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The Cut Locus of Noncompact Finitely
Connected Surfaces Without Conjugate Points

by PATRICK EBERLEIN (University of North Carolina
Chapel Hill, North Carolina 27514, U.S.A.)

Introduction

In this paper we obtain a characterization and derive some implications of the
condition that a complete two dimensional Riemannian manifold without conjugate
points have finitely generated fundamental group. The characterization in terms of
fundamental domains is a classical result in the case of Gaussian curvature K= —1.
See for example [7] and [11].

Let M denote an arbitrary complete surface without conjugate points along any
geodesic, H the universal Riemannian covering of M and D the deckgroup of the
covering. Given a point p in H we define the canonical fundamental domain for D with
center p to be the set R,< H given by

R,= (M E" (p, ¢p)

deD
o*1

where E* (p, ¢pp)={qeH: d(p, q)<d(¢p, q)}. The set E(p, ¢p)={qeH: d(p, q)=
=d(¢p, q)} is a bounding side for R, if R, is a proper subsetof (\\  E*(p, yp).
D

Ye
v#ESY#1

THEOREM A. Let M= H|D be a complete nonsimply connected surface without
conjugate points. Then the following are equivalent.

1) ny (M) is finitely generated.

2) For some pe H the fundamental domain R, has only a finite number of bounding
sides.

3) For every pe H the fundamental domain R, has only a finite number of bounding
sides.

As a corollary we obtain

This research was supported in part by NSF Grant GP-43246.



24 PATRICK EBERLEIN

THEOREM B. Let M be a complete nonsimply connected surface without con-
jugate points. For each pe M let G,(p) be the set of points q in M for which there are
exactly two shortest geodesics from p to q. Then G,(p) is nonempty for each p, and each
connected component of G,(p) is an open differentiable arc. Moreover the following
statements are equivalent.

1) (M) is finitely generated.

2) For some pe M, G,(p) has a finite number of connected components.

3) For every pe M, G,(p) has a finite number of connected components.

I am grateful to the referee for pointing out that the attempt to generalize theorems
A and B to arbitrary dimensions fails in dimension 3 by theorem 1 of [8]. See also
page 410 of [12].

A further consequence of theorem A is

THEOREM C. Let M be a complete nonsimply connected surface without con-
jugate points and with finitely generated fundamental group. Then for each point p in M
there are at most a finite number of points q in M for which there exist three or more
shortest geodesics joining p to q.

We do not know if the converse to theorem C is true. We remark that there exists
at least one shortest geodesic joining any two distinct points p, ¢ of M since M is com-
plete. If g lies in the cutlocus of p, then there are at least two but at most a finite
number of shortest connecting geodesics since M has no conjugate points.

In each of the theorems A, B and C it suffices to consider the case that M= H/D is
noncompact. If M is compact then =, (M) is finitely generated and each fundamental
domain R,< H has only a finite number of bounding sides. A proof of the second
assertion is contained in the discussion in section two. The first assertion follows from
the second in view of the proof of the statement 2) —1) in theorem A.

The paper is organized as follows. Section 1 contains basic definitions and nota-
tion. For convenience we assume that all manifolds M and Riemannian metrics g
are C®. Section 2 contains the statements of basic properties of the fundamental
domains R,. The proofs of these statements form the hardest part of the paper and
because of their length are found in the appendix, section 4. In section 3 we prove
theorems A, B and C. Theorems B and C follow quickly from theorem A and the
facts from section two. The proof of theorem A is reminiscent of the method used by
Marden to prove theorem 2 of [11]. In fact, theorem A can also be derived from that
result in the orientable case. See the remark at the end of section 3.

§1. Preliminaries
In this section we establish notation and list some basic facts. M will always denote

a complete connected Riemannian manifold with Riemannian structure <{ , ),
Riemannian metric d( , ) and sectional curvature K. Let TM denote the tangent
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bundle of M and T,(M) the tangent space to M at p. If veTM is given let y,:R—>M
be the geodesic such that y,(0)=v. The map exp,:T,(M )— M given by exp,(v)=7,(1)
is the exponential map at p. In this paper all geodesics are assumed to have unit speed
and to be defined on the entire real line unless otherwise indicated. A geodesic segment
is a geodesic defined on a compact interval [a, b]. A geodesic ray is a geodesic defined
on [0, 0.

A manifold M is said to have no conjugate points if there exists no nontrivial
Jacobi vector field that vanishes twice on some geodesic y of M. If M is simply con-
nected, then there is a unique geodesic joining any two distinct points of M. In the
sequel H will denote a simply connected and M an arbitrary complete two dimensional
manifold without conjugate points. M can be written as a quotient surface H/D,
where H is the universal Riemannian cover of M and D is a freely acting, properly
discontinuous group of isometries of H. D will always denote such a group. Each non-
identity element of D has infinite order since Z, does not act properly discontinuously
on R" for any prime p and any integer n>1 [10].

DEFINITION 1.1. If p and g are distinct points of H, let y,, denote the unique
geodesic such that y, (0)=p and vy,,(a)=g, where a=d(p, q). Let V(p, q) denote the
unit vector y,,(0).

Since H~R? is two dimensional one may define the left and right half planes
determined by a geodesic y of H. Since H is orientable we may assign an orientation
to each tangent space T,(H ) that varies continuously with p. A basis {v,, v,} of T,(H)
is positively oriented if the orientation of T,(H) that it determines agrees with the
given orientation for 7,(H) and is negatively oriented otherwise. H—y consists of
two connected components for any maximal geodesic y of H. Each of these compo-

nents is convex in the sense that it contains the unique geodesic segment between any
two of its points.

DEFINITION 1.2. Let y be a maximal geodesic of H. A point p in H—y lies to
the right (left) of y if for some number ¢ the pair of unit vectors {V(yt, p), y'(¢)} is
positively (negatively) oriented relative to the fixed orientation of H. The points lying
to the right (left) of y constitute the right (left) half plane determined by 7.

Note that the orientation of the pairs {V(yt, p), y'(¢)} is continuous in ¢ hence
constant.

DEFINITION 1.3. An end of a Hausdorff space X is a function ¢ that assigns
toeach compact subset K’ of X a connected component ¢(K") of X — K’ with the further
requirement that ¢(K')2¢(L) if K' < L. A subset U of X is a neighborhood of an end ¢
if U contains e(K") for some K'. A sequence of points p, converges to an end ¢ if each
neighborhood of ¢ contains p,, for sufficiently large ».
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In a noncompact Hausdorff space X a divergent curve y:[0, c0)— X determines an
end ¢ of X; for each compact subset K of M define ¢(K) to be the connected component
of X— K that contains a terminal segment of y. A curve 7 is divergent if for any com-
pact set C< X there exists a number T=T(C)>0 such that yte X—C for t>T.

If M is a noncompact surface with finitely generated fundamental group, then it
is known [1], [9] that M is homeomorphic to a compact surface with a finite number
of points removed. Each end of M corresponds to one of these missing points and
has a neighborhood U homeomorphic to a punctured disk or equivalently a half
cylinder S* x(0, o).

