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Zêta Functions and Their Asymptotic Expansions

for Compact Symmetric Spaces of Rank One

by Robert S Cahn (University of Miami, Coral Gables, Flonda)

and

Joseph A Wolf (University of Cahfornia, Berkeley, California)

§0. Introduction

In this paper we apply E Cartan&apos;s theory of class 1 représentations [3] to dérive

explicit formulae for the (-functions of the compact nemannian symmetric spaces of
stnctly positive curvature We then combine those formulae with an asymptotic
expansion of Mulholland [5] and evaluate the coefficients in the Minakshisundaram

asymptotic expansion (see [1]) of the (-function

§1. Gêneralities on Compact Symmetric Spaces

We assemble the basic facts required to discuss (-functions of compact symmetric
spaces from the representation-theoretic viewpoint In pnnciple, everything hère in
§ 1 îs contained in Garth Warner&apos;s book [6], and we refer to Warner [6] and Helgason
[4] for the original sources (of which Cartan [3] îs the principal one)

Fix a compact nemannian symmetric space M and let G be the largest connected

group of isometries Thus G îs a compact connected Lie group with an involutive
automorphism a, and M=G/Xwhere Kis an open subgroup of G&lt;T={geG v(g)=g},
and the nemannian metnc on M dérives from a positive definite invariant bihnear
form on the Lie algebra of G

G dénotes the set of ail équivalence classes [71] of irreducible unitary représentations

n of G Given [71], Vn dénotes the (finite dimensional complex Hilbert) space on
which n represents G A class \_n~] e G îs of class 1 relative to K if there exists

0j=veVn such that n(k) v=v for ail keK,

that îs if Vn has a nonzero Â&apos;-fixed vector Let us wnte

ôK={\_n~]eô [tt] is of class 1 relative to K} (1 1)
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G acts on L2 (M) through its left regular représentation, that is

[/(*)/] to^/te&apos;1*) for/e£2(M), geG and xeM=G/K.

This action décomposes over GK as follows.

1.2. THEOREM (É. Cartan [3]. L2(M) £WeeK ^ as unitary left G-module.

Proof. L2{G)=Y.ù Vn®K* according to the Peter-Weyl Theorem. Hère Vn®Vn.
is identified with the space of ail matrix coefficient functions

fv,w(g) (v&gt; n(g) h&gt;&gt; for v, weVn and geG

of [tt], The left and right actions of G on L2(G) are

so the action on coefficients of [71] is

{I(gi)®r(g2)}fv&gt;w+ fnigl)V}n(g2)w,

which is tt®7c*.
View L2(M=G/K) as {feL2{G):f(gk) f(g) for geG and fce#}. Writing

superscripts for invariants and lx for the trivial 1-dimensional représentation of K,
now

71* | K) Vn=£ô mult(lK, n\K)Vn
t|K) Vn

as unitary left G-module. The latter multiplicities ail 1 ; for example see Helgason
[4, p. 408] for a proof of Gelfand&apos;s theorem that a certain algebra C$(G), which is

W*-dense in the commuting algebra of /(G) on L2(M), is abelian. q.e.d.

Now let g dénote the Lie algebra of G, © the universal enveloping algebra of gc,
and 3 the center of ©. Every class [7c]e(j maps every élément of 3 to a scalar, giving
an associative algebra homormorphism that we dénote

n • 3 &quot;~* C&gt; infinitésimal character of [7c].

Recall that the riemannian metric on M is derived from an invariant positive definite
inner product on g. If {*l5..., xn} is an orthonormal basis then £ *fe3 and dépends
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only on the inner product, and as differential operator

_£ xf A, the Laplace-Beltrami operator on M. (1.3)

If we use the négative of the Cartan-Killing form of g for the inner product,
then — ]T xf Q, the Casimir élément of (5, and so A =l(Q) on L2(M).

Define Cm(O Za e~Xt where A ranges over the eigenvalues (with multiplicity) of
the Laplace-Beltrami operator (1.3). This is the trace of the heat kernel. The Minak-
shisundaram-Pleijel zêta function Xa^&quot;s *s related to (M by a Mellin transform.

1.4. COROLLARY. If the riemannian metric on M is defined by the négative ofthe
Cartan-Killing form ofq then M has ^-function given by

C(O IWeôK (degreeof n) e~tn^

where Oe3 is the Casimir élément of®.
To specify the £-function ofM we now hâve to describe ôK, and specify degree (n)

and n(Q) for every class [_n~]eôK.

