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Eigenfunctions and Nodal Sets

SHIU-YUEN CHENG

§0. Introduction

The purpose of this paper is to study the nodal sets, i.e. zero sets of the eigen-
functions of the Laplacian operator on a Riemannian manifold. We first study it
locally. The result of Lipman Bers [2] concerning the local behaviour of solutions
of elliptic equations is our main tool. It tells us that the nodal set locally looks like the
nodal set of a spherical harmonic. Hence, we can prove in §2 that, except on a closed
set of lower dimension, the nodal set is a C* submanifold. This regularity result
enables us to prove in §1 the well-known Courant’s nodal domain theorem for high
dimensions.

Courant’s nodal domain theorem is the only known global theorem about nodal
sets. We use it in §3 to prove that there is a global restriction to multiplicities of eigen-
values. Specifically, we prove the following theorem: Suppose that M is a Riemann
surface of genus g, the multiplicity of the i-th eigenvalue is less than or equal to
(2g+i+1)(2g+i+2)/2.

The results in §3 show that when M is homeomorphic to S? the multiplicity of the
1-st eigenvalue is at most 3. This phenomenon of relatively low multiplicity makes it
feasible to study the geometry of the nodal lines of some special surfaces. We show
that: If M is homeomorphic to S? and is isometric to a surface of revolution then
we can find a basis for the space of 1-st eigenfunctions such that the nodal lines of
each eigenfunction in the basis is a line of constant geodesic curvature.

Part of the results in this paper has been announced in [4].

§1. Courant’s Nodal Domain Theorem
Suppose that (M, g) is an n-dimensional C* Riemannian manifold. The Lap-
lacian operator, denoted by 4, acting on functions is locally given by
1 0 ( \/- iy 0 )
2N g8 — |
\/ g 0x; 0x;
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where as usual g;; is the fundamental tensor, g' is its inverse, and g=det(g;;). We
shall consider two kinds of eigenvalue problems.

FIXED MEMBRANE PROBLEM. Suppose that D is a compact domain of M.
We shall study the following:

Ap+Aip=0, ¢=0 on 0D.

It is well-known that when 0D is reasonably regular, e.g. piecewise C', the fixed
membrane problem has discrete eigenvalues and we list them as 0<A; <A, <A<+,
Therefore, 4;(D) shall mean the i-th eigenvalue of the domain D w.r.t. the fixed mem-
brane problem. We shall also show the well-known fact that 1, <4,, i.e. 4, has simple
multiplicity. Also the term i-th eigenfunction is a function satisfying the fixed mem-
brane problem with A=4,(D).

FREE MEMBRANE PROBLEM. Suppose that M is a compact Riemannian
manifold without boundary. We shall study the following eigenvalue problem on
M: A+ py=0.

This problem also has discrete eigenvalues and clearly constant functions are eigen-
functions with u=0. We list the eigenfunctions of the free membrane problem as
0=po<py Spy < ps---. Therefore, p;(M) shall mean the i-th eigenvalue of the com-
pact manifold M w.r.t. the free membrane problem. The term i-th eigenfunction will
be used to mean a function on M satisfying the above differential equation with u=

=/1i(M)-

DEFINITION. Suppose that fis a solution of an elliptic equation on a manifold
M. f~1(0) is called the nodal set of f, when dim M =2 it is also called the nodal lines.
Every connected component of M\ f ~!(0) is called a nodal domain of f.

One should notice immediately that if f is an eigenfunction of the Laplacian
operator then f'is the 1-st eigenfunction of each of its nodal domains. This observation
suggests that we can reduce the problems about the i-th eigenvalues to problems
about the 1-st eigenvalue of the fixed membrane problem.

Courant’s nodal domain theorem. For the fixed membrane problem:
# of nodal domains of the i-th eigenvalue <i.
For the free membrane problem:
# of nodal domains of the i-th eigenvalue <i+1.
In [3], this theorem is stated and proved in the two dimensional case. Using re-

sults in §2 about the regularity of nodal sets, we can follow the same method to prove
this theorem.



