.a. v AL %7 (0@ (x))?
AN

8 J'ANﬁ (t—x)" - B(1) - exp (2min(t— x)¢'(x)) dt

+exp Qind(x)) Y, ¢hp.a v AL % (YP(x))

X J - (t—x)" - B(t) - exp 2min(t—x)¥'(x)) dt
+ O(Ai/"x(ll")"M'l),

where a =w_1—(v/n), and the summation on the right-hand side extends over:
O<sv<n(M+1),0sjsM, 0sq=<M, 2sp<M, j+pq=|, all integers, and B is
the function defined as in §3.

Proof. From the asymptotic expansion of I_(t), we have

AN+t m AN+l
J' exp 2mint) I_1(Act) - B(t) dt = Z eLA L™ J -~ L exp Rwine(t))
AN

v=0 AN

m AN+
XB(f) dt + Y, etAp-™ J -~ . exp 2mwiny(1))
v=0 ' .

AN

X B(1) dt +O(x=-~mm),
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Now t* =x*+Y,=1 ¢ - x*(t—x)', for AN<t<An41, and (t—x) = O(1), for j=1.
Further

‘P(t)=‘P(x)+ Z (t;‘x)p (p(p)(JC)"'O(A}(/n' x(l/u)~M—1).

l<sp=sM

Hence

J' s exp (2mine(t)) - B(1) - dt
=) e [ " (t=x) exp 2ming (1) - B(1) d+ O (M)

=exp (2mine(x) ), cx"”! I " (1= xY exp @min(t—x)¢'(x) - B(1)

]

X exp {(27”")( Z (t*-x)P ‘P(p)(x))} dt + O(x~M~1)+O(,\llc/nx(l/n)-—M—l)

2=p=sM P'
= exp (2mine(x)) Z ¢} p,ax* (@@ (x))*
1L, P-4

AINY-O-I
X J (t—x)" - B(t) - exp Qmrin(t—x)@'(x)) dt + O(AL"xV/mM~M-1)
AN

the last sum extending over: 0<j<M, 2<p<M, q=0, j+pq=1, all integers.
Note that the last integral equals

J " e g (x4 1) - exp (2minte'(x)) dt = O(),

AN_X

and, if we integrate by parts, we see that this is also «1/|¢'(x)|.
A similar result holds with ¢ in place of ¢. If we choose m +1=n(M+1), we
get the lemma. '

LEMMA 22. For the first integral in Lemma 1, we have the estimate:

(=1y L FO*O(1) - Q,(1) - dt = O(1).
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' Proof. By partial integration, we see that

(-1) J RO - Q1) d
0

N+1

- j P - Qolt) dt =—Qof0) - L F(t) - Q4(1) - dt

AN-{-

= —Qu(0)- Ro{j " exp (2mint) di + I "exp (2mint) B(1) dt}

AN

=0(1),

since An+1— AN, and B are bounded; and

Q-i(x)= -1— L B~k (s)x* "' ds, x>0,
2

so that Q_;(x) equals B™" times the residue of {x(s) at s =1, and Q(0) (which is
defined by continuity) equals {x(0).

§5. Proof of theorem

If 0<e'<1/n, AN <x<An+1, and >0, we have, by Lemma 1,

N
ar €Xp (ZﬂlnAk) = W1 + W2+ W3+ W4+ W5 + W6, (5.1)
=1

k

where

Wi =(=1) L " EY(0 Q1) d

Wo=0(x"%), forany q'>0,

AN+1
Wi=— Z ay I I_1(Act) - exp (2mint) - B(1) dt,
w=nx ~(1/n)+e’ AN
_ ” . _ ailo(0)
W, = ugn;-a/n) ax L exp 2mint) I-1(Akt) dt “é,,;—mn) ‘—————)\k ,

Ws= ), akJ' exp (2mint) L1(Ait) dt,

w=nx AN
akIO(O)

nx =M max! Uinve Ak

'\N
We=— Z ai L exp (2mint) I_1(Axt)dt —

nx 1—(”")<“' =nx I~(l/n)+e’
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We suppose, to begin with, that Ay = x. By Lemma 22, we have
W1 =0(1). (5.2)
To estimate W5 we write it as a sum of three separate sums, namely
Ws=Ws 1+ W5 2+ Ws 5