§2. Fundamental Domains

In this section we define for every point p in H and for every freely acting, properly
discontinuous group D of isometries of H, a canonical fundamental domain for D with
center p. We derive basic properties of fundamental domains that are well known if H
is the hyperbolic plane but which require more discussion in this general case. We also
relate the fundamental domain with center p to the cut locus of #(p) in the quotient
surface M=H/D.

DEFINITION 2.1. Let D be a freely acting, properly discontinuous group of iso-
metries of H. For any point p in H the canonical fundamental domain for D with center
p, denoted R,, ={gqeH:d(p, q)<d(¢p, q) for all ¢ in D}.

It is easy to see that the interior of R,, denoted Int(R,), ={geR,:d(p, 9)<d(¢p, q)
for every ¢ #1 in D}. Also dR,, the boundary of R,, ={geR,:d(p, q)=d(¢p, q) for
some ¢ # 1 in D}. Hence 0R, is contained in the union of the equidistant sets E(p, ¢p),
¢peD, where E(p, pp)={qeH: d(p, q)=d(¢p, q)}. Now, for each ¢ in D and each
point p in H define E* (p, ¢p) to be {qgeH: d(p, q)<d(¢p, q)}. By definition then

R,= (N E"(p, ¢p).

deD

o#1
We remark that R, is starshaped relative to p; that is if ge R, then the geodesic seg-
ment y,, is contained in R,. This assertion follows from the fact that for each ¢ €D the
function r—d(p, r)—d(¢p, r) is nondecreasing on geodesics starting at p, which im-
plies that each set E* (p, ¢p) is starshaped relative to p.

DEFINITION 2.2. We say that an equidistant set E(p, ¢p) is a bounding side for
R, if R, is a proper subset of

N E*(p,¥p)

Y*é
veD, y#1
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The definitions and discussion so far apply to a manifold H of arbitrary dimension.
The next definition is motivated by the fact that in dimension two the sets E(p, ¢p) are
differentiable curves in H that meet transversally if at all.

DEFINITION 2.3. A point g in R, is a vertex of R, if it lies on the intersection of
two distinct bounding sides of R,,.

The proper discontinuity of D implies that only finitely many of the sets E(p, ¢p),
¢eD, meet any given compact subset of H. Since two distinct sets E(p, ¢p) and
E(p, Yp) intersect in at most one point by Proposition 2.8 below, it follows that only
finitely many vertices of R, lie in any given compact subset of H.

We next briefly describe the cut locus at a point p of an arbitrary complete Rieman-
nian manifold M. If M has no conjugate points, then we relate the cut locus at p
to the canonical fundamental domain for D with center j in H, where M= H/D and
np=p, n: H->M.

Let M be a complete Riemannian manifold of arbitrary dimension, and let p be a
point of M. If S(p) denotes the sphere of unit vectors in 7,(M) let f:S(p)— [0, oo]
be given by f(v)=sup {r=>0: d(p, exp,(tv))=t}. The function f is known to be con-
tinuous on the extended real numbers, and hence it has a positive lower bound on
S(p) [3].

The cut locus at p, denoted C(p), is defined to be {exp,(f(v)-v): veS(p)=T,(M)}.
The cut locus at p is a closed subset of M, and f(v) measures the distance from p to
C(p) in the direction v.

DEFINITION 2.3'. A point geC(p) is a vertex of C(p) if there are at least three
distinct shortest geodesics from p to .

We shall show later in corollary 2.15 that a point geR, is a vertex of R, if and
only if g=ngeC(np) and q is a vertex of C(np). If ge C(p), then it is known [3] that
either there are at least two distinct shortest geodesics from p to g, or ¢ is conjugate
to p along some shortest geodesic segment from p to g. If M has no conjugate points,
then the second case does not occur, and furthermore there are only finitely many
shortest geodesics from p to gq. If M=H|D, where H is the universal Riemannian
cover of M and D the deckgroup of M, then it is straightforward to verify the following
assertions.

1) For any point p in H, a point ¢ lies in the interior of R, if and only if there is a
unique shortest geodesic in M from np to ngq.

2) n:H— M maps the interior of R, onto its image in a one-one fashion.

3) n:H— M maps R, onto M and maps R, onto C(p).

4) If geR, is a vertex of R, then nq lies in C(np), and nq is a vertex of C(np).

For a more refined study of the cut locus of a compact surface with curvature
K<0 see [2].



28 PATRICK EBERLEIN

We return to a study of the fundamental domain R, especially its boundary. To
do this we will need to establish certain properties of the equidistant sets E(p, q)=
={reH:d(p,r)=d(q, r)} for any pair of distinct points p and ¢ in H. The set
E(p, q) is a geodesic if H is the hyperbolic plane. In the general case E(p, q) is no
longer a geodesic but retains some properties of a geodesic. First, E(p, q) is a C* one
dimensional submanifold of H since it is the zero level set of the function g(r)=
=d(p, r)—d(q, r), whichis C* on H— {puUq}. Note that the gradient of g is nonzero
at any point r in E(p, q) since the gradients of r—d(p,r) and r—d(q, r) point
radially outward from p and g respectively if r #p and r #q. Precisely, these gradients
are —V(r,p) and —V(r, q).

In the remainder of this section we omit the proofs of the results to make reading
easier. The proofs may be found in section 4, the appendix.

We first define the canonical parametrization of E(p, q). Actually there are two
such parametrizations; if a is one then a*: ¢t — a(—t) is the other. This parametrization
has also been used in [6].

PROPOSITION 2.4. Let p and q be distinct points in H. Then there exists a con-
tinuous, one-one map o:R— H such that a(R)=E(p, q), «(0) is the midpoint of the
segment y,, and d(p, at)=|t|+1,/2 for every teR, where ty=d(p, q).

PROPOSITION 2.5. The canonical parametrization a of an equidistant set E(p, q)
is C* at every number t #0.

We now describe some of the properties of geodesics of H that are retained by the
equidistant sets E(p, q).

PROPOSITION 2.6. Let p and q be distinct points in H. Then H— E(p, q) consists
of two connected components. The components containing p and q are starshaped relative
to p and q respectively. Any maximal geodesic containing p or q meets E(p, q) at most
once.

PROPOSITION 2.7. Let p and q be distinct points in H and let o be the canonical
parametrization of E(p, q). Then lim,_, ,V(p, at) and lim,_, _ ,V(p, at) exist and are
distinct. If y, and y, are the geodesics whose initial velocities are these limits, then the
maximal geodesics y; and vy, do not intersect E(p, q). The same assertions hold if p is
replaced by q.

PROPOSITION 2.8. Let p, q and r be distinct points in H. Then E(p, )" E(q, r)
contains at most one point.

The results above prepare one to study the properties of the bounding sides of a
fundamental domain R, in H with center p, relative to a freely acting, properly dis-
continuous group D of isometries of H.
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PROPOSITION 2.9. The boundary of a fundamental domain R, for D with center
p is contained in the union of the bounding sides.

