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Comment. Math, Helvetici 51 (1976) 57-91 Birkhéduser Verlag, Basel

On Cauchy-Frullani Integrals!

by A. M. OSTROWSKI

I. Introduction

1. A beautiful result due essentially to Cauchy [2], [3], but attributed usually to
Frullani 2) is contained in the integral formula

at) f (bt)
j : a=(/ () ~FO)IEE  (anb>0).
0 (Ial)
F):=limf(x), 7 (e0):=lim £ (x)
x| X~ 0
f(x)is assumed L integrable in (0, 00)3).

It can be expected that this formula remains valid, if the limits /(0), f(c0) do not
exist, but are replaced by appropiate mean values in the corresponding neighbourhoods
of x=0, x=o00. Thus the problem arises to find such definitions of mean values.
The problem will be then more or less completely solved, if from the convergence

of the left hand integral in (I, 1), @ and b varying in some intervals, the existence of
these mean values follows.

! Sponsored in part by the Swiss National Science Foundation. Sponsored in part under the
Grant DA-ERO-75-G-035 of the European Research Office, United States Army, to the Institute
of Mathematics, University of Basel.

2 G. Frullani, Sopra Gli Integrali Definiti, Ricevuta adi 21 Novembre, Memorie della Societa
Italiana delle Scienze, Modena, XX, pp. 448-467.

The volume is dated 1828; however, it contains another paper by Frullani with the note:
“Ricevuta adi 1. Oktobre 1830”. On page 460 of his paper Frullani says: “Io comunicai questo
risultato al ch. Plana sino dal 1821. Successivamente, e nel giornale della Scuola Politecnica per
Panno 1823 ne ho veduta una dimostratione dovuta al ch. Cauchy, e dedotta daprincipi differentissimi
dai precedenti”’. However, Frullani’s ‘“proof” is completely illusory.

As to Cauchy, his paper [2] of 1823 contains only the case f(®)=0 of (I,1). However, Cauchy
assumes in his proof implicitly (and unnecessarily) that f“’[ S (x)/x] dx is convergent, which does
not follow from limz-w f(x)=0. In the article [3] of 1827, Cauchy writes down the formula (I,1)

Note continued on next page
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2. Before attacking the general problem observe that introducing in the integral in
(I, 1) a new variable of integration, 7, by t=ut, u>0, this integral becomes

Tf(uaf)—f(ubf) "

so that our integral, in the case of convergence, remains convergent and does not
change its value if @ and b are multiplied by an arbitrary positive number. We can
therefore replace in our discussion, putting ¢:=a/b, the integral in (I, 1) with the
integral

fwdt, >0. (1,2)

Further it is useful to deal separately with the neighbourhoods of 0 and oo,
putting

f(x)=n(x)+u(x), n(x)={g(X) gii)d),

(L,3)
0 (x=1)
“(x)::{f(x) (0<x<1).

Note 2) continued
(as his formula (66)) and goes on to say that this formula “se déduit aisément, ainsi que M. Ostro-
gradsky en a fait la remarque, de I’équation

[+ o]
ff/(ar) dF = f(w)a—f(o)

intégrée par rapport a la quantité a. On pourrait au reste établir I’équation (66)... a I'aide de la
théorie des intégrales singuliéres.”

Cauchy’s formulation is rather vague. But it appears that the complete formula (I,1) was first
indicated by Ostrogradsky, although the carrying out of Ostrogradsky’s idea of the proof would
require some additional assumptions. This was obviously a personal communication of Ostro-
gradsky, as in Ostrogradsky’s Collected Papers the subject is not mentioned anywhere. Cauchy’s
own proof alluded to above is the usual proof using our identity (I,4) from sec. 2.

3 If we say that a function is L integrable or bounded or absolutely continuous or that an expression
(or series) is uniformly convergent “‘in an interval J” which could be finite or infinite, open or closed
or half open, this signifies that the corresponding property holds in any closed interval contained in J.

We denote an open interval by (a, f), a closed interval by <a, 8> and the half open intervals by
<{a, B) and (a, B>.

Further we use the notations 4 := B, 4 =: B, in the sense A means B, A4 is denoted by B.

The symbol 3 signifies “exists” and the logical symbol A is to be read: as well as. This symbol
has priority with respect to the symbols =, >, <, 3. V is to be read: or.
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On the other hand the following identity is immediately verified:

f() 50

Jf(‘”) f(t)d—- ~Sdi— | =Zdr (0<e<d), (1,4)

and it follows at once that a necessary and sufficient condition for the convergence
of the integral (1,2), that is for the existence of the limit of the left side integral in
(1,4) with 4 >0, €0, is that both right side terms in (I,4) have limits, that is to say
that the integrals (1,2) for n(x) and p(x) exist separately.

Further, by the identity

Ojf(et)-—f(t) o [fem=ram

t t
0 0

(1,5)

the discussion of p(x) is reduced at once to that of n(x) and vice versa. It will therefore
be sufficient in the discussion of (I,2) to assume that f(x)=0 (0<x<1).

3. A first general solution of our problem has been indicated by K. S. K. Iyengar,
1940, [ 1], [2]. Tyengar’s necessary and sufficient condition for the integral (I,2) being
convergent for any ¢ from an interval on the positive t-axis, is the existence of both

e &}

(7D, mx [ 204

1 X

(1,6)

However Iyengar’s proof, although very skilful in the most parts, contains in an
essential point a grave mistake which apparently cannot be improved directly. It
concerns Iyengar’s formula (6.2). Iyengar proves first that for his function F(u) and
a certain ¢4, 0<g, <1, the expression F(u)— F(¢,u)/¢, tends to L with u|0. If we
write this in the form

F(u)“‘F(Qlu)/QizL"‘"(“), n(u)—0 (u0),

Iyengar’s formula (6.2) can be written as

. 1 _ m u r—1
P(u)—é;,F(uQ'I')=Lzl +3 (Q‘ ligs )
1 =

1
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Now Iyengar assumes that u varies, for a positive u,, in the interval uy=u=ug0,,
puts y:=up7, so that y |0 is equivalent with m — oo, and asserts that then the right
hand n-sum in (*) tends with y |0 to 0. This does not of course follow as already the
first term of this sum corresponding to r=1is n(u), and ¥ remains Zuy0,>0.