The Lie algebra g décomposes under the automorphism a as g 1 + 5 where î is
the (+ l)-eigenspace and s is the (— l)-eigenspace. Of course, ï is the Lie algebra of K.
Choose

a: maximal abelian subspace of s, (1.5a)

and

Z* positive ctc-root System on gc. (1.5b)

Define m&apos; {xel: \_x, a] 0} and let t be a Cartan subalgebra of m. Then

ï) t + a is a Cartan subalgebra of g. (1.6a)

Any choice of positive tc-root System on tnc spécifies a choice of

I&quot;1&quot; : positive î)c-root System on gc such that
^«+= {&lt;t&gt; |«: &lt;l&gt;eZ+ and 0 |a#0}. (1.6b)

Each class [n]eô is specified by its highest weight relative to (t), Z+), and the class 1

représentations hâve a certain remarkable property.
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1.7. THEOREM (É. Cartan [3]). // [&gt;]e&lt;3K has highest weight X relative to

(I), I+), then A(t)=O, that is Âe/a*.
Proof. The noncompact dual g ï + /s of g has Iwasawa décomposition

§ n+/a+ï where n is the sum of its Z*-négative (m)-root spaces. Writing capital
German letters for universal enveloping algebras of complexifications, now ©
Décompose

Vn Y, V*&gt;v sum of weight spaces.

Let w be a nonzero K-ûxed vector and décompose

w=YJwv where wveVnv.

Then

((5) (5R) («O n(R) w n(9t) n{%) w

We conclude that wA^0. As 7c(t)w 0 now A(t) O. As the weights are in /ï)*now
Ae/a*. ^.^.c/.

1.8 THEOREM (É. Cartan [3]; S. Helgason [4], [7]). Define

A+ {Xeia*: &lt;A, ^&gt;/&lt;^, ^&gt; wteger ^0 /or a// ^e2;a+} (1.9)

where &lt; &gt; is the Cartan-Killing form. Then

[n]-*highest weight relative to (f), Z*)

is an injective mapfrom ôK into A + .lfKis connected and G is simply connectée then it
is a bijection.

The proof is technical and we refer to Chapter III of Warner [6].

1.10. COROLLARY. If M is simply connected and if its riemannian metric
dérivesfrom the négative ofthe Cartan-Killing form o/g, then M has Ç-function given by

U(0= E PWe~&quot;&gt;w (1.11)

where

e=i £ &lt;t&gt; and Qa=e\a; (1.12a)
4 +
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and

2-\\Qa\\2- (U2c)

Proof. Write [tta] for the class with highest weight À. Simple connectivity and

Theorem 1.8 insure that

is bijective. The Hermann Weyl Degree Formula says that [tta] has degree P (X) as

in (1.12), and it is standard that nk acts on the Casimir élément by

)=n+ Q\\2-\\Q\\2 for ail MeÔ.

Hère Q Qa + Qt with &lt;A, £t&gt; 0 by Theorem 1.7, so also

Now nx(Q) q(X) as in (1.12) and our formula for £(f) follows from Corollary 1.4.

q.e.d.
In the sequel we will explicitly calculate the ingrédients (1.12) for symmetric

spaces of rank 1 (that is, where dimct=l), obtaining explicit formulae for their
(-functions, and then study the asymptotic behaviour of thèse (-functions.

§2. Odd Dimensional Sphères and Real Projective Spaces

We work out explicit formulae for the (-functions of the sphères and real projective
spaces of odd dimension 2n — 1,

S2&quot;&quot;1 SO(2n)ISO(2n-1), »&gt; 1, (2.1a)

and

21 -l). (2.1b)

If w=l, both are circles S* {zeC:\z\ \} {eie: 0 real}.
where Vm is the 1-dimensional span of

fm(eie) eime9 m integer.
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Normalize the riemannian metric so that the circle has length /. Then the metric is
ds2 {lj2n)2 dO2, so the circle has Laplace-Beltrami operator

A -(2n/l)2 d—2:fm^(2*//)a m%.
Ou

We conclude that the circle of length / has Ç-function

Çsl(0 l + 2 £ e-t{2nmll)2 (2.2)
m=l

If n 2 then G=SO(4) has Dynkin diagram D2: O O. Then I+ {a1,a2}

and Z* {(x} where ^ ^a=a ^(a1 + a2), so A+ {mat: m^O integer} and q(mtx)
and we calculate

(ma + Q,^) (mot + Q, a2&gt;