COROLLARY 2.10. R, is the intersection of those sets E™(p, ¢p) such that
E(p, ¢p) is a bounding side for R,.

PROPOSITION 2.11. Let E(p, ¢p) be a bounding side of R,. Then E(p, ¢p)N R,
is nonempty and consists of a subarc, finite or infinite, of the arc E(p, ¢p). If q is an
interior point of E(p, ¢p)\ R, then q is not a vertex of R,. If E(p, ¢p)n R, is non-
empty for some ¢ #1 such that E(p, ¢p) is not a bounding side, then E(p, pp)n R, is
a single point.

The next result shows that the bounding sides of a canonical fundamental domain
may be identified in pairs.

PROPOSITION 2.12. Let E(p, ¢p) be a bounding side for R,. Then R, E(p, ¢~ 'p)
=¢" " {R,nE(p, ¢p)}. In particular E(p, ¢ 'p) is also a bounding side for R,
The next results characterize the vertices of R,.

PROPOSITION 2.13. If qedR,, is a vertex of R,, then q lies on the intersection of
exactly two bounding sides of R,

PROPOSITION 2.14. A point ge R, is a vertex of R, if q lies in the intersection of
any two distinct equidistant sets E(p, ¢p) and E(p, Yp) that are not necessarily bounding
sides of R,.

COROLLARY 2.15. Let gedR, be a point such that n(q) is a vertex of C(np), the
cut locus at n(p) in M=H|D. Then q is a vertex of R,.

These last results show that there exists an element ¢ 1 in D such that E(p, ¢p) " R,
is a single point g if and only if for some point ¢ in R, there are at least four distinct
shortest geodesics from n(p) to n(q) in M= H/D. If there exist at least four shortest
geodesics from 7(p) to n(q) in M, then there exist at least three distinct, nonidentity
elements ¢,, ¢, and ¢, in D such that ge E(p, ¢;p) for i=1, 2, 3. One of these equi-
distants sets cannot be a bounding side of R, by proposition 2.13, and therefore it
intersects the set R, in exactly the point g. Conversely if E(p, ¢p) N R, is a single point
q for some ¢#1 in D, then gedR, and ¢ lies in some bounding side E(p, yp) by
proposition 2.9. By proposition 2.14 g is a vertex of R, and since E(p, ¢p) is not a
bounding side of R, there exists by proposition 2.13 a third element {#1 in D such
that E(p, £p) is a bounding side and ge E(p, &p). Therefore there are at least four
shortest geodesics from 7p to ng in M =H/D. For a discussion of this possibility in
the case that M is compact with curvature K= — | see [2].
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§ 3. The Main Results

In this section we prove the theorems A, B, and C stated in the introduction. For
the proof of theorem A we shall need the following result in which we make no as-
sumption about conjugate points.

LEMMA. Let M be a complete, noncompact Riemannian manifold of dimension
two. Let U be an unbounded open set in M that is homeomorphic to S* x (0, 00), and let
peM — U be given. Let p, be a divergent sequence of points contained in U for large n for
which there exist distinct shortest geodesics y, and o, joining p to p,. Then infinitely
many of the loops at p given by a,=a, 'y, are homotopic.

Proof. Passing to a subsequence we may assume that p,e U for all n and there
exist geodesics y and o (possibly equal) such that y,(0)—7'(0) and ¢,(0)—a’(0) as
n—oo. The geodesics y and o start at p and are distance minimizing on [0, c0).
Denote 0U=S" x {0} by C. We may assume that C is parametrized as a nonsingular
C* curve; merely replace U by S* x (1, o) and replace S x {1} by a nonsingular C*
curve from the same homotopy class that lies in S* x (0, 00). Since C is compact we
may define ¢,>0=sup {t>0:yte C} and s, >0=sup {>0:01e C}. By further altering
C if necessary we may assume that y and o meet C transversally at ¢, and s, respectively.
Letting c,=d(p, p,) we define t,=sup{0<t<c,:y,t€C} and s,=sup{0<r<c,:
o,teC}. Since y and ¢ meet C transversally it follows that 7,—t, and s,—s, as
n—o0. Moreover y,te U for t,<t<c, and o,te U for s,<t<c, since p,e U. Note that
¢,— + oo since p, is a divergent sequence. Finally, yte U for t>¢, and ate U for
t>5,.

Parametrize C on [0, 2] and let a,, b, be those numbers in [0, 27] such that
a(2,)=C(a,) and o,(s,)=C(b,). The points y,(z,) and a,(s,) are distinct for large n
since y, and o, are minimizing on [0, ¢,]. By passing to a subsequence and relabeling
if necessary we may assume that a, <b, for every n. Let C, denote the restriction of C
to [a,, b,]. Let y», 7, denote the restrictions of y, to [0, ¢,] and [#,, c,] respectively.
Let o, 6, denote the restrictions of o, to [0, s,] and [s,, c,]. Let y* and o* denote
the restrictions of y and ¢ to [0, t,] and [0, so]. We may write the loop a,=a, ',
as a product of two loops at p, a,=[(d); ~* B,a)] 4,, where A4,¥=(c)"* C,y¥ and
B,=(6,)"'(#,) C, '. The curve B, is a simple closed curve since 7, and o, intersect C
only at ¢, and s, by the definition of these numbers and intersect each other only at
P.=7x(c,)=0,(c,) since y, and o, are minimizing on [0, c,]. Since B, lies in U, a
closed half cylinder, and is a simple closed curve an application of the Jordan curve
theorem shows that B, is homotopic either to a point or to the curve C ™!, which
wraps around the cylinder exactly once. Passing to a subsequence the loops (o))
B,o are homotopic either to a point for all n or to the loop (¢*)™* C ~1o* for all n.
For large n the loop 4, is homotopic to the loop (6*)™* C*y*, where C* is a point if
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y=0 and is the restriction of C to [a, b] if y# 0, where C(a)=7(¢,) and C(b)=0(s,).
Therefore the loops «, are homotopic to each other for large n.

We now begin the proof of theorem A. The assertion 3)—2) is obvious. We show
that 2)—1). Let S={¢eD:¢(R,)n R, is nonempty}, where R, is a fixed fundamental
domain in H with a finite number of bounding sides. We assert that S is a finite set,
and assuming that this has been proved we apply theorem 29.4 (i) of [4, p. 184] to
conclude that S is a generating set for D.

Suppose that S is an infinite set. By removing a finite number of elements from .S
we may assume that for each ¢ €S, E(p, ¢p) is not a bounding side of R,. By proposi-
tion2.11 ¢(R,) " R,=R,n E(p, ¢p)is a single point ¢ for p€S. Since ge IR, it follows
that g lies in some bounding side of R, by proposition 2.9. Hence g must be a vertex of
R, by proposition 2.14. The proper discontinuity of D implies that only finitely many
¢S determine the same vertex ¢(R,)nR,, and therefore R, has infinitely many
vertices. However, R, has only finitely many vertices since any two distinct bounding
sides intersect at most once by proposition 2.8. This contradiction shows that S is a
finite set and completes the proof. One may also show that if ¢, ..., @, are those ele-
ments of D such that E(p, ¢,p), 1 <i<k, are the bounding sides of R,, then the ele-
ments ¢,..., ¢, are a set of generators for D.