Eigenfunctions and Nodal Sets 45

The proof goes as follows: Suppose that ¢, is the i-th eigenfunction of the domain
D, and D,,...,D;,,,... are all the nodal domains of ¢;. Define functions ¢/, 1</ <i,
on D as

¢i=¢; on D; and ¢i=0 outside D;.

We can find real numbers a,,..., a; not all zero such that ¢=Zj-=l ajqﬁ’;_L the space
generated by ¢,,..., ¢,_,. Then, we have

f(dqﬁ, do) jzil a’ f (do;, doy)
D . Dy
hos [o safe

D

However, ¢; is the i-th eigenfunction and it satisfies A¢;+ 4;(D) ¢;=0. The results
in §2 shows that except on a closed set of lower dimension the nodal sets of ¢, form a
C® manifold. Thus, we have

[ @ do)= [ -s00-20) [ 1

D;j
Consequently,
[ (6.0
4(D)="

[o

Then ¢ is C* and satisfies 4¢ + 4;(D) ¢ =0. However, the fact that ¢ =0 on an open
set of D implies ¢ =0, a contradiction. This completes the proof of the theorem for
fixed membrane problems. The proof for free membrane problem is the same.

Notice that we have ¢, 1 ¢, and ¥, Ly, where y, is a constant function. Hence
¢, and ¥, must change sign. This proves the following well-known proposition:

PROPOSITION 1.1. For the case of fixed membrane problems:
# of nodal domains of ¢,=2.

For the case of free membrane problems:
# of nodal domains of W, =2.
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§2. Local Behaviour of Nodal Sets

The nodal sets are a very ‘“‘unstable” object. Slight changes of the metric or the
domain would result in a violent change of the nodal sets, (see [6]). Therefore, the
global behavior of the nodal sets is a quite difficult subject. We shall use a theorem of
Lipman Bers [2] concerning the local behaviour of solutions of elliptic equations to
study the nodal sets.

THEOREM 2.1 (Lipman Bers [2]). Suppose that

L= T a2

y=0 i+ Fin=v 0xi...0x,"

is an elliptic equation with C* coefficient defined in a neighborhood of the origin.
If a solution ¢ (x), L =0, vanishes at the origin, but not of infinite order, then there
exists a homogeneous polynomial of degree N, py(x)#0 such that

0'¢ (x) _ 0'py (%)

i A i
0xy...0x," 0xY{...0x;

+0 (‘XIN—1+€)

for [=0,...,m,l=i,+---+1i, where ¢ is any number in the open interval (0, 1). Also,
pn (x) satisfies the “osculating equation™ with constant coefficients

0"py (x)
LOPN(x)= Z ai..i, (O) "T}‘V‘(‘T=O
W+ Fip=m axl...ax"”
When we are dealing with Laplacian operator on a manifold, we shall pull back
the equation to the tangent space and apply Theorem 2.1.

THEOREM 2.2. Suppose that M is an n-dimC® Riemannian manifold without
boundary (not necessarily compact). If fe C* (M ) satisfies (A +h(x)) f=0,he C* (M),
then except on a closed set of lower dimension (i.e. dim <n—1) the nodal set of f forms
an (n—1)-dim C* manifold.

Proof. Let xoe M, and f (x,)=0. It is clear that we can assume M is within a very
small neighborhood of x,. We use normal coordinates around x, and hence we can
assume we are working in a small open set of the origin in R". The equation
(4+h(x)) f=0 pulls back to a second order elliptic equation in a small neighborhood
of 0eR". By the results of N. Aronsajn [1], fcan vanish only up to finite order around
the origin. Hence we can apply Theorem 2.1. It tells us that

f(x)=pn(x)+0(1x|""*)

where py is a homogeneous polynomial of degree N and e€(0, 1).
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Also, py satisfies the osculating equation at the origin. Since we are using normal
coordinates, the osculating equation is the usual Laplace equation in Euclidean space,
i.e.,

0* 02
() o

Thus, py is a spherical harmonic of degree N.