P(ma) — —•— -—
&lt;^,ai&gt; &lt;^,a2&gt;

Using the négative of the Killing form to specify the riemannian metrics of S3 and

P3(R), the tables at the end of Bourbaki [2] show &lt;af, af&gt; i, so ||^a||2 i&lt;a1 + a2,

=i, and

(m2+2w)/4. (2.3a)
m 0

It is classical that 7rma( — /)= 1 just when m is even, so also

2e-&apos;(&apos;2+&apos;&gt;. (2.3b)
r 0

Now we assume «&gt;3 in (2.1) so that G=SO(2n) is a simple group of type Dn,
and dénote its Dynkin diagram

/O — O — ••• — O ^ &quot;n

with

i;tt+ {a}, oct\a=oi and afja=O for/&gt;l
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Relative to an appropriate positive multiple of the Cartan-Kiliing forai, iï)* has

orthonormal basis {eî,..., en} such that

^ 81-61+! for l&lt;/&lt;« and aw en-i + ew.

Thus E+ consists of the roots ef±£y for 1 &lt;/&lt;/&lt;/!, and so a ej and

are the roots that restrict to a.

Now

integer}, go (« — l)e, and g= £ (n~~j)
j i

If l^i&lt;j^n then &lt;g, af±e,&gt; {(/i-i)± («-./)} UeiH2&gt; so

{ms^Q^^Sj} m + (w-l)±(«-;)
1 II I &gt; 1 r— II 1=1.

(Q,£i±ej&gt; (nl)±(nj)
That gives us

&quot;

m + 2n-j-i m-l+j^m + w-1 2|!Z3 m + k

Recall from the tables at the end of Bourbaki [2] that ||e1||2 1/4 (n-1). Now

Now Corollary 1.10 gives us

2.4. THEOREM. Let S2&quot;&quot;1 dénote the sphère of odd dimension 2n-1, «&gt;3, with
riemannian metric of constant positive curvature inducedby the négative ofthe Cartan-

Kiliing form ofSO(2n). It has Ç-function

n ^Li) (25)
m=o n —1 k=i k J

The real projective space P 2lt &quot;1

(R) S2&quot;
&quot;l

\ { ± 1} has Ç-function given by summing
the summands of (2.5) whose représentations [7rmei] occur in L2(P2n~1(R)), that is
the ones with a vector fixed under the subgroup SO(2n— \)v(—I2n)&apos;SO(2n—l).
Thèse are the [7rmei] whose kernel contains -/2n, which are easily seen to be the ones
for which m is even.
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2.6. COROLLARY. Let P2n~1(R) dénote the real projective space ofodd dimension

2n—\, «&gt;3, with riemannian metric of constant positive curvature inducedby the

négative of the Cartan-Killing form of SO(2n). It has (,-function

00 (Jr4n 1 9r
C*-.w(0= Z f-^-J- II ^L-^-*-^-». (2.7)

r=o l n — \ u=i k

§3. Even Dimensional Sphères and Real Projective Spaces

We work out explicit formulae for the £-functions of the sphères and real
projective spaces of even dimension 2n,

S2n SO(2n+l)ISO(2n), /i$*l, (3.1a)

and

P2n(R) S2nl{±I} SO(2n+\)ISO(2n)x 0(1). (3.1b)

G=S0(2n+1) has Dynkin diagram

Bn: O — O — ••• — O •
with

!^ {a}, a!|tt=a and a,|a 0 fori&gt;l.

Arguing as in §2 one proves

3.2. THEOREM. Let S2n dénote the sphère of even dimension 2n with riemannian
metric of constant positive curvature inducedby the négative ofthe Cartan-Killing form
ofSO(2n+l). It has i-function

and

3.4. COROLLARY. LetP2n(R) dénote the realprojective space of even dimension
2n with riemannian metric of constant positive curvature induced by the négative of the
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Cartan-Kilhng Jorm S0(2n+ 1) It has (,-functwn

2r2+r(2n_1))/(2B_1) (3-5)

§4. Complex Projective Spaces

We state the formula for the Ç-function of the complex projective spaces

(4.1)

of complex dimension n, real dimension 2n Since Pl(C) îs the sphère -S2, already
considered in §3, we will work under the hypothesis n&gt; 1 Then a glance at the case

n 1 of (3.3) will show our conclusion valid in gênerai
G SU(n+\)l{e2Klk/(n+l)I} has Dynkin diagram

An: O - O — O
«i «2 a,,

with

£+ {a,2a}, ax |a=a an|a, a.^0 for l&lt;i&lt;n.