= ) + y +

“’S(n_a)xl—(lln) (n_s)x1—(1/'\)<usnx1—(1/n)_x1—(l/n)—(zln) nxl—(l/n)_xl—(l/n;e/n)<usnx1—(1/n)

Now, by Lemma 7, we have
Wsi= ) a J exp (2mint) L1(Act) dt
p=<(n—8)x'"/m x

«x® ) @A f < xR (5.3)

A=<(co—8yx"!
if we note that, in this range, Fy o(x)=0(x%), Gy o(x)=0(x*), (where

a =(1/2n)—3), and use the fact that for —1<a <0, we have

Y adi~cy™e, as y—oo, (5.4)

A<y

since Y, <y ax ~A'y.
By the last part of Lemma 12, we have

akz\zx“

Ws ,«
(co—8)x" 1< A <cox™ l—cyxnT17E/m (1/n)—-1

1——px
n

- ai
& xa+a(n 1) T

(1-8))y<<A<y—z 1- Allclny
with y=cox" !, z=c,x""'"%". (Here, as elsewhere, we take 8;>0, §,>0, and
sufficiently small. We adopt the usual convention that an empty sum is zero and
an empty product is 1.) Since A(f)=Yi<cax=A't+R(t), where R(f)=
O(t'#™*Y) we have

@ J:“ dA(t)
1-spy 1=(y)'""

’\"[H dt +J;y’z dR(t)
T sy 1-WY dacsyy 1=V

1/n_—1/n
(1-8)y<A <y—z 1= Ak
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Now

e dt J;l—Z/y (1-9) 1
C ——— =)' d
‘[1—52))’ 1- ()" y -5y (1=s"™) (1—5) >

= O(y log ZX) = O0(x" ' log (1+x)).

Similarly

y—z dR(t) ( i y) . .
—_— =0 n Zl= O(x" , f O<e<n— .
L—az)y 1-(gy)'n y 2 (x"77), i e<n—1

Thus we have altogether
Ws=0x"""log(1+x)), if 0<es<n-1. (5.5)

To handle Ws; we use Lemma 17, and obtain

Ws 3= Z ax j exp 2mint) I-;(Act) dt
nx 1=y 1=/ < |y <y 1=/ -
1 1
< z A - A2 xTWD (a _2+ 2
Cox™ t—cox"TITE )\ < cox™! 2n 2
« xli?n Z A i« x(2mran—1 Z ai, since A<« x"!
CoX“_ _czxn—lAe/n<Ak$COxn-1
&« x(1/2n)+a(n-—1)+(n—1——(e/n)) &« x(n/2)—(s/n)’ (56)

since Y, ;<n<y @ =csz+O0(y'"""), say, for 0<z<y. Now (5.6), (5.5), and
(5.3) give

Ws=0(x"""*)+ 0(x" " log (1+x))+ O(x"2¢M), (5.7)

if esn—1.
The estimation of Wj is similar. We first split it up into three parts:

We= Ws 1+ We .+ Ws 3

(“ +8)x 1-(1/n)s“ =nx 1—-(1/n)+e’ nx 1—(1/n)+x 1—(1/n)-(c/n)s " <(n+8)x 1-(1/n)

?
nx 1M <y iy T (/M) 4 1= —(e/m)
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in each of which there are two summands. We use Lemma 10 in W ; and obtain

W.s,l == Z ay L €xp (27Tl‘nt) I_.l(/\kt) dt

(n+8)x 1" WMy cpx1~A/m+e
1 -1
= O(Z aAk - |Fo, o(X)I) = O[Z ag - AL x“(—— pxm=1_ 1\) ]
n
=O(x(n—-1)/2 log(1+x)), if 0<esn-1, (5.8)

as in the case of Ws, (see the proof of (5.5)). Note that the sum —) aio(0)/Ax
cancels out in this range.
By Lemma 15, we obtain, as in (5.5),