If N =1, py(x) is a linear polynomial and this shows that df (0)#0, then the nodal
set around O is a very nice piece of C* manifold.

When N > 1, the situation is more complicated. We shall extend the method of
T. C. Kuo [5] in Lemma 2.4 to prove that f (x)=py(®(x)) where @ is a C' diffeo-
morphism between two small neighborhoods of 0eR"” and ¢ (0)=0. Thus, the nodal
set of faround the origin is C' diffeomorphic to the nodal set of a spherical harmonic
around the origin. However, there is not much information about nodal sets of
sphereical harmonics. The following simple observation will be useful.

LEMMA 2.3. Suppose that py is a spherical harmonic of degree N, N > 1. Then,
the nodal set of py around the origin has a singularity at 0.

Proof. Notice that if $"! is the sphere of radius 1 in R" then py|s.-: is an eigen-
function of S"~!. Since N > 1, py|sn-1 is not the 1-set eigenfunction. py|s.- must have
zeros on "~ ! and the homogeneity of py shows that if xeS"™! with py(x)=0 then
Py (tx)=0 for all £ >0. The only case where the nodal sets of py around the origin is a
smooth manifold is when the nodal set of py|s.-: lies on a great circle of "', Since
great circles are nodal sets of 1-st eigenfunctions on $"~! and N > I, the assertion of
the lemma is immediately seen to be true.

We now prove the theorem by induction on the dimension n.

If n=1, it is trivial.

Suppose that it is true for n—1.

We now prove it for n:

We shall show that the nodal set of f around the origin is C* difftomorphic to
the nodal set of a spherical harmonic py of degree N around the origin in R". How-
ever, the nodal set of py around the origin is equal to {tx:¢>0, py|s:-1(x)=0}.
Remember that pyls.-: is an eigenfunction on the (n—1)-dim sphere S”"~!. Our in-
ductive assumption then applies and shows that Theorem 2.2 is true for the nodal set
of py. Now recall that we have the relation f (x)= py(®(x)), where ® is a C' dif-
feomorphism keeping the origin fixed. Suppose that py'(0)\n=M, around the
origin, where 7 is a closed set of lower dimension and M, is an (n—1)-dim C” mani-
fold. Then f =1 (0)\ @~ ! (r)=® ' (M,). Thus &~ (M,) is a C' manifold. We now
want to show further that @1 (M,) is C®. Indeed, let ye®~'(M,). Then f(y)=0,
and ¢ (y)eM,. Apply our previous argument to a small neighborhood of y, we have
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f (x)~ py-(x), near y, where py. is a spherical harmonic of degree N’ in R". We claim
that N'=1. If this is true, then an open set of @' (M) around y is a piece of smooth
manifold. N'>1 would lead to a contradiction. Note that a small neighborhood of
@' (M,) around y is C' diffeomorphic to the nodal set of py. around the origin.
Lemma 2.3 shows that if N'> 1, py! (0) has a singularity at 0. The C' diffeomorphism
transfers this singularity to ® ' (M,) and hence results in a contradiction. This com-
pletes the proof of Theorem 2.2.
We now follow the method of T. C. Kuo [5] to prove the following lemma.

LEMMA 2.4. Suppose that f, p are smooth functions in R"
f(x)=p(x)+0(IxI"**),

0 5,
f(x)= P x)+0(|x|N‘1”), N=1, €€(0,1)
0X; 0X;
7 (0)=0 O0O<v<N-1
P — = v —
axi. oxn ¥

and

|grad p| > const|x|¥ 1.
Then, there exists a local C* diffeomorphism ® fixing the origin such that
fx)=p(@(x)).

Proof. We may suppose N > 1.
Set F(x, a)=(1—a) f (x)+ap(x), acR. Notice that

OF  OF OF
grad F (0, a)=( —,..., =—> —— | =0 forall a.
0x 0x, Oa
Define
.—2 _
X (x, a)= |grad F|™*(p(x)—f(x)) (grad F) when x#p
0 when x=0.