We now prove that 1)—3). Let jeH be given and suppose R; has an infinite
number of bounding sides E(f, ¢,p), n=1, 2,.... Choose a point p,e E(p, ¢,5) N R;,
which is possible by proposition 2.11, and let p,=n(p,). By the choice of j, the geo-
desic segments G,=N°Ys 5 5, and y,=moyz; are distinct shortest geodesics in M
from p=np to p,. By elementary covering space facts no two loops «,=a, 'y, and
%, =0,, "7, are homotopic if m#n since ¢, # @,,. If we pass to a subsequence the points
Pn converge to some end A of M since the sequence p, is divergent. Since 7, (M) is
finitely generated it is known that M is homeomorphic to a compact surface with a
finite number of points removed. For a surface of this type each end 4 has a neigh-
borhood U homeomorphic to a punctured disk or equivalently to S*x (0, o).
Applying the lemma above we obtain a contradiction.

We now prove theorem B. Let pe M be given, and let fen " (p), n: H—>M, be
arbitrarily chosen. By definition G,(p) equals the cut locus of p, C(p), minus the
vertices of C(p). By the discussion following definition 2.3’, G,(p) is the image under n
of the boundary of R; minus the vertices of R;. By proposition 2.9 and 2.11 the set
OR; minus vertices of R; is the union of the interiors of the differentiable arcs
E(p, ¢p)n R,, where E(p, $p) is a bounding side of R,. To show that G,(p) is a
disjoint union of open differentiable arcs it suffices to show that if E(f, ) R, and
E(p, ¥P)N R, are distinct boundings arcs of R, then the images under n of their
interiors are either disjoint or identical. Suppose that these images intersect for some
@, YeD. Then there exists a point § in the interior of E(p, ¢f)n R; and an element
¢#1 in D such that &4 lies in the interior of E(f, ¥5) Rj;. Define geodesics segments
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M=o Vyp, g =T0Vp,p-1p V2=TVsg Y3=RoV5, AN Y4=ToYy; 3=M0V54-15- BY
the choice of ¢, Y and £ it follows that these are all shortest geodesics in M from p to
g=m(§). The point § is not a vertex of R; since it lies in the interior of E(, ¢)n Ry,
and therefore g is not a vertex of C(p). It follows that at most two of the geodesics
Y1 Y2, V3> Y4 are distinct. By inspection y,#7v; and y,#7y,. Hence y;=7,, which
implies that {=¢ . Similarly y, #y; and since y,#7; it follows that y,=7y,, im-
plying that Y ~'¢=1. Therefore y=¢ ' and E(p, yp)nRz=¢ ' {E(P, dP) N R;}
by proposition 2.12. Therefore the images under n of the interiors of E(p, ¢p)nR;
and E(p, Yyp)n R; are identical.

Suppose now that M is a complete surface without conjugate points and that
n, (M) is finitely generated. Let pe M be given, and let pe H, pen™'(p), be chosen
arbitrarily. By theorem A R; has a finite number of bounding sides, and by the dis-
cussion above it follows that G,(p) has a finite number of connected components.
Thus 1)—3) in theorem B. Clearly 3)—2). The discussion above also shows that
each connected component of G,(p) is the image under n of exactly two bounding
arcs of R;. If G,(p) has a finite number k of connected components for some pe M,
then R, has 2k bounding sides for any pen™'(p). By theorem A m,(M) is finitely
generated and we have proved that 2)—1).

We now prove theorem C. Let M be a complete surface without conjugate points
and with finitely generated fundamental group, and let pe M be given. If ge M is a
point for which there are at least 3 shortest geodesics from p to g, then by definition g
lies in the cut locus, C(p), of p and is a vertex of C(p). Let pen™'(p) be arbitrary.
By corollary 2.15 and the discussion in section 2, g=n(g), where § is a vertex of Rj.
By theorem A R; has only a finite number of bounding sides. It follows that R; has
at most a finite number of vertices since a vertex lies in the intersection of two bound-
ing sides, which must be a single point by proposition 2.8. Therefore C(p) has a finite
number of vertices, which completes the proof of theorem C.

We do not know if the converse to theorem C is true although we suspect that it is.
In principe it might be possible to have a deckgroup D of isometrics of H for which
each fundamental domain R, has an infinite number of bounding sides, only finitely
many of which intersect. The quotient surface H/D would then have an infinitely
generated fundamental group, but each cut locus C(p) would have only a finite
number of vertices.

Remark. Theorem A can be derived from theorem 2 of Marden [11] in the case
that M is a noncompact, nonsimply connected orientable surface. Since M is orient-
able it has the structure of a Riemann surface, and M is therefore diffeomorphic to a
quotient 4/G, where A4 is the open unit disk in the complex plane and G is a freely
acting, properly discontinuous group of fractional linear transformations preserving
A. If g is a metric without conjugate points in M, then the covering map n:4—-M
induces a metric n*g without conjugate points in 4, and the elements of G are iso-
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metries of the metric n * g. The results of section 2 of this paper show that the canonical
fundamental domains in 4 determined by G are fundamental regions in the sense of
Marden. Therefore if G=~n,(M)is finitely generated, then each canonical fundamental
domain has finitely many bounding sides by Marden’s theorem 2. This shows that 1)
implies 3) in theorem A and the other assertions follow as above.

§4. Appendix

In this section we give the proofs of the results stated in section 2.
Proof of proposition 2.4. We shall need

LEMMA 2.4. Let p and q be distinct points of H, and let ty=d(p, q). Then there
exists a unique point z in E(p, q) such that d(p, z)=d(q, z)=t,/2, and moreover,
d(y, p)=d(z, p) for any yeE(p, q). If t*>1,/2 is any number, then there are exactly
two points z,, z, in E(p, q) such that d(p, z;)=d(p, z,)=t*.

Proof. Let y be the maximal geodesic y,,. If z is the midpoint of the geodesic seg-
ment y,, between p and ¢, then d(p, z)=d(q, z)=1t,/2. The uniqueness of z and the
fact that d(y, p)>d(z, p) for every ye E(p, q) follow immediately from the triangle
inequality. Let H be given a fixed orientation. Given t*>1,/2, let :[0, A] > H be a
unit speed parametrization of the circle of center p and radius ¢* such that $(0) and
B(A4*), 0<A*< A, are the two points of this circle that lie on y and B:(0, A*)—> H
parametrizes the semicircle lying to the left of y. Let J(¢)=d(q, ft). Since B(¢)+#q for
0<t<A* it follows from lemma 2.3 of [5] that J'(¢)=—{B'(¢), V(Bt, q)>. Since
B'(¢) is orthogonal to the vector V(Bt, p) for every ¢ and since V (B¢, p) and V(Bt, q)
are not collinear for 0<#< A* it follows that J'(¢) #0 in this interval. Since J(0)=
to+1t* and J(A*)=|t,—t*| <t* by a suitable choice of f, it follows that there exists a
unique number s with 0 <s< A4* such that d(p, fs)=d(q, fs)=t*. Similarly there is a
unique number s’ with A*<s’ <A such that d(p, Bs)=d(q, ps')=t*. The points Bs
and Bs’ are on opposite sides of y.

