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Zeta Functions and Their Asymptotic Expansions

for Compact Symmetric Spaces of Rank One

by ROBERT S. CAHN (University of Miami, Coral Gables, Florida)

and

JoserH A. WoLF (University of California, Berkeley, California)

§0. Introduction

In this paper we apply E. Cartan’s theory of class | representations [3] to derive
explicit formulae for the (-functions of the compact riemannian symmetric spaces of
strictly positive curvature. We then combine those formulae with an asymptotic
expansion of Mulholland [5] and evaluate the coefficients in the Minakshisundaram
asymptotic expansion (see [1]) of the {-function.

§1. Generalities on Compact Symmetric Spaces

We assemble the basic facts required to discuss {-functions of compact symmetric
spaces from the representation-theoretic viewpoint. In principle, everything here in
§ 1 is contained in Garth Warner’s book [6], and we refer to Warner [6] and Helgason
[4] for the original sources (of which Cartan [3] is the principal one).

Fix a compact riemannian symmetric space M and let G be the largest connected
group of isometries. Thus G is a compact connected Lie group with an involutive
automorphism ¢, and M = G/K where K is an open subgroup of G°={geG :0(g)=g},
and the riemannian metric on M derives from a positive definite invariant bilinear
form on the Lie algebra of G.

G denotes the set of all equivalence classes [#] of irreducible unitary representa-
tions 7 of G. Given [r], V, denotes the (finite dimensional complex Hilbert) space on
which 7 represents G. A class [n]eG is of class 1 relative to K if there exists

0#veV, such that n(k) v=0v for all keK,

that is if 7, has a nonzero K-fixed vector. Let us write

Gx={[n]eG: [n] is of class 1 relative to K}. (1.1)
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G acts on L, (M) through its left regular representation, that is
[l f](x)=f(g7'x) for feL,(M), geG and xeM=G/K.
This action decomposes over G as follows.

1.2. THEOREM (E. Cartan [3]. L,(M )= (r1cex Vax G unitary left G-module.

Proof. Ly(G)=Y ¢ V,.®V,, according to the Peter-Weyl Theorem. Here V,®V,,
is identified with the space of all matrix coefficient functions

fo.w@=<v, n(g)w) for v,weV, and geG

of [#]. The left and right actions of G on L, (G) are

[H(g)®r(g) f1()=r(g;" xg2),

so the action on coefficients of [r] is

{l(gl) @ r(gZ)}fv,w+ fn(gl)v,u(gz)w’

which is n®mn*.

View L,(M=G|/K) as {feL,(G):f(gk)=f(g) for geG and keK}. Writing
superscripts for invariants and 15 for the trivial 1-dimensional representation of K,
now

L,(M)=L,(G) =3¢ V.®V.
=ZG mu1t(1K, Tt* | K) V1t=ZG mu1t(1K, [/ I K) Vﬂ:
=ZGK mu1t(1K, T I K) Vn

as unitary left G-module. The latter multiplicities all=1; for example see Helgason
[4, p. 408] for a proof of Gelfand’s theorem that a certain algebra CHh(G), which is
W*-dense in the commuting algebra of /(G) on L,(M), is abelian. g.e.d.

Now let g denote the Lie algebra of G, ® the universal enveloping algebra of g,
and 3 the center of 6. Every class [n]eG maps every element of 3 to a scalar, giving
an associative algebra homormorphism that we denote

n: 3— C, infinitesimal character of [r].

Recall that the riemannian metric on M is derived from an invariant positive definite
inner product on g. If {x, ..., x,} is an orthonormal basis then ) x?e3 and depends
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only on the inner product, and as differential operator
—Y x?=4, the Laplace-Beltrami operator on M. (1.3)

If we use the negative of the Cartan-Killing form of g for the inner product,
then —Y x7=Q, the Casimir element of &, and so 4=1/(Q) on L,(M).

Define {3 (t)=) , e * where A ranges over the eigenvalues (with multiplicity) of
the Laplace-Beltrami operator (1.3). This is the trace of the heat kernel. The Minak-
shisundaram-Pleijel zeta function ), A7s is related to {, by a Mellin transform.