4. Nevertheless, Iyengar’s assertion concerning the existence of (I,6) is true, as it
has been proved 1942 and 1954 by R. P. Agnew [1], [3]. Further, Agnew replaces
the interval on the g-axis in Iyengar’s discussion by an arbitrary set of positive measure.

5. In what follows we give first another solution of the above problem. We prove
that necessary and sufficient for the integral (I,2) to be convergent for all ¢ from a
set of positive measure on the positive g-axis is the existence of the limit

X

M(f):=lim ljvf(t)dt. (L,7)

X 00
1

This condition is of course essentially simpler than the condition concerning (1,6).
On the other hand the proof of our result can be carried out in a simpler way than
the argumentation of Agnew, since, in order to deal with not necessarily uniform
convergence, we use only Osgood’s theorem for a convergent sequence of continuous
functions, the proof of which does not even make use of the theory of measure.

6. We give in chap. III the proof of our results concerning the integral (I,2) as theorem
A, after some preliminary discussions in chap. II. In chap. IV we prove directly
that Iyengar’s conditions are equivalent with ours4). In this way a considerable
simplification of the proof of Iyengar’s conditions is achieved. In chap. V we formulate
the theorem B concerning the integral in (I,1) in its original form and give further
some examples, specializing f (7).

7. The main interest of the formula (I,1) consists of course in the fact that it contains
an essentially arbitrary function f(t). By a variable transformation we can of course
always introduce another arbitrary function. We will show in the second part of
this paper, that a generalisation of (I,1) is possible, containing three, more or less
arbitrary, functions and give the value of an integral of the form

f W (x) (¥ ()=’ (x) g (9 (x))) dx (18)

4 Another proof of this equivalence was given by Agnew [2], with reference to Ostrowski [1].
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as theorem C. The proof of this Three Functions Formula is given in chap. VII after
some preliminary discussions in chap. VI, while chap. VIII brings different special-
isations of the Three Functions Formula, obtaining in this way in particular different
formulas going back to Cauchy and Lerch.

Main results of this paper have been communicated and proofs partially sketched,
1949, in Ostrowski [1].

I1. Discussion of g(g)

8. In this whole chapter f(x) is a function L integrable in (0, o). The letters x, y, ¢,

u, v, w, t denote positive numbers. Then it follows by an obvious change of integration
variable that

uwx

[/ ] 20, a

We can therefore define

vux

g(u):=lim f—(—) dt=lim _Jf_(_) dt, (1L,2)

X oC X0
X vXx

for any positive u for which the right hand limit exists. It follows then, if both g(u)
and g(v) exist,

g(v)+g(u)=J[~(—2dt Jl—}d == Jfégdt,

guv)=g)+g(v) (Agu)rg(v)). (IL,3)
It follows further that

xfu

g(1)= im [ £ )dt-l jjig—t)dm —g(u),

u X = 00 X0
x

if g(u) exists, and, further, replacing v in (II,3) with 1/,

gulv)=g(u)—g(v) ([Fgu)rg(v)). (IL4)
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9. Assume now that g(u) exists for all ¥ from the interval
0<Qy<u<Q,<o0.

Then, using (I1,3) and (I1,4) repeatedly, it follows that g(u) exists for all positive u.

If we assume even less than that, namely that g(u) exists for all ue S, where S is
a set in (0, 00) of positive measure, then, if u; Au,€S, g(uy/u,) exists too. But, as
follows immediately from a well-known theorem by Steinhaus, the set of all quotients
u, Ju,, if u; Au, €S, contains an interval of positive length. Therefore, in this case too,
g (u) exists for all positive u.

In this case we can assume that in (1I,3) ¥ and v are arbitrary positive numbers.
On the other hand it follows from (II,2), if we let x> o0 over integers, that g(u) as
the limit of a sequence of continuous functions, is measurable for all positive u.
Therefore, in virtue of a theorem by Fréchet [1], [2]; Sierpinski [1]; Banach [1],
we have

gu)=Clgu (11,5)

for a convenient constant C.5)

10. LEMMA 1. Assume that f (t) is continuous in (0, o) and g(q) in (I11,2) exists for
all g>0. Assume further that we have

flg)—f(@)-0 (t—>o00,qg>0). (11,6)
Then
f(t)-»C (t- o), (I1,7)

where C is the constant from (11,5), and

g(q)=Clgg (q>0). (I1,8)

11. Proof. We start from the identity

retn [ 1O [ L0y,

5 The theorem in question deals with the functional equation ¢(x+y)=¢(x)+¢(y) to which
(1L,3) is reduced by the substitution ¢(x) := g(e?).
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which is immediately verified introducing in the second right side integral the new
variable of integration, ¢ : =¢x.
Let x, — o0 be an x-sequence, for which

lim f(x )=T,

A Andl ]

with I finite or infinite. Then it follows

75~ f ff—”dt—ff et o) g (1L9)

The sequence of continuous functions

G,(q):= f(gx,)—f(x,) (11,10)

tends to O for any positive g. It follows now from a well-known theorem by Osgood,
that for each #>0 there exists a subinterval g'<q=<q" of (0,0), of positive length,
and an n,, such that

G, (@)I=n  (v>no,9'Sq=q").
12. We apply now (IL,9) to the interval {g’, ¢"); then, by (IL>5), the first right side

integral in (I1,9) tends to g(q"/q")=Clg(q"/q’), while the modulus of the second
integral remains <n1g(q”/q’). Therefore I is finite and we have

Ir'-Cl=n.