We now complete the proof of proposition 2.4. Given distinct points p and g in H,
let o(0) be the midpoint of the segment y,,. Let >0 be given. Relative to a fixed
orientation of H, let «(¢) be the unique point to the right of y,, such that a(¢) lies in
E(p, q)and d(p, at) =t +1t,/2, where t,=d(p, q). Let «(—t) denote the unique point in
E(p, q) such that a(—1) lies to the left of Vpq and d(p, a(—1))=t+1o/2. This defines a
map a:R — E(p, ¢q) which is a homeomorphism. The proof is complete.

Proof of proposition 2.5. The set E(p, q) is a C* one dimensional manifold since
it is the zero level set of the function r — d(p, r)—d(g, r), which is C* on H—{puq}
and whose gradient is never zero on E(p, ¢). Given a number >0 let f:(—¢, &) >
= E(p, q) be a nonsingular C® map such that §(0)=a«(¢). The C*® function ¢ (u)=
=d(p, Bu)=d(q, Bu) is nonsingular at »=0. If this were not the case, then the vectors
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¥ (B0, p) and ¥V (B0, q) would both be perpendicular to f’(0), which would imply that
p, B0 and q are collinear, contradicting the fact that f(0)=w(t), t>0. If h(s) is the
inverse function of ¢, then A is a C* diffeomorphism of some neighborhood J of
t+1,/2 onto some neighborhood I of 0, I=(—¢, ¢). It follows that d(p, B(hs))=s for
all s in J, and therefore a(s—1,/2)=f(h(s)) for all s in J. Hence o is C* at every num-
ber >0.

Proof of proposition 2.6. Let g: H—R be given by g(r)=d(p,r)—d(q,r). It is
clear that E(p, g)=g ' (0) and that the two components of H— E(p, q) are the sets
A;={r:g(r)>0} and 4, = {r:g(r)<0}. The set A, is starshaped relative to g since g
is nonincreasing on every geodesic starting at g, and A, is starshaped relative to p
since g is nondecreasing on every geodesic starting at p.

Suppose now that y is a unit speed geodesic with y(0)=p such that y meets E(p, q)
twice at times s#0, £#0. There are two cases: 1) gey and 2) g¢v. In the first case
Y="7,, Now d(p, yt)—d(q, yt) vanishes for only one value of ¢ since p, g and y(z) are
always collinear. Suppose now that g¢y. Then g, ys and yt are not collinear. If s and ¢
both have the same sign with |¢|>|s|, then d(p, yt)=d(q, yt)<d(q, ys)+d(ys, yt)=
=d(p, ys)+d(ys, yt)=d(p, yt), a contradiction. Suppose that s and ¢ have opposite
signs. Then d(ys, yt)<d(ys, q)+d(q, yt)=d(ys, p)+d(p, yt)=d(ys, yt), another con-
tradiction. Similarly no geodesic containing ¢ can meet E(p, q) twice.

Proof of proposition 2.7. We prove the assertions only for the point p. The curve
f(t)=V(p, at) is a continuous map of R into S*, the unit vectors in T,(H). Since any
maximal geodesic through p meets E(p, q) at most once it follows that f is one-one
and f(R) contains no pair of antipodal points. Therefore f(R) is an open arc in S* with
distinct endpoints v, =lim, , V(p, at) and v,=lim,,, V(p, at). Suppose now that
the maximal geodesic y, intersects E(p, q) at y,(s)=a(¢) for some numbers s and ¢.
If s>0 then v;=77(0)=V(p, at) is an interior point of f(R), which is impossible.
If s<O0 then —v,=V(p, at) is an interior point of f(R), which implies that f(R) con-
tains a pair of antipodal points near {v;, —v,}, a contradiction. Therefore y, does
not meet E(p, q). Similarly y, does not meet E(p, q).

Proof of proposition 2.8. We shall need some preliminary results.

LEMMA 2.8a. Letp, q, r be distinct points in H. Let h: H— R be the function given
by a—d(r, a)—d(q, a), and let o be the canonical parametrization of E(p, q). Then
hoo has at most one relative maximum or minimum point. If hoa has a
relative maximum or minimum point at t,€R then either

1) r=a(ty)

2) ré¢a; p, r and o(ty) are collinear with p and r on the same side of o or

3) réa; q, r and a(ty) are collinear with q and r on the same side of a.

Proof. If r lies in a, say r=o/(t*), then the triangle inequality implies that oo has
a strict global minimum at #*. Assuming that the latter part of the lemma has been
proved it follows that in this case Ao« has no relative maximum or minimum at ¢, #¢*.
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Suppose now that 4o« has a relative maximum or minimum at ¢, and that r #a(t,).
Then A is C* in a neighborhood of a(z,). If £,=0 then « is not C* at ¢,, but in any
case we can find a C* diffeomorphism o:(—¢, ¢) > E(p, q) such that o(0)=a(?,) since
E(p, q) is a C* submanifold. Therefore 0=(ho0) (0)= {0’ (0), grad h(aty)) since hoa
has a relative maximum or minimum at ¢,. Define g: H - R by g(a)=d(p, a)—d(q, a).
Since E(p, q)=g7'(0), gca=0 and thus 0=(go0) (0)=<0’(0), gradg(aty)>. Since
o’ (0) is nonzero it follows that either

i) (gradg) (at0)=0,
ii) (gradh) (aty)=0, or

iii) (gradg) (ate) and (grad ) (at,) are both nonzero and collinear.

If a#p and a#g4, then (gradg) (a) exists and equals — V(q, p)+ V(a, q). In particular
gradg is nonzero at all points of E(p, ¢q) so case i) does not occur. If a#r and a+#gq,
then (gradh) (a) exists and equals — V(a, r)+ V(a, q). The point «(t,) is neither p nor
g, nor r by assumption so that both gradg and grad 4 exist at a(z,). If (grad /) (aty)=0
as in case ii), then V(aty, r)=V(aty, q), which implies that g, r and «(¢,) are collinear.
Moreover r does not lie on « since no geodesic through ¢ intersects E(p, q) twice.
Hence g and r lie on the same side of «. Finally suppose that (gradg) («f,) and (grad /)
(aty) are both nonzero and collinear. If the unit vectors V(aty, r), V(ate, p) and
V(aty, q) are all distinct, then it is easy to see from the expressions above that (gradg)
(«ty) and (grad &) (at,) are not collinear, a contradiction. Hence V(at,, r)=V(aty, p)
(implying that gradh= gradg at a(t,)). Thus p, r and a(t,) are collinear with p and r
lying on the same side of a. The point r cannot lie on « since no geodesic from p meets
E(p, q) twice. This property of geodesics through p or g now implies that Ao« has at
most one relative maximum or minimum upon inspection of the possibilities 1), 2), 3)
of the lemma.