Outside (0, a), aeR, X(x, a) is a C® vector field. X (x, a) is C* at (0, a). Indeed,
(p(x)—f (x)) grad F|=0(|x|" ") |grad F|
Note that

lgrad F| >|(1—a) grad (f )+a grad (p)| — [(p— /)

>|(1—-a) grad (f— p)+grad (p)| = |(p— 1)
>const. |x|VN 1.
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So |grad F|?>>|grad F| const. |x|"™!. Thus, X(x, a)=(0|x|'**). This shows that
X(x,a)is a C! vector field.

Define v(x, a)=(0,...,0, 1)—X(x, a). v(x, a) is also C' and we can assert that
local solutions of v(x, a) exist and are unique and depend in a C' way on the initial
value and time.

Let ¢ (t; xo, ao) denote the solution with initial condition ¢ (0; xo, ao)= (X0, a).

Observe that, the dot product

(v(x, a), (0,...,0, 1))=1—|grad F| "2 (p(x)— f (x))?
>l_o(lx|2+25)
>0 when x is small.

So the a-component of any solution ¢ (7; x, 0) increases monotonically with ¢.

Hence ¢ (¢; x, 0) meets the hyperplane a=1, when x is small, at a unique point
®(x). The mapping x —» ®(x) is a C' local diffeomorphism. Moreover, as @ (¢; 0, 0)=
(0, t) we have @ (0)=0.

Now the dot product

(v(x, a), grad F)=((0, 0,..., 0, 1)— X (x, a), grad F)

=(p(x)—f(x))—(X(x, a), grad F)
=0.

This shows that F is constant along the trajectories of v(x, a). Hence
f(x)=F(x,0)=F(¢(¢; x,0)) forall ¢.

As (®(x), 1)=¢(t'; x, 0) for certain ¢’ we have
S(x)=F((@(x), 1))=p(®(x)).

This completes the proof of Lemma 2.4.
One readily sees that the topology of the nodal sets will be very complicated. In

order to say more, we assume the dimension of M is two. The nodal set is then a set of
lines. This becomes more manageable.

THEOREM 2.5. Suppose that M is a 2-dim manifold. Then, for any solution of
the equation (A+h(x)) f=0, he C® (M), the following are true:
1) The critical points on the nodal lines are isolated.
11) When the nodal lines meet, they form an equiangular system.
iii) The nodal lines consist of a number of C*-immersed one dimensional closed sub-
manifolds. Therefore, when M is compact, they are a number of C*-immersed circles.
(A C2-immersed circle means ®(S*), where ®:S' — M is a C* immersion).
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iv) When the nodal lines meet, the geodesic curvatures are zero there.

Proof. i) is obvious from Theorem 2.2.

ii) is clearly true when the nodal lines are free of critical points. Around a critical
point on the nodal lines, the nodal lines are C' diffeomorphic to the nodal lines of
a spherical harmonic in R2 The nodal lines of a spherical harmonic in R? are
quite simple. If py is a spherical harmonic in R?, then lesl is an eigenfunction. The
zeroes of pN|51 on S! are isolated and they divide S! into 2N arcs with equal length.
Remember that if py|s: (x)=0 then py (#x)=0 for all #>0. Thus, the nodal lines of
px consist of 2N straight lines passing through the origin. Moreover, the straight lines
from an equiangular system at the origin. Observe that straight lines passing through
the origin of the tangent plane map to geodesic lines under the exponential map. The
derivative of the exponential map at the origin is the identity map. These observations
show that ii) is valid.

To prove iii) and iv), we first recall that at a critical point x4 on the nodal lines, the
spherical harmonic describing the local behaviour of the eigenfunction around x, has
degree greater than or equal to 2. The error term is O(|x|"*%), ee(0, 1), N >2. So
the order of contact of the nodal lines around x, and an equiangular system of geo-
desics is equal to 2. This observation proves iv) immediately. iii) also follows imme-
diately because the nodal lines of a spherical harmonic in R? are a set of straight lines
through the origin.