Weo=O0x"""log(1+x)), if 0<esn-—1. (5.9)

Finally, by Lemma 20 we obtain, as in (5.6),

We,3 = O(xW2~ ), (5.10)
Hence
We=0(x""?log (1+x)+ O™ 0<eg<n-1. (5.11)

To estimate W3, we note that the principal term in the expansion given by Lemma
21 is a constant multiple of

AN+1

a;. exp (2mine(x)) Axx® j B(t) exp 2min(t—x)¢'(x)) dt,

1—(1/n)+e AN

n=nx

together with a similar term with ¢ in place of ¢. It follows that

a_a
a a ak/\kx
W, « ag A - x" +
p<(n+8)x~0M (n+8)x1-0m Sy pgt-ame | 1 pxUm-1_1
n

«x™ V2 1og (1+x), (5.12)

since 0<¢’'<1/n<(n—1)/n. Note that the estimate of the first sum is similar to
that of (5.3), and that of the second similar to (5.5).
By Lemma 4, we have

W, =ca Z akA§C2—n)/2(n—1) exp {_(zm-m,l(/(n-n . q)}+ O(x(n/2)—-1)’ (5.13)

" snxl—(l/n)
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where c4 is a non-zero constant, m =A/27m, q=((n—1)2""""V, Since —1<
{2-=n)2(n—1)}<0, for n=2, we have only to use (5.4). Note that
—Y (ar/Ai)Io(0) cancels out +Y A(1)/A(0) + a/Aw.

Combining (5.1), (5.2), (5.7), (5.11), (5.12), and (5.13), we get

N
Z @A ETP Y exp {— Qmimi ™Y - @)} —¢ Z a, exp (2mwinAy)
—(1/n) k=1

m=nx P
= O(x(nlz)—1)+ O(l)+ O(x—q’)+ O(x(r:—l)/z)
+ O(x(n—l)/Z lOg (1 + x)) + O(x(n/2)~(s/n))’ (514)

where ¢ is a constant, n=2, 0<e<n-—1, 0<e'<1/n, q' is an arbitrarily given
positive integer. If we choose &/n =1 as we may, we get for x =An, n=3,

Z ak,\gc2—n)/2(n-—l) exp {_ (27Tl.)ti/(n~l) . H)} - O(x(n—l)/Z lOg (1 + X)), (515)

Ak QCOAN"_l

where H=qQ2mn) V", since
N

Z ar exp 2minAr) = O(x) = O(x" 172,
k=1

for n=3. On the other hand, we have, for any £;>0, and x = Ay,

GAZ2D) ¢y G2 Z a
COAN" "1 <Ak <CoAN+1""1 CAAN" T <A <coAn+1"T!
< xRS AR
« gD e, o QD2
since An+1<x-+B, so that AR  — AN T« x" 2,

Thus it follows from (5.15) that

Z akA§(2~n)/2(n—1) exp {___ (Zﬂi/\i/(n—l) . H)} = O(y(n-—l)lz IOg (1 + }’)),

Ax=coy" !

for AN <y <An.:. From this we deduce that

Z QA2 exp {—2mid ™Y - H)}=O0(y? log (1+y)),

Ak =cCoy

and this implies, by partial summation, that

Y acexp {~QmirA"" - H)}= 0,y " log (1+y)),

A=y
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where H =q/(2mm)"" . Note that c, involves m, where m is arbitrary and
positive. By taking conjugates, if necessary, we obtain the theorem.

Remark. It is possible to prove a corresponding result for the coefficient sums
of Dirichlet series satisfying a functional equation of the type treated in [1, 2]. The
proof requires no new ideas. In particular, the result is valid for the zeta-function
of an ideal class and Hecke’s zeta-function with Grossencharacters.

We note that if n =2, (5.14) reduces to the result given in [4].

We also note that considered as a result valid for all n = 2, the theorem is a “‘best
possible” one, after Walfisz [6, p. 566], though the estimate can be improved for
particular values of n. For n=7, for example, partial summation will suffice.
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