1.4. COROLLARY. If the riemannian metric on M is defined by the negative of the
Cartan-Killing form of g then M has {-function given by

()= meex (degree of m) e™""

where Qe 3 is the Casimir element of ®.

To specify the {-function of M we now have to describe Gy, and specify degree ()
and 7 (Q) for every class [n]eG.

The Lie algebra g decomposes under the automorphism o as g=%f+g¢ where f is

the (+ 1)-eigenspace and s is the (— 1)-eigenspace. Of course, f is the Lie algebra of K.
Choose

a: maximal abelian subspace of s, (1.5a)
and
Z. positive ac-root system on gc. (1.5b)

Define m’= {xef:[x, a]=0} and let { be a Cartan subalgebra of m. Then
h=t+a is a Cartan subalgebra of g. (1.6a)

Any choice of positive te-root system on m, specifies a choice of

Z*: positive he-root system on g¢ such that
7= {¢|.: $€Z* and ¢ |,#0}. (1.6b)

Each class [n]eG is specified by its highest weight relative to (§, Z*), and the class 1
representations have a certain remarkable property.
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1.7. THEOREM (E. Cartan [3]). If [n]eGk has highest weight A relative to
(b, Z7), then A(t)=0, that is Aeia*.

Proof. The noncompact dual g=f+is of g has Iwasawa decomposition
g=n+ia+T where 1 is the sum of its X -negative (ia)-root spaces. Writing capital
German letters for universal enveloping algebras of complexifications, now ® = RARK.
Decompose

Ve=) V,  sum of weight spaces.

Let w be a nonzero K-fixed vector and decompose
w=) w, where w,eV, ..

Then

Ve=1(®) w=n(RN) n(A) n(]) w=n(N) n(A) w
CTC(S‘R) Zwv¢0 Vn,vCZusv Zw‘,#O Vn,u'

We conclude that w; #0. As n(t) w=0 now A(f)=0. As the weights are in ih*now
Aeia*. q.ed.

1.8 THEOREM (E. Cartan [3]; S. Helgason [4], [7]). Define

At ={Aeia*: {4 Y)Y, ¥) integer =0 for all YyeXl} (1.9)
where { , ) is the Cartan-Killing form. Then

[7] - highest weight relative to (b, Z.)
is an injective map from Gy into A™. If K is connected and G is simply connected then it

is a bijection.
The proof is technical and we refer to Chapter III of Warner [6].

1.10. COROLLARY. If M is simply connected and if its riemannian metric
derives from the negative of the Cartan-Killing form of g, then M has {-function given by

()= T P@)e™® (1.11)
where
o=% Y ¢ and e.=¢ls; (1.12a)

PelX
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(+o, 6
P(A)= —— 1.12b
@= 11~ (1.12b)
and
a(D)= 1A+l —llel2=1A-+e,l2 — .l (1.120)

Proof. Write [r,] for the class with highest weight A. Simple connectivity and
Theorem 1.8 insure that

Gya[n,] > Aea”

is bijective. The Hermann Weyl Degree Formula says that [z,] has degree P (1) as
in (1.12), and it is standard that =, acts on the Casimir element by

n:(2)=A+ell*—llel* for all [r,]€G.
Here ¢=¢,+0; with {4, ¢;> =0 by Theorem 1.7, so also
1, (Q) =14+ ¢4l1* — lleqll*.
Now 7,(2)=g(4) as in (1.12) and our formula for {(¢) follows from Corollary 1.4.

g.e.d.
In the sequel we will explicitly calculate the ingredients (1.12) for symmetric

spaces of rank 1 (that is, where dima=1), obtaining explicit formulae for their
{-functions, and then study the asymptotic behaviour of these {-functions.