§3. Global Restrictions to Eigenfunctions

We have studied the local behaviour of the nodal lines in §2. The nodal lines are
also subject to a global restriction, namely, Courant’s nodal domain theorem. If we
have many closed curves on a surface, we can disconnect the surface into many
components by deleting these curves.

We need the following topological lemma:

LEMMA 3.1. Suppose that M is a compact Riemann surface with genus g, and
¢;:S' > M 1<j<2g+k, k=1, is an injective piece-wise C' map such that ¢;(S*)n
N ¢;(S), i # j, consists of a finite number of points. Then, M\ ¢ (S*)U...U ¢4, (S*)
has at least k+ 1 connected components.

Proof. Tt suffices to prove that when k=1, M\ ¢, (S')U...U¢,,4,(S?) is not
connected. Note that

H(M;Z)=129-DL,

2g times

where Z is the ring of integers. Each ¢;:S' — M defines a cycle in M. Therefore, there

existsny, ..., Mz 4 Z N0t all zero such that the homology class represented by ¥ 264! n;¢;
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is zero. Observe that n;¢; can be represented by ¢ ;o §,,, where B, 1S 1 S1is defined by
B, (e®)=e"°. Thus, ¢;°B,,(S')=(S"). Since n;, 1 <j<2g+k, are not all zero, we
may assume that n, #0. We can assume there exists xo€ @, (S') such that ¢, is a C!
diffeomorphism in a neighborhood of ¢ ' (xo)and xo¢ ¢, (S*)U...U Py, 41 (S?). Let
a:(—1, 1)— M be an injective C' map such that

a((=1, 1)) (¢, (SI)U---U¢2g+1(Sl))={9‘(0)}={x0}

and the tangent vector of « at x, is perpendicular to the tangent vector of ¢, at x,.
Suppose M\ ¢, (S')U...Ud,,44(S!) is not disconnected. Since it is an open set, we
can find a C! curve B:[—1,1]> M\ ¢ (S")U...U 24 ((S') with f(—1)=a(—1%)
and B(1)=a(4). This implies that there exists an injective C' map ®:(—1,1)x S -
> M\ ¢, (S")U...Ud,,+1(S') and that & ((—1, 1)x S')n ¢, (S') is a small neigh-
borhood of ¢, (S') around x,.

Let f be a non-trivial non-negative function belonging to Cg’ ((—1, 1)) such
that [* f(¢) dt=1. Then f(¢) dt is a closed form in (—1,1)xS". Therefore,
(@ )*(f(t)dt)isa C' closed form of M. Now since the homology class repre-
sented by Y ;%" n;¢; is zero, we have

(@ s (% ) =0.

However,

2g+1

1
(®~Y)* £(1) dt)( z nquj) =n; f f(t)dt#£0,
i=1 -
a contradiction.
Thus, M\ ¢; (S')U...U ¢4+ (S") has more than one component.
Remark. We can relax the condition: ¢;(S')n¢;(S"),i#/, has only a finite
number of points. The condition can be replaced by

¢i(51)¢¢’1 (SI)U---U¢¢'—1 (SI)U¢i+1(SI)U---U¢2g+k(S1)-

DEFINITION. Suppose that y satisfies (4+h(x)) Yy =0, heC®(M). We say
that the order of vanishing of Y at x,e M is equal to N iff when we pull back ¥ to the
tangent space at x, via the exponential map there is a homogeneous polynomial py
of degree N such that i ~py near the origin.

THEOREM 3.2. Suppose that M is a compact Riemann surface of genus g, and s
is the i-th eigenfunction. Let xo€ M and s (x,)=0. Then, the order of vanishing of Y
at x, is less than or equal to 2g +1i.
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Proof. The proofis an immediate consequence of Lemma 3.1, the following lemma,
and the observation that an eigenfunction changes sign around any of its zeroes.