Since n is here arbitrary small, we have I'=C. We see, that any convergent
sequence f (x,) with v—co has C as limit and it follows lim,_, ,, f(x)=C. Our lemma
is proved.

III. Theorem A
13. A. Assume f (x) L integrable in {0, 0), and further
f(@®)=0 (0=t=1). (111,1)

Then
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J f(Qt) AU

igo

X =0

(=M(f):=lim - J f(t)dt  (e>0), (111,2)

either if M( f) exists, and then for all 0>0, or if the left side integral exists for all g
from a subset, of positive measure, of (0, c0).

14. Proof. The function

F(@:EJ f(dt  (xz0) (111,3)

is obviously continuous for all x>0 and we have f(x)=(xF(x))" with the exception
of a set of measure 0. Therefore, for uA ¢>0:

(7@ . TaF@y T T FQ
Td _J t dt=F (1) ——dt
(e )dt—(F( u)— F(u))+ () (11L,4)

Suppose now that M ( f)=lim,_ ., F(x) in (II1,2) exists. Then for u— oo the first
right side term in (II1,4) tends to 0, while the integral on the right is = F(&)[%dt/t=
F(&) 1go, where ¢ lies between u and ou. We have therefore

’f—(—)dt M(f)lge  (u—),

and this is (IIL,2), using (I,4) with e<1, ge< 1.

15. Assume now that the left side integral in (II1,2) exists for all g€S, where S is a
subset, of positive measure, of (0, ). We can then assume that all elements of S are
even <q for a convenient ¢>0. In the identity (I,4), if we assume £<1/qg, the second
right side integral becomes 0 and it follows that the first right side integral tends to a
limit with 4 —» oo for all geS. But this signifies that g(¢) exists on a set of positive
measure and therefore, as was mentioned in sec. 9, g(g) exists for all ¢>0.
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16. (II1,4) can now be written in the form

J fifi)dt—-(F (ou)—F (u))+ J——) dt—( ——Q dt) (I1L,5)

u u

Here, since the integral on the left tends, with ¥ — o0, to g(g), we can write

< jﬂt‘)d‘)u g(0)+e(u,0) (0>0),

u

where lim, _, , (g, u)=0 for all ¢>0.
Integrating this from 0 to >0 we have

u

JF(t) dt—g(e)u+J8(e, u) du

u 0

and therefore

JF(t) dt>g(@) (u—- o0, ¢>0), (I1L6)

u

since (1/u) {¢ (0, u) du tends to 0 with u — o for any ¢>0.
But now it follows from (III,5)

lim (F (ou)—F (u))=0 (¢>0),

U= oo

and we see that all assumptions of lemma 1 are satisfied if we replace there f(¢) with
F (1); it follows that

lim F(x)=:M,

exists. Theorem A is proved.
V. Equivalence with Iyengar’s Conditions

17. We are going now to prove that Iyengar’s conditions
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(oo}

f(t)dt ) limxjj—:t—(zt—)dt=:L

X = 0
1 x

are equivalent with the condition

X~ 00

3 lim E-Jf(t)dt=:M(f),

and then M (f)=L.
Put for x=1:

alx) :=ff(t) dt:

then it follows at once, integrating by parts for any x=1:

X

[fputraf.

1

18. We prove first the

LEMMA 2. If y(x) is continuous for x = 1, then the relation

v (1)

2x —;—dt—y(x)—+G (x »0)

Hh_‘s

is equivalent with y(x) - G (x —» 0).
Indeed, assume first that y(x) —» G (x - o). Then

1/x
t
lim x y( )

X—* 00 X~* o0

HL-—_-;S

x}0
0

and we see that (IV,5) holds indeed.

1
—r di=lim x f v (1/0) dt=1i?g;jy(1/t) dt=limy (1/x)=G,
0

(IV,1)

(IV,2)

(IV,3)

(Iv,4)

(IV,5)
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On the other hand, if (IV,5) holds, the Bernoulli-L’Hospital Rule can be applied
to the limit lim,_, ,x? [ (y(¢)/t?) dt/x, since the denominator tends to co. But the
quotient of the derivatives is

y—t(z-t—)dt—y(x)

2x

% — 8

.

and tends to G. It follows that

r(1)

P d—>G (x—w),

oL—_>a

and, from (IV,5), y(x) » G(x - o0). Lemma 2 is proved.

19. LEMMA 3. Assume f(x) L integrable in {1,00). Consider the three con-
ditions, where ¢ (x) is defined by (IV,3):

f( )d =:K; (Iv,6)
¢ (x)/x* >0 (x»0), 3 Jg(——) di=K/2; (Iv,7)
xjj%(z—t) J —t—(-—— dt— (%(Cx—) (x=1), (1v,8)

where both integrals in (IV,8) are assumed as existing.
Then (IV,6) is equivalent with (IV,7) and, if these conditions are satisfied, (IV,8)
Jollows.

20. Proof. Assume (IV,6)satisfied. Then the Bernoulli-L’Hospital Rule can be applied
for x - 0 to
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as x*— o0 (x> 0). The quotient of the derivatives is, by (IV,4),

J(-/-)—(-—)dt+ ?() k. (IV,9)

3&
1

Therefore 2 [ (¢(¢)/t*) dt - K and it follows from (IV,9) that ¢(x)/x*—0. We see
that (IV,7) follows from (IV,6).

On the other hand it is seen immediately from (IV,4) that (IV,6) follows from
(1v,7).

21. Assume now that (IV,6) and (IV,7) are satisfied. We obtain with x - oo from
(IV,4) the formula

f—(—-)dt— J'%(si)dt

1 1

Subtracting from this formula the formula (IV,4) we obtain

[o0) 0

f 4on J <p(x)

X

and, multiplying by x, the formula (IV,8). Lemma 3 is proved.