LEMMA 2.8b. Let p, q, r, h and o be as in the previous lemma. Then one of the
following must occur:

1) hoa has a unique global minimum at some number t,, and ho o is strictly monotone
on (— o0, ty) and (t,, )

2) how has a unique global maximum at some number t,, and hoa is strictly monotone
on (— oo, t,) and (ty, )

3) how is strictly monotone on R.

Moreover,

1) occurs if r=a(ty) or if q, r, a(t,) are collinear with q and r on the same side of o,
and r between q and a(t,) or if p, r, a(t,) are collinear with p and r on the same side of
%, and r between p and a(t,),

2) occurs if q, r, a(t,) are collinear with q and r on the same side of «, and q between

rand a(ty) or if p, r, a(t,) are collinear with p and r on the same side of «, and p between
r and a(t,),
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3) occurs if r and q lie on the same side of o and v, does not meet o or if r and p lie
on the same side of o and y,, does not meet «

Proof. If hoa has no relative maximum or minimum on R, then it is one-one and
hence strictly monotone on R. If 4o« has a relative maximum or minimum at a number
to, then by the previous lemma it is one-one hence strictly monotone on the intervals
(— o0, ty) and (ty, o0). Therefore ¢, is a global maximum or minimum.

We now consider the various cases in which these possibilities occur. We have
already observed that 1) occurs if r=a(t,) for some ¢,. Suppose now that r does not
lie on a. If g and r lie on the same side of a and y,, does not meet «, then Ao« has no
relative maximum or minimum by the previous lemma and hence case 3) occurs.
Suppose now that g and r lie on the same side of « and y,, meets a at «(7,) (only one
intersection is possible). If r lies between g and «(#,), then for any seR (hoa) (s)—(hoa)
(to)=d(r, as)—d(q, as)—d(r, aty)+d(q, aty)=d(r, as)—d(q, as)+d(q, r)=>0. Hence
case 1) occurs. If g lies between r and a(t,), then (hoo) (s)—(hoa) (to)=d(r, as)—
—d(q, as)—d(g, r)<0. Hence case 2) occurs. The various cases where p and r lie on
the same side of « are handled in a similar fashion. Note that d(g, as)=d(p, as)foralls.

We begin the proof of proposition 2.8. We show first that E(p, ¢)n E(q, r) con-
tains at most two points. This is equivalent to showing that 40« is zero at most twice.
If hoo had at least three zeros, however, then it would have at least two relative maxima
or minima, which is impossible by lemma 2.8a.

Let f denote the canonical parametrization of E(r, g). Suppose that E(p, g)n
N E(r, q) contains two points a(ty)=B(%,) and a(¢,)=f(1,). By replacing « if necessary
by the other canonical parametrization of E(p, q), t > a(—1t), we may assume that
to<t, and T, <¥;. Nowlet S* denote the unit vectors in 7, (H). Define continuous curves
v1:[t0, ;] S* and y,:[%,, 1,1 S by setting y,(t)=V(q, at) and y,(z)=V(q, pt).
Let z; =7, (t0)=17,(%) and z,=7v,(¢;)=7,(%;). Then y; and 7y, are both one-one arcs
in $* joining z, to z,, since each geodesic from g meets o or B at most once. Therefore
either

1) yuy,=S8" or

2) y1=72

Suppose that case 1) holds. Then any geodesic y starting at g intersects a [ #o, ¢, | U
uB[te, L1<E(p, q)U E(q, r) at least twice, including one intersection point of the
form y(¢), t>0 and one point of the form y(¢’), ¢’ <0. Consider the geodesic y such
that y'(0)=lim,, , ¥(g, yt). By proposition 2.7 y never intersects a=E(p, q), so that
y must intersect f=E(q, r) at least twice by the preceding remark. This contradicts
the fact that any maximal geodesic through g meets E(q, r) at most once, and hence
case 1) is eliminated.

Suppose that case 2) holds. Choose any number t€(t,, ¢;). By hypothesis the geo-
desic y,,, meets B(7, #,) in some point f(¢*), and B(¢*)#a(¢) since E(p, ) E(q, r)
consists of the points a(t,), a(t). If B(¢*) lies between g and «(t), then g and «(¢) lie
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on opposite sides of E(q, r). Hence «(t,, t;) and ¢ lie on opposite sides of E(q, r).
If «() lies between g and B(r*), then it follows similarly that B(%,, #,;) and ¢ lie on
opposite sides of E(p, g). We shall only obtain a contradiction to the first possibility
since the second reduces to the first by interchanging the roles of p and r.

We are given that a(f,, #,) and q lie on opposite sides of E(g, r). Define a continuous
map ¢: [, t;] = E(q, r) by setting ¢(¢) equal to the unique point of intersection of
V4 With E(g, r). The fact that y, =y,, the hypothesis of case 2), implies immediately
that the point sets ¢ [#,, ¢, ] and [, 7,] are equal. Let g: H— R be given by g(a)=
=d(p, a)—d(q, a). Then g(ot)>0 for any number re(t,, t,) since ¢(¢) lies between ¢
and a(r) and g is strictly monotone decreasing on the segment y,,,. Therefore
(g°B)>0o0n(,, 7,), which implies that go f has a global maximum in (7, #,) by lemma
2.8b and the fact that g vanishes at 7, and 7,. Lemma 2.8b implies further that either

i) y,, meets E(g, r) in a point z and ¢ lies between p and z or

ii) y,, meets E(q, r) in a point z, and r lies between p and z.

We treat these cases separately.

If i) holds then g(z)=d(p, z)—d(q, z)=d(p, g)>0. Thus z=pg(¢) for some ¢ in
(7o, 7,) since (g f)<0 on (— 0, Ty] and [, ). If 1*€(¢,, t,) is that number such that
B(t)=0(t*), then y,, meets E(p, q) twice, once between p and g and once at a(1*),
which is beyond z=f(¢)=¢(¢*). This contradicts the fact that any geodesic from p
meets E(p, q) at most once.

Suppose that ii) holds. Then y,, meets E(p, r) at a point y between p and r and
meets E(r, g) at a point z as assumed. The point r is thus an interior point of the seg-
ment y,,. Now if u and v are the points of intersection of E(p, ¢) and E(r, q) then they
are equidistant from p, ¢ and r and hence also lie in E(p, r). Let 6 be the canonical pa-
rametrization of E(p, r) with u=06(ty), v=05(t;") and #5 <t;". As in case 1) earlier we
let S* denote the unit vectors in T,(H). Define continuous curves 6, : [#o', ¢;] —» S* and
05:[%, 1] S by 6,(t)=V(r, 6t) and &,(¢t)=V(r, pt). Then 6, and §, are both
one-one arcs in S! joining V(r, u) to V(r, v). Either

1) 6, ué,=S" or

2) 8,=4,.