§2. Odd Dimensional Spheres and Real Projective Spaces

We work out explicit formulae for the {-functions of the spheres and real projective
spaces of odd dimension 2n—1,

S§2"~1=80(2n)/SO(2n—1), n>1, (2.1a)
and
P2 1(R)=52""1/{+I} =SO(2n)[O(2n—1). (2.1b)

If n=1, both are circles S'={zeC:|z|=1}={e": 0 real}. L,(S")=Y"=>, V,
where V,, is the 1-dimensional span of

fu(@®)=€"™°,  m integer.
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Normalize the riemannian metric so that the circle has length /. Then the metric is
ds?=(I/2n)* df?, so the circle has Laplace-Beltrami operator
62
= —(2=/l)? 597 S (2n)1)? m?f,,.
We conclude that the circle of length / has {-function

(o ()=1+2 T ¢ t@mm?
m=1

(2.2)

If n=2 then G=S0(4) has Dynkin diagram D,: O O. Then Z*={ay, a,}

’1 12
and X ={a} where g=g,=a=%(a;+a,), so A*={ma: m>0 integer} and g(ma)
= ||mo+ 4| — ll04l|1? = (m?+2m) ||g,lI* and we calculate

P (ma)= (m(oc:i,;l) . (m::j;;z) _(m+1).

Using the negative of the Killing form to specify the riemannian metrics of S3 and

P3(R), the tables at the end of Bourbaki [2] show <{a;, > =14, s0 |lo 2 =4<a; +a,,
o, +a,>=4%, and

0
‘:ss(t)='- Z (m+1)2 e—t(m2+2m)/4-.
m=0

(2.3a)
It is classical that =,,,(—I)=1 just when m is even, so also
Cpa (R) (t)= Z (2r+1)2 e—t(’2+’). (23b)
r=0

Now we assume n>3 in (2.1) so that G=S0(2n) is a simple group of type D,,
and denote its Dynkin diagram

O
o——o—»--._——o<“"
ay a2 An -2 O
On-—1
with

zf={a}, o4|,=a and ocila=0 for i>1.
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Relative to an appropriate positive multiple of the Cartan-Killing form, ih* has
orthonormal basis {e;,..., ¢,} such that

o;,=¢—¢&,4, for 1<i<mn and a,=¢,_,+¢,.

Thus Z* consists of the roots ;+¢; for 1 <i<j<n, and so a=¢; and ¢; +¢; (1<j<n)
are the roots that restrict to a.
Now

n—1

AT ={me: m>0 integer}, g,=(n—1)e, and g=Y (n—j)e;.
j=1

If 1<i<j<n then (g, &;¢;>={(n—i)x(n—j)} llesl|?, so

’ ii' 1 . _"1 i' —
{me, +0, € sj>=1 1fi>1,-m+(n )+ (n—j)

ek B

That gives us

tom+2n—j—1 m— 1+] m+n—12""3m+k

P(me,)=[]

A o1 i n—1 4=1 k

Recall from the tables at the end of Bourbaki [2] that |le;||?=1/4 (n—1). Now
q(me;)=lmey +0,)1> = ll@gl® = {m?* + 2m(n—1)}/4 (n—1).
Now Corollary 1.10 gives us

2.4. THEOREM. Let S2"~! denote the sphere of odd dimension 2n—1, n>3, with
riemannian metric of constant positive curvature induced by the negative of the Cartan-
Killing form of SO(2n). It has {-function

& {m+n 12” Sm+k

Cszn 1() ZO I—I } -t{m2+2m(n—-1)}/4(n—1). (25)

The real projective space P2" ! (R)=S2""1/{ £ I} has {-function given by summing
the summands of (2.5) whose representations [7,,, ] occur in L,(P?"~1(R)), that is
the ones with a vector fixed under the subgroup SO(2n—1)u(—1,,):SO(2n—1).
These are the [=,,, ] whose kernel contains —1,,, which are easily seen to be the ones
for which m is even.
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2.6. COROLLARY. Let P*""'(R) denote the real projective space of odd dimen-
sion 2n—1, n>3, with riemannian metric of constant positive curvature induced by the
negative of the Cartan-Killing form of SO(2n). It has {-function

2r+n— 1 2n-39r 4+ k

H k }e—t{rz-i'r(n'-l)}/(n‘*l)' (2-7)

{pan-1 gy ()= ZO{

§3. Even Dimensional Spheres and Real Projective Spaces

We work out explicit formulae for the {-functions of the spheres and real pro-
jective spaces of even dimension 2n,

S*"=80(2n+1)/SO(2n), n=>1, (3.1a)
and
P>"(R)=S*"|{£1}=50(2n+1)/SO(2n) x O(1). (3.1b)

G=S0(2n+1) has Dynkin diagram

B: O—0— - — Y

ay a2 In-1 %n

with
T ={a}, al‘a=a and a;|,=0 for i>1.