22. Assume now that (IV,1) holds. Then (IV,6), (IV,7) and (IV,8) hold too and from
the second formula (IV,1) it follows that the right side expression in (IV,8) tends to L.
But then the condition (IV,5) of lemma 2 is satisfied with y(x):=¢(x)/x, G:=L.
By lemma 2 it follows now that ¢(x)/x— L, that is the condition (IV,2) with
M(f)=L.

23. Assume on the other hand that (IV,2) holds. Then the condition (IV,7) follows
and therefore also the conditions (IV,6) and (IV,8).
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But now it follows from (IV,7), if we put y(x):=¢(x)/x and G:= M (f), that
7(x)—= G (x> o0) and therefore the relation (IV,5) in lemma 2. This signifies that
the right side expression in (IV,8) tends to M (f) and the second formula in (IV,1)

follows with L=M ( f).

V. Corollaries from Theorem A

24. LEMMA 4. Put

x}0

m(f):=1imxjf}g€)dt, (V,1)

if this limit exists. Putting f(1/t) =:F(t), f(ct) =:g(t) (¢>0), and using (1,7), the
relation holds

m(f)=M (F)=m(g), (V.2)

provided m( ') or M (F) exists.
Proof. Indeed, if m( f) exists we have

1 1/x X
F(1/t 1
m(f)=limxj (tz/ )dt=1imx f F(t)dt=1lim —JF(‘C) dt=M(F),
xlO xlo xX= o0
x 1 1

while, if the existence of M (F) is assumed, the above transformation can be read
from the right to the left.
Further

2
x|0 x}0 T

me)=tims [ L5 ar—timex [ L0 avem).

cx

25. B. Assume f(x) L integrable in (0,00). Then we have, if both m(f) and M (f)
exist, for any positive a, b,

[ 0T 4o ot () -m 1) 185 (v:3)
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Conversely, if the integral in (V,3) is convergent for a set of couples of positive values
of a and b, such that a/b runs through a set of positive measure, both M () and m ( f')
exist.

26. Proof. 1f we introduce 7 :=5t as a new integration variable and denote a/b by g,
the formula (V,3) goes over into the formula

e o}

f L0 gyt (1)-m(1ge (@>0). (V)

Define n(x) and p(x) by (I,3). Then we see that (V,4) holds if both formulas

Tn(aot—n(r)

0

Tﬂ(at)—u(t)
t

0

di=M(f)lge, (V.5)

dt=—m(f)lge (V.6)

hold. Further, for any ¢>0, the integral in (V,4) converges, then and only then,
when the integrals in (V,5) and (V,6) converge.

27. Clearly

M(f)=M (@), m(f)=mw). (V.7)

But now, if M (f) exists, the formula (V,5) follows immediately from theorem A,
replacing there f(¢) with n(¢), and conversely, if the integral in (V,5) converges for
all ¢ from a set of positive measure, M ( f) exists.

In order to reduce (V,6) to (V,5), put u(1/¢t) =:P (t). Then, by (I,5)

Iu(et)—u(t) dt:TP(t/a%P(t) B
t L

and (V,6) becomes

Tm/e)—mﬂ

T

1
dv=—m(p)lge=M(P) lgé- (V:8)
0
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This follows from (V,5) if m(u)=M (P) exists, while, if the integral in (V,6)
converges for a g-set of positive measure, M (P)=m( f') exists. Theorem B is proved.

28. In many cases the value of M (f) can easily be obtained from the

LEMMA 5. Let p be a positive constant and f (x) L integrable in (xy, 0). Assume
that with x — o0

! j f(t)dt>a. (V,9)
4
Then M ( f)=ua.

Indeed, putting ¢(x) :=[3 f(¢) dt, (V,9) becomes

e(xtp)-o(x)
P

Since ¢(x) is bounded in {(x4,00), it follows by a theorem of Cauchy [1] that
@(x)[x > o (x > 0).

From lemma 5 follows in particular that M (f)=f (), if f(00):=lim,,, f(x)
exists. It follows further, from (V,2): if £(0) : = lim, o f (x) exists, then m( )= f(0).

29. The most important case is that of an L integrable function f'(x) which is periodic
with the period p. As in this case [3*? f(¢) dt/p is independent of x, we have then

x+p

M= j £ dt. (V,10)

For such a periodic function our formula (V,3) becomes

Tf(at):f(bt) dt=(§)—jif(t) dt-m(f)) lgf-bl, (V,11)

assuming that m (f') exists.

30. Using the formula (V,11), the following lemma is useful:
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LEMMA 6. Iff(t)/t is integrable into t =0.

EIJ‘j—i—g—t—)dt, p>0, (V,12)
then

m(f)=05%). (V,13)

Proof. Put

p

(=Wt W)= [ et

x

Then, by (V,1), m(f) is the limit, with ¢ |0, of

p

g JV&Q dtzsjl/,,t(t) dt=8‘//;p)-¢ (s)+eJ%—§Q dt,

t

€

that is —y(0)+m(¥). As Y(x) is continuous from the right at =0, (V,13) follows.

COROLLARY. If for a constant A and a p>0, [§(f(t)—A)/t dt exists, then
m(f)=A.

31. We give now some examples for the formulas (V,3) and (V,11).
(a) Itis known from the theory of the Gamma function, that

n/2
J- tg*x dx=
0

(ol <1).

Aaleo

COS o -
2

6 The special case of the formula (V,11), where (V,12) holds and therefore m(f)=0, has been
found independently by Tricomi and published in Tricomi [1].