LEMMA 3.3. Suppose that M is a compact Riemann surface, and \ is an eigen-
function. Let xo€ M and the order of vanishing of \ at x, is k. Then, we can find ¢;:S' —
— M, 1<i <k, satisfying the assumption of Lemma 3.1 and ¢, (S')=y~'(0).

Proof. This follows from the observation that the set of nodal lines of a spherical
harmonic of order k in R? consist of k straight lines passing through the origin.

Theorem 3.2 shows that there is a topological restriction to the order of vanishing
of an eigenfunction. We then derive in the following theorem that there is a topological
restriction to multiplicities of eigenfunction.

THEOREM 3.4. Suppose that M is a compact Riemann surface of genus g, and
pi (M) is the i-th eigenvalue. Then, the multiplicity of u;(M) is less than or equal to
(2g+i+1) (2g+i+2)/2.

Proof. We first indicate the proof when g=0 and i = 1. Then the order of vanishing
on the nodal lines is less than or equal to 1. If the multiplicity of u, (M )=4, then we
have ¢,,..., ¢, linearly independent and 4¢;+ u, (M) ¢;=0, 1<i<4. We can find
a;, b;eR, 1<i<3, such that a?+b?#0 and (a;¢;41—bid;) (x0)=0,i=1,2,3. See
that a;¢;, , — b, are again linearly independent. Then consider d(a;¢;,, —b;d;) (xo)-
The dimension of the tangent space is equal to 2. Hence, we have C,,..., C5 not all
zero such that

;1 Cid (aipis1—bipy) (x0)=0.

Since we also have

3

'21 Ci(aiir1—bidy) (x0)=0,
the order of vanishing of this non-trivial 1-st eigenfunction at x, is greater than or
equal to 2. This contradicts the result of Theorem 3.2.

The general case goes the same by noting that on R? the dimension of the space of

constant coefficient partial differential operator of order less than or equal to k is

equal to Y %1

COROLLARY 3.5. Suppose that M is homeomorphic to S?, i.e., g=0. Then, the

nodal line of a 1-st eigenfunction is a C® simple closed curve and the multiplicity of
Uy (M) is less than or equal to 3.

Remarks. (i) The bound of the multiplicity u, (M) in Corollary 3.5 is sharp be-
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cause the coordinate function of spheres in R® with center at the origin are 1-st eigen-
functions. However, when g>0 we don’t know whether (2g+2) (2¢g+3)/2 is a sharp
bound for the multiplicity u, (M) or not.

(ii) The Almgren-Calabi theorem states that every minimal immersion of S? into
S? must lie on a great circle. Therefore, if we know that every minimal immersion of

S? into S* is by the 1-st eigenfunctions then we can obtain the Almgren-Calabi theo-
rem by Corollary 3.5.

§4. Geometry of Nodal Lines

One of the difficulties in studying the nodal sets is the presence of multiple eigen-
values. This is in some sense a singular case and non-generic. The results of K. Uhlen-
beck [6] show that generically all eigenvalues have simple multiplicity. We gave an
upper bound of the multiplicity of u;(M ), when M is a compact Riemann surface of

genus g. In general the multiplicities can be pretty big. We shall study the case when
g=0andi=1.

THEOREM 4.1. Suppose that M is homeomorphic to S*, and is isometric to a
surface of revolution in R>. Then, we can find a basis {y;} of the space of 1-st eigen-
functions such that the nodal line of each s, is a curve with constant geodesic curvature.

Proof. Corollary 3.5 shows that the multiplicity of u, (M )<3 and that the nodal
line of a 1-st eigenfunction is a C® simple closed curve. Let E, denote the linear space
of 1-st eigenfunction endowed with the usual L? inner product.

Note that S! acts on E, as a group of isometry and preserves the orientation.