Arguing as in §2 one proves

3.2. THEOREM. Let S*" denote the sphere of even dimension 2n with riemannian
metric of constant positive curvature induced by the negative of the Cartan-Killing form

of SO(2n+1). It has {-function

Con ()=

m=0

{2m+2n 12" 2m+k

e—t{m2+m(2"—1)}/(4n_2). (33)
2n—1 k=1 k

and

3.4. COROLLARY. Let P*"(R) denote the real projective space of even dimension
2n with riemannian metric of constant positive curvature induced by the negative of the
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Cartan-Killing form SO(2n+1). It has {-function

{pan (ry ()= Z

r=0

4r+2n——1 2n-22p4 k
{ 2n—1 kD1 k

}e—t{2r2+r(2n—l)}/(2n—1). (35)
§4. Complex Projective Spaces
We state the formula for the {-function of the complex projective spaces

P"(C)=U(n+1)/U(n)x U(1)=SU(n+1)/S(U(n)x U(1)) (4.1)

of complex dimension n, real dimension 2a. Since P'(C) is the sphere S?, already
considered in §3, we will work under the hypothesis n>1. Then a glance at the case
n=1 of (3.3) will show our conclusion valid in general.

G=SU(n+1)/{e**™* 1)} has Dynkin diagram

Ay O = O — - O
ay az xn
with
Tt={o, 20}, oy|e=0=0,|,, o],=0 for I<i<n.

Arguing as before and using the case n=1 of Theorem 3.2,

4.2. THEOREM. Let P"(C) denote the complex projective n-space with riemannian
metric induced by the negative of the Cartan-Killing form of SU(n+ 1). It has {-function

> (2m+n""1! (m+k & FrnR e
Cpn(c)(t) Z { kH()(_—A];_ ) }e t {m2+mn}/(n+1) (4.3)

§5. Quaternionic Projective Spaces
Here is the formula for the {-functions of the quaternionic projective spaces
P H(Q)=Sp(n)/Sp(n—1)x Sp(1), n>2, (5.1)

of real dimension 4(n— 1). Here note that P'(Q)=S".
G=Sp(n)/{+ 1} has Dynkin diagram

C,: ® —@ — - @ — O

xq a2 An -1 an
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with
Z={a,2a}, a|,=0, a;|;=0 for i#2.
An argument similar to that of §2 gives

5.2. THEOREM. Let P"~(Q) denote the quaternionic projective n— 1 space, with
riemannian metric induced by the negative of the Cartan-Killing form of Sp(n). It has
{-function

2m+2n—1 2~ 2m+r 23 m+s

Cpn-1(g) (1) = mZO {—““1—

e—-t(m2+2mn—m)/2 (n+1)
r=2 r s=1 s

Notice that the case n=2 is P'(Q)=S*, where both (3.3) and (5.3) provide the
same {-function

2m+3 m+2 m+1) _, w2t 3m
O (5:4)
§6. The Cayley Projective Plane
Finally, we work out the {-function for the Cayley projective plane
P?(Cay)=F,/Spin(9), real dimension 16. (6.1)

G=F, has Dynkin diagram

O -0—0_—@®

ap az a3 a4

with 2¥ = {a, 2a} where oc4|a= a and the other three ai|a=0. Relative to an appro-
priate multiple of the Cartan-Killing form, ih* has orthonormal basis {¢,, ¢,, &3, &4}
with

Uy =8—83, Ay =E3— &y, A3=84 and oa,=3%(¢;—&,—€3—¢4).
Thus X* consists of the roots
g (1<i<d), g;1e;(1<i<j<4), I(erteteste,).

Now a=4¢, and the 4 (e, +¢, + &3 +¢,) are the roots restricting to a, 2a=¢; and the
roots restricting to it are &;, &, +¢&,, &, &5, &1t &4 -
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Thus

AT = {me;:m >0 integer}, o,= lla=Lle;, o=14(1le; + Se, + 3¢5 + &4).