Further, under the assumption that (V,12) holds (and therefore m( f)=0), a formula analogous
to (V,3) has been found independently and published in Tricomi [1], however, under more special
assumptions about M ( f), namely that not only M (f)=Ilimg-w (1 /x)_f;f f(¢) dt exists, but that the
difference 1 /x_[’; f (@) dt—M (f)is not only o(1) but even O(1/x).
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Therefore

n

1
-fltgxl“ dx=
n

0 COS &

(0O<a<l)

and by (V,11) with m( f)=0:

dx lig(a/b
J(ngaxr'-ngbxv)_—’f:f@»)- (0<x<l1,anb>0), (V,14)
X T
4] COS O

since tgx vanishes for x=0.
(b) From the well-known integral

n/2 n
1

jlgcosx dnglg%, —Jlglcosxl dx=1g}
T

0 0

it follows by (V,11), since lg|cos x| vanishes for x=0,

Ji
0

(c) From the representation of the Bessel function J (u)=J,(u),

d
™ lgtlgalb. (V,15)
cos bx| x

cosax

1 A
J(u)=— J cos (u sinx) dx
2n

(see for instance Courant-Hilbert [1]), it follows by (V,11), since cos (u sinx) becomes
1 for x=0,

o ¢]
J‘ cos (u sin ax)—cos (u sin bx)

X

dx=(J(u)—1)l1ga/b. (V,16)

0
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(d) In the theory of Riemann’s Zeta function the following relation is derived
(see for instance Titchmarsh [1]):

e Nl

T

J|C(a+it)|2 dt—-{(20) (T-ow,0>%,0%#1).
0

It follows therefore by (V,3)

dt=({(20)— ¢ (o) |*)Iga/b (6>}, 0#1),

]O‘ 1{ (6 +iat))*> —| (o +ibt)|?
t
0

(V,17)

32. Our result can be applied to a type of integrals considered by Lerch [2] and
rediscovered independently, in a different form, by Hardy [1]. Consider

" dx
ZO AF (avx);;i, (V,18)

where the n+ 1 constants 4, and n+ 1 positive constants a, satisfy the m conditions
n
Y A,ab=0 (u=0,1,...,m—1). (V,19)
v=0

Suppose that we have for F(x):
F(x)=P (x)+x""" f(x), (V,20)

where f(x) is L integrable in (0,0) and m(f') as well as M (f)=M (F/x™"!) exist,
while P (x) is a polynomial of degree <m—2. Then we will prove

3 AF (@) =M () -m() 3 A lga,. v

ot 8

It follows from (V,19) immediately that
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B

n n d
Y, A,P(a,x)=0, J Y AVP(a‘,x)%EO (0Sa<B= ).
v=0 v=0 X

a

We can therefore, proving (V,21), assume without loss of generality that P (x)=0.
Put

B,=Aa}"', Y B,=0.

Then we can write

o

ngoAvF(avx)§= vgovi(a‘,x)d;x._.é J (a,x)— f(aox)

0

and this is, by (V,3),
(M(/)=m() T BIg==(M ()=m (/) T B.Iga,

which proves (V,21)7).
VI. Discussion of the Means ;" ( f)

33. m(f(¢)) in (V,1), if it exists, serves to replace lim, o f(x). In order to find a
convenient expression to replace lim, |, f(x), we will of course use

i [ 2019, o
In(f(t-l—a))—lel; lx?g J (t—a)zd
=lim (x—a) A dt=:m; (f())=m; (f). (VL1)

xla ) (1= a)?

¥ The spemal case of thls formula, when F (x) is analytlc at x=0 and contmuous in (() 00),
while j"‘"(F (x)/x™)dx is convergent, has been given by Hardy, 1905 [1]. Lerch, 1893 (Lerch [1]), has
the corresponding formula in the assumption that f(x) in (V,20) has finite limits for x—oco0 and
x—0, while it is integrable in (0, ).
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p is here an arbitrary positive number, but such that f(¢) is L integrable in
(a,a+p).

34. If we have to replace lim,,, f(x), we will correspondingly use

m(f(a—t))=limx f( —t) dt=—limx f(t)z dt=
x|0 x{0 (t_a)
=lim (x— a) (f_( ))Zdt=:ma'(f(t))5m; (f)=mg (f(a—1)).
xte (VL.2)
In particular we have obviously
mg (f)=m(f), (VL3)
mg (f()=m(f(=1)). (V1.4)

If in these formulas a is to be replaced by oo or — o0, the corresponding definitions
will be

my, (f):i=M(f), mI, (f):=M(f(=1))=mg,(f(-1)). (VL5)

(V,2) can now be written as

mg (f)=M (f(1/1)=m_ (f(1]1)). (VLs6)

Using again (VI,5) and (VI,4), we have further

mo (£)=M(f(=1/t))=mI_,(f(1]1)). (VL6a)

35. In the following part of this chapter we will use ¢ for + or —. g=sign «, for a
real « #0 denotes then the sign of a.
If a#b are two real numbers, we will use the formula

my (f(1))=my (f (t+a—b))=mg (f(t+a)), (VL7)

valid if one of the three expressions in (V1,7) exists.

To prove this formula, use (VI,1), (VI,2) and (VI,4), and introduce instead of ¢,
and x new variables 7, y defined by
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t—a=:1-0b, x—a=:y—>b.

We obtain
e ) | ) atep f() ) | ) b+apf(1+a b)
mi(f(D)= lim (s~ j L= tim (=) [ LD g
=m (f(t+a—b))=mo (f(t+a)).
Further it is easy to prove that always
m(f(a—t))=mg (f(t))=my (f(a+b-1)). (VL8)

Indeed, using the transformations
t—a=:b—r, x—a=:b—y,

we obtain from (VI,2)

my (/ (1)=lim (x—a) j (f 0

xta t—a)2

b+p

J flatb—1)

=lim (y—b) (t __b)z

yvlb

di=m; (f(a+b—1)).