The case 1) is impossible by the same argument used earlier in the proof. Suppose that
0y=0,. We show first that yed[t5, ;] and zeB[1o, 1,]. By the definition of z, goB
has a global maximum at ¢*, where (¢*)=z, and t*&(%,, 1,). Moreover, V(r, z) is an
interior point of 8,. Now &, does not contain any pair of antipodal points of St if
V(r,a) and V(r, b)=— V(r, a) both lay in 8, for points a, b in B[, #;], then the
geodesic y,, = V+a=7Y,» Would intersect E(q, r) at a and b, contradicting the fact that
any geodesic containing r meets E(g, r) at most once. Therefore d, is an arc in S* of
length <7. The fact that V(r, z) is an interior point of é,, whose endpoints are V(r, u)
and V(r, v), now implies that # and v lie on opposite sides of the maximal geodesic
Yrz="7pr Now 8 [¢5, t{] is a curve joining u to v so d must intersect y,, in a point y*,
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Since y,, meets E(p, r) in the points y and y* it follows that y=y*. Thus yed ¢, t;].
The previous work has shown that V(r, y)ed, and V(r,z)=—V(r, y)€d,. Since
0, =0, by hypothesis, the geodesic y,,=y,,=7,, meets E(p, r) (and E(q, r)) twice, on
opposite sides of the point r. This contradiction completes the proof of the proposition.

Proof of proposition 2.9. We have already observed that dR, is contained in the
union of the sets E(p, ¢p), e D. Let a point geOR, be given. The proper discontinuity
of D implies that g is contained in only finitely many equidistant sets E(p, ¢;p),
1 <i<n. Since only finitely many of the sets E(p, ¢p) meet any compact neighborhood
of g, it follows that for a sufficiently small open set 0 containing ¢ and any ¢eD —
—{¢1,.., n}, 0SIntE* (p, ¢p)={reH:d(p, r)<d(¢p, r)}. Choose xe0—R,; this
can be done since gedR,. Moreover, let p, ¢ and x be noncollinear. The geodesic seg-
ment y,, meets OR,, and in fact if y,, intersects E(p, ¢p) then ¢pe{¢,,..., ¢,} by the
way in which 0 was chosen. Now y,, meets each of the sets E(p, ¢, p) at most once so
there are a finite number k <7 of intersections of y,, with (Ji-{ E(p, ¢;p). Let y,.(t),
1<i<k, be these intersections, where t;<t;,,, and let r be that integer such that
7px(t1)€E(p, ¢,p). Note that y, (1) lies in exactly one of the sets E(p, ¢;p) since the
unique point of intersection of any two sets E(p, ¢;p), E(p, ¢;p) is g.

We assert that E(p, ¢,p) isabounding side. Lett*e(,, t,) be arbitrary. If z=1y, (1*)
then the geodesic segment y,, intersects E(p, ¢,p) but not E(p, ¢p) if ¢ #¢,, ¢ #1.

Therefore d(p, z)<d(¢p, z)if ¢ #,, ¢ #1 andze (.E™ (p, ¢p). However z¢ R, since

b*or
d#1

7,2 intersects E(p, ¢,p), implying that d(p, z)<d(®,p, z). This proves that E(p, ¢,p)
is a bounding side.

Proof of corollary 2.10. If A denotes the intersection of these sets it is clear from
the definition of R, that R,= A. If R, were a proper subset of 4, then for any point ¢
in 4— R, the geodesic segment y,, would meet dR, in a point g* in the interior of y,,.
By the preceding result g* lies in some bounding side E(p, ¢p), which implies that
points on y,, beyond ¢*, in particular ¢, lie in H—E*(p, ¢p). This contradicts the
hypothesis that ge A< E ™ (p, ¢p).

Proof of proposition 2.11. We first establish the following

LEMMA 2.11. If R,nE(p, ¢p) is nonempty, then R,n E(p, ¢p) is an arc con-
nected subset of E(p, ¢p).

Proof. We may assume that R,n E(p, ¢p) contains at least two points, for other-
wise the result is vacuously true. Let ¢, and ¢, be two points in E(p, ¢p) R,. Giving
E(p, ¢p) the canonical parametrization o, we know that q; =u(s) and ¢, =a(t) for
some numbers s and 7. We may assume that s<t¢. If «(u)e H— R, for some number u
with s<u<t, then a(u)e H—E ™ (p, yp) for some nonidentity element y #¢. Let
f:H—R be the function given by f(r)=d(p,r)—d(yp,r). Now f(xs)<0 and
f(at)<0 since a(s) and a(z) lie in R,. On the other hand f(au)>0 by hypothesis.



The Cutlocus of Noncompact Finitely Connected Surfaces 39

Hence foa equals zero at some points s* and ¢* with s<s*<u<t*<t. Therefore
E(p, ¢p) " E(p, Yp) contains the distinct points «(s*) and a(z*), contradicting propo-
sition 2.8. Therefore o [s, t]< R, E(p, ¢p).

We begin the proof of proposition 2.11. Suppose that E(p, ¢p) " R, is nonempty
but E(p, ¢p)is not a bounding side of R,. Assuming that E(p, ¢p) n R, contains more
than one point we see by the previous lemma that E(p, ¢p) N R, consists of an entire
subarc of E(p, ¢p). Let g be an interior point of E(p, ¢p) " R,, and choose a number

¢>0 such that the set A=B,(q) N E(p, ¢p) is a compact subarc of E(p, ¢p) that is

contained in R,. In particular A=dR,. (B.(g) denotes the closed ball of radius & and
center g in H). Let y,,..., {; be those elements of D such that E(p, y;p), 1 <i<k, are
the only bounding sides of R, that intersect 4. The element ¢ is not equal to ¥, for
any i since E(p, ¢p) is not a bounding side of R,. Hence E(p, ¢p)n E(p, Y;p) is at
most one point for each i by proposition 2.8. Therefore the set 4A—(J*_, E(p, y;p) is
an infinite set. Let r be an arbitrary point of point of A — (-, E(p, ¥,p). Proposition
2.9 implies that r lies in some bounding side of R, since redR,. However, the only
bounding sides of R, that meet 4 are E(p, y;p), | <i<k, contradicting the choice of r.
Therefore E(p, ¢p)n R, is a single point.

Next let E(p, ¢p) be a bounding side of R,. We show first that E(p, ¢p)n R, is

nonempty. By definition there exists a point ¢ in () E™ (p, Yp)—R,. Let g* be the
yE1L
V#o

unique point of intersection of the geodesic segment y,, with E(p, ¢p). We claim that
q*€E(p, ¢p) N R,. For every y in D the set E* (p, yp) is starshaped relative to p, and
any geodesic from p that meets E(p, yp) leaves E™* (p, yp) after intersecting E(p, yp).
If y #¢ it follows that g*e E* (p, yp) but not in E(p, yp) since ge E™ (p, yp). Since
q*€E(p, gp)= E™ (p, ¢p) by the choice of g* it follows that g*e R, N E(p, ¢p).