Now calculate

2m+11 32 m4+q 7 (m+r\? L m+4s
e a C R T
q= s

r=a\ 7 “g S

From the tables at the end of Bourbaki [2], |le;||*=1/18, so ||a||*=1/72, and thus
g(me)=|2m+11) a||> = | 11a)|>=(m* + 11m)/18.

Now Corollary 1.10 says

6.2. THEOREM. Let P? (Cay) denote the Cayley projective plane with riemannian
metric induced by the negative of the Cartan-Killing form of F,. It has {-function

2 (2m+11 2 m+q T (mr\' S mAs) o
<:p:z(cay)(t)z Z{ 1 . H . I‘I (______ n Tl pmtm?+11m/18
=1 4§ r=a\ T s=8 &
(6.3)

m=0
§ 7. The Asymptotic Expansion for Compact Riemannian Manifolds

We wish to give a brief account of the properties of the eigenvalues of the Lapla-
cian, 4, of a compact riemannian manifold. We will assume (M, g) is a compact
riemannian manifold without boundary of dimension d. Then 4 will be a self-adjoint
elliptic operator with eigenvalues 0=1,<1; <A,<---. It is known that these eigen-
values contain a great deal of geometric information about (M, g) and a tool to recover
some of this information is the zeta-function, {y(1)=) r=o e~ * The interest of the
zeta-function comes from the following theorem.

7.1. THEOREM (Minakshisundaram). If (M, g) is a compact riemannian manifold
without boundary of dimension d then there exist constants a,, n>0, such that

CM(t)=(47tt)"d/2 (a0+a1t+ <ot at- +0(tk+1))

as t/0.

Proof. See Berger [1].

In the remainder of this paper we will compute the coefficients, a,,, of the asympto-
tic expansion of {,,(f) when M is a symmetric space of rank one.
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§8. Summation Lemmas

We wish to analyze the zeta-functions derived in the first part of this paper using
certain classical summation formulas. The formulas we need will be gathered together
in this section.

8.1. LEMMA. Let f(t)=Y ze =" Then f(t)=n'2t"124+0(e"'") as t|0 and
(_ 1)kf(k)=zsez S2k e—szt__:(_%) (%)(2,(___ 1)/2 71:1/2 t—(2k+1)/2+0(e-—1/t) as th
Proof. If r(x)=e™*" we may apply the Poisson summation formula to derive

Z -5k _ 172y 1/22 p TSt (8.2)

seZ seZ

The first part of the Lemma now follows by noting that ¥ ;. e/ is 0(e~!/*). We
may now take derivatives with respect to ¢ to derive the second formula. q.e.d.

For the remainder of the paper we will define by=1, b,=(3) (3)---((2k—1)/2),
k>1. Note n'/2b,=T ((2k+1)/2).

8.3. LEMMA. Let g(t)=Y70 (2j+1) e"U*V/D™ Then

1 %) Cp
g(t)=—t+co+clt+§~! t2+...+;l_! t”+0(t"+1)
and

1) k! c
(k)(t)_( k+)1 + et Cpyqf et :;nt"-%-O(t"“)

as t|0, where

(=1

B" 1— 2—2n 1
(n+1) 2+2( )

Cn=

B, is the nth Bernoulli number.

Proof. See Mulholland [5].

Before proceeding we wish to note that Y .2, (c,/n!) t" is not convergent. There-
fore Lemma 8.3 gives an asymptotic series.

8.4. LEMMA. Let g (1)=Y0 4i+1) e VD™ and g,(t)=Y70 (4j+3)
e~ BIT3ID™ Then g, (1)+g,(1)=g(t) and
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(k) I Cn n n+1 .
g ()=1% —t+c0+c1t+---+f-it +0(t"") i=1,2
n!

(—1)k!

C
gg")(t)=—‘f(—7ﬁi— + ettt “'"t"+0(t”“)> i=1,2
n.

as t}0.
Proof. See Mulholland [5].
The last lemma of this section is similar to Lemma 8.3.

8.5. LEMMA. Let h(t)=Y 7.0 2j e’ Then

1 d dn

h(t)=“+d0+d1f+ ~2 t2+...+_, t"+0(tn+l)
! 2! n!

and

—1)k! d,
n:

as t}0 with d,=[(—1)"/(n+1)] Baps,-
Proof. A slight modification of Mulholland’s method gives the desired resulit.