36. LEMMA 7. Consider two functions, u(x) and v(x), for which in a certain limiting
process in x,

g :=sgnu(x)=(sgnv(x)

remains constant and v(x)[u(x) tends to a positive limit, y.
If m{( f) exists and both u(x) and v(x) tend to 0, then

v(x)
7D 41 mis (1) 183, (VL9)

u(x)

If m_% (f) exists and both u(x) and v(x) tend to & co, then
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v (x)

j %(f—) dt—>m>% (f)lgy. (V1,10)

u (x)

37. Proof. Using (VL,6) and (VI,6a), it is immediately seen that (VI,9) follows from
(VL 10), if we replace in the integral in (VL,9) the integration variable, 7, by 7:=1/t.
Using the second formula (VI,5), we see that the case e= — follows from the
case ¢= + if we introduce a new variable of integration, 7:= —1.
If suffices therefore to prove (VI,10) and to assume &= +, so that the formula
to be proved becomes, using the first formula (VL,5),

v (x)

J Lf_gdt—»M(f)lg'y, u(x)Aav(x)—oo. (VL11)

u(x)

Introducing F(x) by (III,3) we obtain, applying partial integration, similarly as
in sec. 14,

v (x) v (x)

jf()dt*F(v(x)) F(u(X))+J

u (x) u(x)

Iig—)dt
t

Since F (x)— M (f) (x - o), the difference of the two first terms on the right tends
to 0, while, applying the mean value theorem, we obtain

v (x) v (x)

j PO =r e () f——F(@( ) 1g 29

u(x) u (x)

v(x)
u(x)’

where £(x) lies between u(x) and v(x). But then &(x)— o0, F(&(x))— M (f) and
(VL,11) follows. Lemma 7 is proved.

38. LEMMA 8. Let

B
3 f |f (x)] dx (VIL,12)

exist, where — oo <a<f< 0. Then, for any finite x, with a<x,<p and for any q(x)
which is measurable and bounded in a neighborhood of x, in {a, B),
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M ((x—x0) 4(x) f(x))=0, e=+v—. (VL 13)

If, on the other hand, xy=¢- 0 is o or f8, and if, for x going to &0, g(x)=0(x?),
then

m,. % (4 (x) f(x)/x)=0. (VL,14)

39. Proof. If |xo| <oo, then, using (VI,7), we can assume x,=0, and using (VI,4),
that e= +. We can then assume, without loss of generality, that «=0.

Let p be a positive number <f and such that g(x) is bounded and measurable
in {0, p>. Then we can obviously replace f in (VI,12) with p and g(x) f(x) with f(x),
that is to say we can assume in the proof ¢g(x)=1 and we have to prove that then
from (VI,12) it follows that m(xf (x))=0.

But writing xf(x)=: ¢(x), (VI,12) can be written as

¢(x)dx,
X

3

O

and now it follows from lemma 6 in sec. 30 indeed that m(¢(x))=0.

40. In the case that x=¢- 00, we can, without loss of generality, assume ¢= + and
we have to prove that

M) @)=, a7 -0

with x — oo for a convenient p> 0.
Assume that |g(x)| < Cx? (x=p). For an arbitrarily small 6>0 choose P>p, so
that

j /() dx <.
P

Then we can write, if x> P,

X X X

- j a() 7)) 5'sC f “ 17 0] di<C j £ (O] dt<b,

P P P
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and therefore

X

hm1 Uq(t)f( )dt

p

<d+lim - qu(t)] lf____f_ll dt=9.

(VI,14) follows immediately.

41, The assumption (VI,12) of lemma 8 is not necessarily satisfied even in the case
of the existence of the integral

B
3 f f(x)dx. (VL15)

In this case the assertions of lemma 8 can still be proved if g(x) satisfies some more
special conditions.

LEMMA 9. Let (VI,15) exist with —oo<a<fi<oo. Then the relation (VI, 13)
holds for any finite x, with a <x,=f and for any q(x) which is totally continuous in
(e, B) and for which Q, :=limq(x) with x going to x, from (a, B) exists and

ms, ((x—x0) 19’ (x)])=0. (VL,16)

If on the other hand xy=¢* o, then the relation (VI1, 14) holds as soon as q(x) is
totally continuous in («, f) and

mot, <'ql (x)')=o. (VL,17)

X

42. Proof. We prove first the relation (VI,14) under the condition (VI,17). Without
loss of generality, we can assume ¢= +, so that (VI,17) becomes, with x — oo,

1 | d
;j lq’ (1)l —t—t—->0 (x > ), (VI,18)

and we have to prove that
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X

;Cj‘q(t)f(t)—‘{;—)O (x > 0) (VL19)

p

for some positive p.
We begin by proving that

q(x)=o0(x?). (VL,20)

Put
0(x):= f g’ (1) dt.

We can then write (V1,18) as
R(x):= IQ’(t)%-tW(x)-

But then, since g(x) is totally continuous, ¢ (x)—q(p)={3q’ (t) dt,

lg (x)—q(p)I= ~Q;t(t—)tdt=JR'(t)tdt=R(t)tx—JR(t) dt.

Here, the integrated part is, by definition of R(t), o(x?). As to the right hand
integral, the limit of its quotient through x? is obtained immediately from the
Bernoulli-L’Hospital Rule, as lim,.,, (1/2x) R(¢)=0. (VL,20) is proved.

43. Put now, using (VI, 20),
5(x) 1 =4 (x)/x=0(x).
Then obviously

IIOSIO)
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Put, using (VL15),

0= [f0 . 0(x)-0 (xow).

Then we can write the integral in (VI,19) as

o

Here, the integrated part on the right is obviously o(x) as s (x) =0 (x). The modulus
of the first integral on the right is

X

t=o0(x),

p

in virtue of (VIL,18) as |¢(¢)| is bounded. As to the last integral on the right, by the
Bernoulli-L’Hospital Rule its quotient through x has the limit

lim ¢ (x : (xx)

x=* o0

The formula (VI,19) and therefore the formula (VI,14) is proved.