We show that R, contains a set U such that g*e U E(p, ¢p) and U is open in
E(p, ¢p). If this were not the case, then we could find a sequence of points g, = (H—R,)
N E(p, ¢p) that converges to g*. Therefore we could find a sequence ¢,< D such that
b.#¢ and d(d,p, qF)<d(p, qF) for every n. There are only finitely many distinct
elements ¢, by the proper discontinuity of D since the points ¢,(p) are a bounded
sequence in H. Passing to a subsequence we may assume that ¢, =y #¢ for every n.
Since E(p, yp) is closed g*eE(p, ¥p), which contradicts the fact proved above that
q*¢E(p, yp) if Y #¢. Since E(p, ¢p)n R, contains more than one point it consists of
an entire subarc of R, by the previous lemma.

Finally we show that no interior point of E(p, ¢p)N R, can be a vertex of R,.
Suppose that ¢ is a vertex of R, and also an interior point of E(p, ¢p)n R, for some
bounding side E (p, ¢p). By the definition of vertex there exists an element Y #¢ in D
such that E(p, yp) is a bounding side for R, and ge E(p, ¥p). Relative to canonical
parametrizations «, § for E(p, ¢p), E(p, yp) we can write g=a(ty)=pf(s). There
exists by hypothesis an &¢>0 such that ateE(p, pp)nR, for |t—t,|<e. Since
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E(p, Yyp)n R, is an arc there exists some 6 >0 such that f(s)e R, for all se[so—9, 50]
or all se[sy, so+0]. Hence there exists t#1, such that |t—1,| <& and y,,, intersects
E(p,yp)n R, in a point g*. However atedR, also and since any geodesic from p
meets 0R, at most once it follows that af=g*. This implies that both g and g* lie in
E(p, ép)n E(p, Yp), contradicting proposition 2.8.

Proof of proposition 2.12. We show first that if ge E(p, ¢p)n R, then ¢ " 'qeR,
N E(p, d~'p). Let such a point g be given. Clearly ¢ "'qge E(p, ¢ ~'p) so it suffices to
show that ¢ "'geR,. For any nonidentity element y in D we know that d(yp, ¢ ~'q)
=d(¢yp,q) =d(p, q)=d(¢p, 9)=d(p, ¢ 'q). Therefore ¢ "'geR,, and this implies
that ¢ ' {E(p, ¢p) " R,} S E(p, ¢ ~'p) " R,. Reversing the roles of ¢ and ¢ ' we see
that ¢ {E(p, ¢ 'p)nR,}<E(p, ¢p)n R,, which implies that E(p, ¢ 'p)nR,<
¢ ' {E(p, ¢p)nR,} and proves that E(p, ¢ 'p)nR,=¢ ' {E(p, ¢p)nR,}. The
set E(p, p) "R, is an arc by the preceding result, hence E(p, ¢ 'p)n R, is an arc.
This implies that E(p, ¢ 'p) is a bounding side for R, again by the previous result.

Proof of proposition 2.13. Let q be a vertex of R, and suppose that g lies on three
distinct bounding sides L,=E(p, ¢1p), L,=E(p, ¢,p) and Ly=E(p, ¢;p). Fix an
orientation of the tangent space T,(H ), and set v=V(p, q). For each positive number
¢ we let B (v)={weT,(H):|w|=1 and 0< ¥ (v, w)<e} and B; (v)={weT,(H):
[wl=1 and —e< < (v, w)<0}. By ¥ (v, w)>0 (respectively <0) we mean that the
pair {v, w} is positively (respectively negatively) oriented relative to the given orienta-
tion of T,,(H). Since L is a bounding side of R, for each i the point g is an endpoint of
some arc B; contained in L; N R,. Therefore for each i=1, 2, 3 we can find a number
;>0 such that one of the following two possibilities occurs:

i) For any vector weB;: (v), 7, intersects L; N R,,.

ii) For any vector we B, (v), v,, intersects L;\ R,,.

Since we have three bounding sides L,, L,, Ly we can find an ¢>0 such that one of
the half neighborhoods of v, say B; (v), corresponds to two of the bounding sides.
Denote these sides by L and L’. Now L n L’ = {q} by proposition 2.8 so thatif we B, (v)
is not equal to v, then y, meets LN R, and L'n R, in distinct points r and r’'. The
points r and r’ both lie in dR,. However, any geodesic y from p intersects R, in at
most one point g, for if ge E(p, ¢p) for some ¢ #1 in D, then all points on y,, beyond
q lie in H—E* (p, ¢p). We have obtained a contradiction to our assumption that g
lies in three bounding sides of R,.

Proof of proposition 2.14. Since gedR,, q lies in some bounding side E(p, ¢p),
¢eD, by proposition 2.9. One of the elements {¢, ¥}, say ¢, is not equal to &. If
E(p, ¢p) is a bounding side of R,, then we are done so we may suppose that E(p, ¢p)
is nct a bounding side of R,. By proposition 2.11 E(p, ¢p) N R, is the single point g.
Let o be the canonical parametrization of E(p, ¢p), and let f: H— R be the function
r—d(&p, r)—d(p, r). Now g=u(t,) for some number #,, and hence (foa)=0. Since
&p # ¢p lemma 2.8a implies that foais nonzero at any relative maximum or minimum
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point. Therefore ( fo«) has no relative maximum or minimum at ¢,, and lemma 2.8b
implies that foa is strictly monotone in some neighborhood U of t,. Therefore either
i) (foa)(t)>0 for t>ty, teU or
ii) (foa)(¢2)>0 for t<t,y, teU.
Without loss of generality we may assume that i) occurs. Let ¢, be any sequence of
numbers such that t,> ¢, for eachnand t, > t, asn—» 0. If ¢, =a(t,), then g, H—R,

since E(p, ¢p) 0 R,=q=a(t,). By assumption (foa) (t,)=d(¢p, 4,)—d(p, 4,)>0 for
large n. The geodesic segment y,, meets dR, in a point r,, and by the triangle in-

equality d(p, r,) < d(p, r,) + d(ry, q,) + d(r,, &p) — d(q,, Ep) = d(p, 4.) — d(ép, 9,) +
d(r,, Ep)<d(&p, r,). Hence r, does not lie in E(p, ¢p) for large n. Since r, is a bounded
sequence in the boundary of R, proposition 2.9 and the proper discontinuity of D
imply that by passing to a subsequence we can find an element ¥ #¢ in D such that
r.€E(p, yp) for all n and E(p, yp) is a bounding side of R,. Passing to a further sub-
sequence we may assume that r, converges to a point r in E(p, ¥p). Since r, lies on the
geodesic y,,, for every n it follows that r lies on the geodesic y,,. Hence y,, meets 0R,
at both g and r, and this implies that r=g since a geodesic starting at p can meet dR,
at most once. Therefore ¢ lies on the distinct bounding sides E(p, ¥p) and E(p, &p),
which by definition means that g is a vertex of R,.
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