§9. The Asymptotic Expansion for Odd Dimensional Spheres
and Real Projective Spaces

Starting in this section we will analyze the zeta-functions developed in §1 through
§6 using the results in the previous section. The goal of this section is to calculate the
coefficients, a,, for the symmetric spaces analyzed in §2.

M=S'. {,,(t)=f((4n*/I?) t). Consequently

2

4 -1/2
CM(t)=Tf”2(~;~ t) +0(e” ')
=1(4nt)" 12 1.0 (e~ 11).

Thus we conclude ay=1/ and a,,=0, m>1.

M=S3 [ (t)= Y (m+1)2 e " m+2mi4
m=0
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=Y pleTt(/4 (where p=m+1)

=%et/4 i p2 e—-pzt/4

p=—o

—%e"“(—l)f'@

=2l/2473/12 4 L ES =

1672 e'/4

W+ES’

therefore a,,=16n?/4™m!. ES is an error which is exponentially small as #]0.
M=P3(R).
{u(t)= io (2r+1)2 ¢~ C7H0!
- i (2r+1)? ¢~ L@+ 12 -110/4

% et/4 [Z S2 e-szt/4_ Z s2 e—szt/4]
s

eZ se2Z

e[ -nr i)+ 0]

1/2
?7 ¢4 [417 32 — 2437 1 ES

2 /4

__1/2,-3/2 _t/4 _
=n"'"1 e +ES—(4m““—jm+ES

S0 a,,=8n%/4™m!.

M=5%"1 p>3. At this point we wish to make a general comment about the
procedure we will employ in this and following sections. Though we have established
a bijection between the representations of Gy and functionals AeA™* the proper
variable to use is not A but A+¢,. This is the guiding principle behind all changes of
variable which are used in this and following sections.

® {m+n 12" 3 m+k

CM() 20 H M} —t{m2+2m(n—1)}/4(,,_1).
m

We will let s=m+n—1. Then
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u (1= (n-—l)(2n 3)!, i {I;] S—jz)}e"‘““"—1)2}t/4(n—1)

(= 1)/4)e n
5 [T ol emeos s

=2(n—-1) (2n—-3)! ez |,

We now define «, , by

n—2 n—1 5
H (S2 —]2):’ Z g, nS
Jj=0 k=0

Then

e(n—l)t/4 n—1

(2 —2)' Zz kzo Og S 2k e—sz(t/4(n 1))
S€E

—e(n 1)t/4 n-1 1" - t )
"(2n—2)!k§o°"""(‘ Vs (4(n—1)

/2 = 1)t/4 n-1 ¢ - (2k+1)/2
= ot b | ——— +ES.
(2n - 2)! kZo ko nk (4 (n — 1))

CM(t)—

Now by convolving the series we conclude that

22n 1 n (n l)n 1/2

n—1/2-2k
Op— 1~k nDn—1-14 if m<n
(2n 2)!k=0 k! " non

and
2t m (1)
a,,= o o nbm—- _ 4m-1/2—-2k
(2n—2)!k§,. k! mok= Lnmmkd
ifm>n.

M=p2"-1 (R). To compute the asymptotic expansion for the projective spaces we
take s=r+ (n—1)/2. Then

2r+n—12n-3 2r+k 4r—1/2 n-1
- 4(s°—(j/2))= o ,,S
o =Gy L4602 5o £

4n 1 n—1
Cu ()=

(n—1)t/4 ro2i —~s2t/n—1
(2 "‘2)' ¢ SGIZ/2Z jgo aj,ns ¢
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4r1 o=t/ Z 1f(1)< _t”)
(2n 2)' j 4(n—1)

4n 1 1/2 t —(2j+1)/2
R

Therefore

4n—1nn m n__l n—1/2
(=17

Jj—1/2 :
a,,= : n—1-j, 4~ if m<n
(2”—2)!j=0 ]! S0

n—1-—j

and

4n—1 n i (n_l)m—I/Z
aAm= T T
2n=2)! ;5. !

_.'_.12 .
Uy i1, wOm—j 1477 i mzn.