When dimE; = 1, we have a non-trivial , € E; such that it is invariant under S".
The famous theorem of H. Hopf on vector fields shows that there are only two fixed
points under the action of S!. Then we can find a point x, which is not a fixed point
and that ¥, (x,)=0. Therefore, Y, also vanishes on the orbit of x, under S*. The
orbit of x, is a C*® simple closed curve. Thus, we must have ¥ ' (0) is equal to the
orbit of x,. Moreover, S' acts as isometry implies the orbit of x, has a constant
geodesic curvature.

Suppose that dim E; = 3. Results from linear algebra supply us with an orthonormal
basis {, ¥,, Y3} of E; such that , is invariant under S' and S rotates on the space
spanned by {y,, ¥/5}. Consequently ¥ ' (0) is a simple closed curve of constant geo-
desic curvature. Notice that once we prove the theorem for ¥ ' (0) and ¥3 ' (0), we
also settle that case when dim E; =2. This is seen from results in linear algebra that
we can find an orthonormal basis of E; such that S* acts as the usual rotation.

Now let us study ¥, ' (0) and 3 ' (0).

We claim that 5 ' (0) /5 (0)#0. This is a special case of the following lemma.
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LEMMA 4.2. Suppose that M is a compact Riemannian manifold, f and h are two
linearly independent eigenfunctions of the same eigenvalue . If either f = (0) or h=1(0)
is connected then f ~* (0)nh~1 (0)#0.

Proof. Suppose that £ ~1(0)nh~!(0)=0. Assume ~#~'(0) is connected.

Note that {x: f (x)>0} N {x: f (x)<0}=0. We can assume A" (0) = {x: f (x)>0}.
One immediately sees that one of the nodal domains of 4 is contained in {x: f (x)>0}.

Courant’s minimum principle immediately shows that u=4; of a nodal domain
of h>24, ({x:f(x)>0})=p.

This is a contradiction and the proof of the lemma is completed.

Now ¥/52(0)n 3 (0)#0. Let xoey3 ' (0)ny3 ' (0). Then, ¥, (xo)=y3(x0)=0.
Note that if e S!, then there exists real numbers a, b such that

¥, (@(x))=ay, (x)+by;(x) forall xeM.

This shows that ¥, (a(xo))=ay, (x¢)+ b3 (xo)=0. Since « is arbitrary, y, vanishes
on the orbit of x, and so does /5. This forces x, to be a fixed point of S'. We claim
thaty; ' (0)n 3 ' (0) has more than two points. This is proved in the following lemma.

LEMMA 4.3. Suppose that M is the same as Theorem 4.1, f and g are two linearly
independent 1-st eigenfunctions. Then f ~* (0)nh~1(0) has more than two points.

Proof. Lemma 4.2 shows that f "1 (0)nh™!(0)#0. We first observe that when
f7*(0) and A~ (0) meet at x, they must be transversal to each other at x,. Suppose
the contrary. If £ ~*(0) and A~ (0) are tangent to each other at x,, then there exist
a, b not all zero such that d(af + bh) (x,)=0. Recall that (af + bh) (x,)=0, x, is then
a critical point along the nodal line of the non-trivial eigenfunction af + bh, a contra-
diction. Now the lemma is a consequence of the Jordan curve theorem in R

Actually, y; ' (0) n /3 (0) has exactly two points. This follows from the observa-
tion that ¥ ' (0) 3 ' (0) is a fixed point set of S* acting on M.

Let {p,q}=¥;"(0)ny¥3"(0). The nodal lines of ¥, and ¥, are simple closed
curves passing through p and ¢. Note that any two points on an orbit of S have the
same distance to p and g. Gauss’s lemma implies immediately that the orthogonal
trajectories of orbits of S* are closed geodesic loops passing through p and q. f ~* (0)
and h~1(0) are also orthogonal to the orbits of S* because the existence of involutive
isometries fixing p and ¢ and the result of Lemma 4.3. This shows that ¢/, ' (0) and
3 1(0) are closed geodesic loops. Thus the proof of Theorem 4.1 is complete.
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