44, We consider now the case of a finite x,. We can assume, without loss of generality,
that e= + and a=x,=0. Then our assumptions can be written as

3 f fe)de, f 1 () dijt—0  (}0), (VI,21)

for a positive p>0, with ¢ | 0, and we have to prove that

p

t f 4 () 7 (x) defz 0. (VI,22)

t
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Introducing into the formulas (VI,21) and (VIL,22) a new integration variable,
¢:=1/z, they become, if we write x:=1/t, p, :=1/p>0, and put Q(¢):=g¢(7) and
F (&) :=f (1), with x - o0, respectively

o0

1x lx
BJF(é)dé/cz, ;JélQ'(é)lds-»o, ;jQ(é)F(é)dﬁ/z—»o, (V1.23)

P

since —Q'(&)=¢q’(t)/&>. Putting G(x):=[} F (&) d¢/E? it follows

f 0 (&) F (&) déje= f £ (8) G (&) de =

=xQ(x>G(x)—fG<¢>Q(a> it~ 6@ 0 @ .

This is obviously =o(x) if Q(£)= const. Otherwise, putting Q(&)— Qo= :0,(%),
we have to prove that

%0, (%) G (x)— f G (&) 0, (¢) dé— f £G () Q) (&) dE=0(x). (V1,24)

But here obviously the first two terms are o(x), while the same follows for the third
term from the second relation (VI,23). (VL,24) and lemma 9 are proved.

VII. The Three Functions Formula

45. C. Consider the open interval, J, between a and b, aZ b, where a and b could also
have the values + oo or — o0. Assume in the whole statement of theorem C that x only
runs through J.

Consider two functions ¢ (x), Y (x), absolutely continuous in J and assume that

p(X)AY(x)=d (x—a), (VIL1)
e(xX)A Y(x)->b" (x—b), (VIL,2)
where

—w=<d<bLw (VIL3)
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and ¢(x) and Y (x) only assume values from the open interval (a', b').

Assume further the existence of two positive finite numbers y* and y~, defined by

@ (x)—a’ ,
: - (a'>—0)
0<y* :=lim V(x)=a
xa) ¢ (%) (@ = —o0)
¥ (x) ’
@ (x)-0b
———  (b'<o)
0<y~ :=lim{ Y ()8
*7b g_o_(i) (b' =)
Y (x) '

Consider g(x), L integrable and bounded in (a’, b'), and put

G, (x):= {(x—a')g(x) (a' > — )

xg (x) (a'=—c0),
_{=0)e( (<)
G-(")"{xgw (5'= o).

Assume finally that the following mean values exist:
Am; (G )Amy (G).
Then the following integral converges and has the indicated value:

f W () g ()= (x) (o (X))} dx=Ly ~L_,

L,:=m}(G,)lgyt, L_:=m;(G.)Igy".

46. Proof. Assume two numbers 4, B from J; then we can write

B B B
f W'g()—9'g(9) dx=f Y'g () dx— f ¢'g(p)dx=
A " 7

v (B) ¢ (B) ®(4) ¢ (B)

= f g(y)dy— fg(y)dy= f g(y)dy— fg(y)dy-

v (4) ¢ (4) v (4) ¥ (B)

(VIL4)

(VIL,5)

(VIL6)

(VIL7)

(VILS)

(VIL9)

(VII,10)

(VIL11)
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(VIL,9) will be proved if we show that

¢ (x) @ (x)
f g(y)dy L, (x—a), f g(y)dy—>L_ (x> b). (VIL12)
v (x) ¥ (x)

Consider first the first integral (VII,12). Using (VIL,6) it can be written as

@ (x)
G
J 0y, (VIL13)
y—a
v (x)
where, if @' = — o0, the denominator, y—a’, has to be replaced with y. If now a'= o0,

then our assertion follows at once from the second part of lemma 7 in sec. 36, re-
placing there respectively u(x), v(x), ¢, f(¢), y with ¥ (x), ¢(x), +, G, (¢) and y™.

47, If, on the other hand, a’ is finite, the integral (VII,13) becomes, introducing
t :=y—a’ as a new integration variable,

¢ (x)—d

G, (t+a') s

t (VIL,14)

¥ (x)—a’

To this integral lemma 7 can be applied, replacing respectively u(x), v(x), &, f(¢)
with Y (x)—a’, o(x)—a’, +, G, (t+a’). Then to y in lemma 7 corresponds, in virtue
of (VIL4), y*, and the integral (VII,14) has the limit mg (G, (a'+¢))1gy™. This is,
by (VL,7), just L.

The proof of the second formula (VII,12) is completely symmetric to that of the
first one. Theorem C is proved.

48. In order to obtain (V,3) from (VIL,9) it is sufficient to assume in (VIL, 9) a:=0,
b:=o00, and to replace g (¢), ¢(x) and Y (x) in the formula (VIL,9) respectively with
f(t)/t, bx, ax; then, we obtain a’=0,b'=00, y* =y~ =bfaand G, (t)=G_(t)=f(t),
while m;. (G,), my (G_) become respectively m(f), M (f). We see that theorem B
follows, indeed, from theorem C.

49. Applying the Three Functions Formula, in many cases the consideration of two
special cases which do not fall completely under the wording of theorem C, can be
useful :
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LEMMA 10. If in theorem C, the integral
»

fg(y) dy, B<b, (VIL15)
B

exists, the condition (VILS) and the second condition (VII,8) can be dropped, while
the formula (VIL,9) is valid with L _ =0.