§10. The Asymptotic Expansion for Even Dimensional Spheres
and Real Projective Spaces

M=S?". As in the preceding section we will change variables to utilize the lem-
mas of §8. Recall that

{n ()= Z

m=0

2m+2n— 12h2 i+k -—t{m2+m(2n—l)}/4n-—2.
2n—1

k=1
We will let s=m+(n—1/2). Then

2m+2n—1 2"'2m+k 2s n—3f2

[1 [T (%)= zﬁ,,, ,

2n—1 k=1 k (2’1 1)'1 1/2 (2 —-])' £

where the product runs through the half-integers which are not integers. Also
t{m*+m(Q2n—1)}/4n—2=t{s*—(n—1/2)*}/4n— 2. Therefore

(=124 b 2j+1 2¢/4 ( 1/2
j -S4t n—
)= (2n—1)! >Zl/2 'Zo Bruds™ e )
. 2 j=
e(” 1/2)t/4 n—1 ” ;
1 J J
=t & e Y (e i)
Thus

(4n)> ™ (n—1—m+k)!

= gl (gL g e
" (2n—1)!4S0 k! ( 2) Bn-1-m+x, m<n
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and
(4n)" k! +2k+2
R A e B ___]2m n 4n m
S (2n—1)'\¥=o (m— n+k+l)'(n 2) P
+mzn nzl _-1)J J+kﬂ1 "ﬁ(,i »1_(2_)_n.1__n,ﬁ4" '")
k=0 j=0 k'(m—n—k)!
if m>=n.

M=P?*"(R). Recall that

o] 2 2
— < {%’:{_-3’?-4 [ 2’”-}—/{} e—t{2r2+r(2n—1)}/2n—1

2!1—] k=0 /\'

We will let s=r+((2n—1)/4). Then

4r+2n—12"222r 4+ k 4s  n3/2 j* 4s nZl .
i T —— 4s? - = (28 2j
2n—1 le k (211-—1)!1':1—_1[/2( 4) (2 .._.])Y Z ﬁj ( )

and

t{2r? +r(2n——l)}/(2n——1)—-t<2s —2(2—11;) )/(Zn—l)-

Then

ol ((2n—1)/8) n—1

Cu()= e 3T B ds(2s)
(2 _1)' s21/2 j=0

Dy o ¢
=i B ()

where i=1 if n is odd and i=2 if n is even.

Thus
_ (47'C)nw~_ m (n—l_nl'jf‘k)' 4n—m—1(n_]/2)n—m+2k+1 ﬁ,
"S- Kk R
if m<n and
47" n—1 k! i n—m
am=~~(—~)—— v (n—1)2)" "+ 2+2 g 4
2(2n—1)1\iSo (m—n+k+1)!
m—-nn—1(_ 1}J . ] o i = =2k
N Z Z (=1)c ,+kﬂ1,n(n 1/2) 4"_'”> if m>n.

k=0 j=0 k'(m—n—k)!

17
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§11. The Asymptotic Expansion for Complex Projective Spaces
We will have to treat P"(C) with 2 separate arguments according to whether n is
odd or even. The reason for this division is that when » is even g, A" while when n

is odd o¢A*. The treatment of the 2 cases will then differ only in that when 7 is even
we will use Lemma 8.3 while for n odd we will use Lemma 8.5.

M=P"(C), n odd

2m+n""! im+k\?
¢ —t{m2+mn}/(n+l)'
CM( ) Z { kI-:Ilg( k ) }e

Let s=m+(n/2). Then

2m+n n—1 m+k 2 n/2—1 2s n—2
I (== T ™
n k=1 k n'(n 1)'1 1/2 n!(n—l)!k=o

and ¢t {m?+mn}/n+1=t{s*—(n/2)*}/n+1. Therefore

tn2/4 (n+1) n—2

e 2k+1 | —s2t/(nt+1)
{u(t)= '(n D1E Z Yk, n s;;,/z 2s e
M4 (m+1) n-2 ) )
==t ("1 g (1/(n 1)),
Thus
L n—t-m 2"(n m+k—2)!
= ”'(” 1)14= Z (n+1) Il Yn—m+k=2,n

if m<n—1 and

4 n—1 n—2 k' n 2(m—n+2+k) N
-—__(__)_____(Z (E) yk,,,(n+1) m-1

am—n!(n——l)! K=o (m—n+2+k)!

m-n+1 2 k=2 (1Y 9. c ie s
+ Z ( n ) o 2 ( ) y;,n m—-n+1-k+j (n+1)m—-n+1—k)

if m=>n—1.

M=P"(C), n even. Since n is even we will let n=2n,. If s=m+n, then we will
write

no—1

n—1 n—2
[T (m+k)*=T] (s*=i*)*=Y ins™
k=1 k=0 k=0
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Then
rof/n+ 1) n2 2k+1 /(n+1)
_ _sz, n
e (1)= nl(n—1)!,= Z yknsz;o >
tng2/(n+1) p-2 .
=S X (0 a1 (n 1),
Thus
(47t)"1 s 2k(n m+k—2)!

Z(+])n1m

a nemik—2.n I m<n—1
m= n'(n—l)' X Yn-m+k-2,

and

nZ(m n+2+k) ')’k,,(n‘l‘l)n m-—1

(4zy~! (n-z k!

am=n‘(n~1) k o(m n+2+k)'

m—-n—1 2 1 n-2 _11 o d. o
+ Z ( ) —y (1) Byt s - (n+1)'"""“"‘) if m>n—1.

k=0 n+1 k!j:() (m—n+1—k)!

§12. The Asymptotic Expansion of Quaternionic Projective Spaces
If M=P"1(Q), n>2 then recall that

X IMm+2n—1""2m4r2"-2m4+P

CM() Z __________1______ H - H T —t(m2+2mn—m)/2(n+1).

r=2 r P=1

We will let s=m+(n—1/2). Then

2m+2n—1 Z'i_'lz m+r z'ﬁ3 m+P _ 2s "ﬁlz(sz_jz)”_ﬁ/z (s%=j?)
2n—-1_ r=2 r P=1 P (Zn 1)'(211 3)'1 1/2 j=1/2

2s 2n—-3 .
~(2n—1)!(2n—3)! 2, Ours
t(m* +2mn—m)2(n+1)=t(s*—(n—1/2)*)/2(n+1).

Therefore

et (n—1/2)2/2 (n+1) 2p-3

Cp ()= O 257t e
u (1) 2n—-1)!(2n-3)! kZO s>21:/2 “

t(n 1/2)2/2 (n+1) 2n-3

= 2D En3)] & e (70
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Thus

(4m)*" 2 m ((n—1j2)*\* 2n—3—-m+k)!
“m"(zn—l)z(zn—s)!k=o<2(n+1)) k! anm3mmrkon
if m<2n—-2
and

(47'[)2"_2 2n—73 (n_1/2)2 2(m+2n—-3-k) k! 5
= 2n—1)12n=3)\ & \ 2(n+1) (m+2n—3—Fk) b
&t (n— 1/2)2k 233 (= I)J JnCi+m—k

+ )

o 2X(n+1) k! ,-Z (m—k)!

> if m>2n-2.

§13. The Asymptotic Expansion of the Cayley Projective Plane

We will deal with the Cayley projective plane by letting s=m+ 11/2. Then

P(me,)= 1 13'7' 25(s2=(1/2))2(s*= (3/2)*) 2 (s*—= (5/2)*) (s> = (7/2)*) (s* = (9/2)?)
3! ?
“m 2 X
with
170 10,437 262,075 2,858,418
ny=1, ’76=““"’4*“a Ns=- 16’ '14=—*‘*6;r—, ’73'—““2‘5—6—*,
13,020,525 18,455,239 8,037,225
=" 02a 0 T 4006 0 1T T 16384

t(m*+11m)[18=1(s*—(11/2)%)/18 so

3! L
=" Q121/72): 252t g
€P2(Cay) 711! jzos;l:/Z’7 ’
3!
7'11' e(121/72) ¢ Z ’71( 1)1 (’)(t)
Therefore
121 (7=m+k)!
. .
O 7'11:( ) Z(72) o S

(m+17-k) '

. (4n)’ Z 121) k!
71111 72 T (m+7—k)!

+m28 (121/72)k 7 (—1)J njcj'.*_m__k

)

k=0 k! j=0 (m—k)'

), if m>7.
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