Similarly, if the integral

4

fg(y) dy, a>a', (VIL16)

al

exists, the conditon (VIL,4) and the first condition (VIL8) can be dropped, and the
formula (VIL,9) is valid with L, =0.
Indeed, in the first case we use, for the second limit in (VIL,12),

¢ (x) b’ b’
fg(y)dy-—— fg(y)dy— f g(y)dy—0,
¥ (x) ¥ (x) @ (x)

and we see that in (VIL,9) L_ can be replaced with 0.
Similarly, in the second case, it follows, as x —a,

¢ (x) @ (x) ¥ (%)
f g(y)dy= f g(y)dy— f g(y)dy-0=L,.
¥ (x) a’ a’

50. The special conditions (VII,4) and (VIL,5) which are sufficient for the convergence
of the integral in (VIL9), are also necessary if we require, for instance, that the
integral in (VIL,9) converges for any function g(¢) satisfying our conditions. It is even
necessary if we restrict ourselves to the functions g(¢):=1/(t—a’), g(t):=1/(t=b"),
or, if @’ or b’ are F o0, g(z):=1/t.

Indeed, it follows from the decomposition (VII,11) that, for g(z) :=1/(t—a’), the
integral

¢ (4)
dt A)—a'
,=lg¢( )¢
t—a Yy(A)—a'

¥ (4)
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must have a finite limit, if, with 4 — q,

p(A) Ay (A)-d.

But this is only possible if the corresponding condition (VIL4) is satisfied. The
argument is obviously the same in the other cases.

VIII. Special Cases of the Three Functions Formula

51. A. If f(x) is L integrable in (0,1) and m(f) as well as the following integrals
exist:

1 1
3 J f(x)dx, 3 j / S‘) dx, (VIIL1)
0 1/2
we have
n/2
cos x f(sin x)——f(tgg
, dx=m(f)l1g2. (VIIL2)
sin x

0

To prove (VIIL2) put in (VIL9)
: X T
g(t):=f()/t, Y(x):=sinx, (p(x):=tg5, a=0, b=—2~

Since then

(x) 1 1
. x —2c052xt x sinx’
5 2 82

a’'=0, b'=1, Yy’ (x)=cosx,

the integral in (VIL,9) becomes that in (VIIL_2).
As to y* we obtain, by the Bernoulli-L’Hospital Rule,

sin x

" =lim —=2.
xl0 tgf
2
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But now the formula (VIIL,2) follows immediately from the lemma 10.

52. B. If we take in (VIL,9) ¥ (¢)=¢, this formula becomes

f [g()—¢' (1) g (¢ (1))] dt=

=m, ((x—a) g(x))Ig¢’' (a)—m; ((x—b) g(x))lge’ (), (VIIL3)

if a<b are finite and ¢’ (a) A ¢’ (b) exist and are positive.

Indeed, in this case we have a’=a, b'=b, and y*, y~ become resp. ¢'(a), ¢’ (b)?3).

If b=co, we have in the last right hand term of (VIIL3), instead of ¢'(b),
Iglim,, , (¢(x)/x), assuming that 0<lim,, , (¢ (x)/x)< 0. If ¢'(0):=lim,,¢"(x)
exists and is positive, then, by the Bernoulli-L’Hospital Rule, we can replace ¢’ (b)
with ¢’(00). The procedure is similar if a= — 0.

Take, for instance, in (VIII,3)

@ (x):=px>+3x+1.

Since here ¢’(0)=¢’(00)=1y, we obtain, taking a=0,

[o o}

j [( —:—/—’t’—(iil (7 +3t+1)]dt—y[m(xg<x» M (xg (x))].

g(x) is here assumed to be L integrable and bounded in (a, b).

53. C. Consider the functions a(x), f(x), totally continuous in (0, 1) and such that
lima(x)=limB(x)=0, lima(x)=limp(x)=1,
xl0 xl0 xt1 xt1
a(x)AB(x)e(0,1) (0<x<1).

Assume further that

. B(x)-1
y'_l,grlla(x)—-l

(VIIL4)

8 This formula is due to Lerch [2], under the assumption that the limits of (x—a) g(x) (xla),
(x—b) g(x) (x1b) exist. Observe that in the case of Lerch from the formula (VIIL,3) a special case
of the Three Functions Formula is obtained by subtraction.
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exists and is positive, and finally that f(x) is L integrable and bounded in (0,1),
while the following expressions exist:

Hfj'(x)dx, O<p<l; 3ImI(f). (VIIL5)

Then the following formula holds:

1

J[a’ (1) («(1) B (1) S (B(1))
1—a(t) 1—B(¢)

]dt=m; (f)lgy. (VIILG)

54. Indeed, if we take

0(1):=1-(x), ¥()i=1-2(x), g():="0" amt, be0,

it follows in the theorem C and the lemma 10, a’=0, b'=1, and the corresponding
condition (VIL4) is satisfied with y* :=1y.

On the other hand, as 1/x is monotonic and bounded between p and I, the
integral |, (f(1—x)/x)dx exists. Therefore the condition (VII,15) of lemma 10 is
satisfied in this case, so that we can take L_ =0 and the formula (VIII,6) follows.

If we assume that

37(1):=limf(x), 3 ()AF (1)

in the assumption a(l):=1, B(1):=1 and p'(1)/a'(1)>0, the formula (VIIL6)
becomes

1

f [a’ () f () B (1) f(B(1)
1—a(t) 1-B(1)

B (1),
a’ (1

]dt=f(1)1g ). (VIIL7)

55. D. Assume, in the general hypotheses of theorem C, a’'=0, b’ =00, and assume,
instead of the assumption (VIL,5), that, putting g(x) : = f(x)/x,

3 ]—i—(—)-c—)dx.

(VIIL3)
X

1

9 See Cauchy [2].
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Then we can apply lemma 10 and obtain the formula

f [ w28 100 | di=m()igim (vin9)

v (1) (1) ~a ¥ (1)

If in particular f, ¢, ¥ are continuous in a, and ¢'(a)Ay’(a) exist with
¢’ (a) ¥’ (a)>0, the formula (VIIL,9) becomes

' (1) o' (1) ¢’ (a)
~fW()——< f(o(1) |di=f(a)lg = 19). (VIIL10)
J [t// () (1) V' (a)
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