Arguing as before and using the case n= 1 of Theorem 3.2,

4 2. THEOREM. Let Pn(C) dénote the complex projective n-space with nemannian
metnc inducedby the négative ofthe Cartan-Kilhng form ofSU(n+ 1). It has ^-function

w=o l n k=

§5. Quaternionic Projective Spaces

Hère îs the formula for the £-ftinctions of the quaternionic projective spaces

(5.1)

of real dimension 4(^-1). Hère note that Pl(Q) S4.

G Sp(n)/{±I} has Dynkin diagram

CH: •__#____... ^-# — O
ai a2 ocn-i «n
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with

Za+ {a,2a}, a2|ft=a,a,|a=0 for i#2.

An argument similar to that of §2 gives

5.2. THEOREM. Let Pn~i(Q) dénote the quaternionicprojective n — 1 space, with
riemannian metric induced by the négative of the Cartan-Killing form of Sp(n). It has

Ç-function

&amp;.-.„&lt;.&gt;- i P£^- n&quot;=fr- !ff&quot;^L—¦&gt;.
m=o 2/i~l r=2 r s=i s J

Notice that the case « 2 is P1(g) 54, where both (3.3) and (5.3) provide the

same £-function

MO- Z pp^.^le-.^+3-w (5.4)
m o (^ 2 1 J

§6. The Cayley Projective Plane

Finally, we work out the Ç-function for the Cayley projective plane

P2(Cay) F4/Spin(9), real dimension 16. (6.1)

G=F4 has Dynkin diagram

O - O—=• — •
ai «2 «3 «4

with I+ {a, 2a} where a4|0=a and the other three ^^=0. Relative to an appro-
priate multiple of the Cartan-Killing form, fï)* has orthonormal basis {el9 e2, e3, e4}

with

a1=g2-e3, a2 e3-£4, a3 e4 and a4

Thus I+ consists of the roots

i(e1±fi2±e3±e4).

Now a=^e1 and the i(e1±e2±e3±e4) are the roots restricting to a, 2&lt;x el and the

roots restricting to it are el9 si±s29 Bt±s39 6i±e4
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Thus

A+ {me^ra^Ointeger}, Qa \\&lt;x=^e1, ^ ^Cllej + 5e2 + 3e3 4-e4)•

Now calculate

ri
s=8 S

From the tables at the end of Bourbaki [2], ||e1||2 l/18, so ||a||2 l/72, and thus

Now Corollary 1.10 says

6.2. THEOREM. Let P2 (Cay) dénote the Cayley projective plane with riemannian
metrie induced by the négative of the Cartan-Killing form ofF4. It has (,-function

(6.3)

w.,,«&gt;- î ££!• n ^- n (—Y- ii

§ 7. The Asymptotic Expansion for Compact Riemannian Manifolds

We wish to give a brief account of the properties of the eigenvalues of the Lapla-
cian, A, of a compact riemannian manifold. We will assume (M, g) is a compact
riemannian manifold without boundary of dimension d. Then A will be a self-adjoint
elliptic operator with eigenvalues 0 A0&lt;A1^A2&lt;--. It is known that thèse
eigenvalues contain a great deal of géométrie information about (M, g) and a tool to recover
some of this information is the zeta-function, Cm(0 Z?=o e~Xkt. The interest of the
zeta-function cornes from the following theorem.

7.1. THEOREM (Minakshisundaram). If (M, g) is a compact riemannian manifold
without boundary of dimension d then there exist constants an, «&gt;0, such that

as 40.
Proof See Berger [1].
In the remainder of this paper we will compute the coefficients, am, of the asymptotic

expansion of ÇM(t) when M is a symmetric space of rank one.
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§8. Summation Lemmas

We wish to analyze the zeta-functions derived in the first part of this paper using
certain classical summation formulas. The formulas we need will be gathered together
in this section.

8.1. LEMMA. Letf(t) YseZe-s2t. Then f(t) nmrlf2 + 0(e-Ut) as f|0 and

(-l)V(k) Xsez^fe^&quot;s2f œ(f&gt;-&lt;2^-l)/2 7r1/2r(2fc+1)/2 + 0(^-1/V^10.
Proof. If r(x) e~x2t we may apply the Poisson summation formula to dérive

£ e-^ n^r1/2 X e-«2s2/t. (8.2)
seZ seZ

The first part of the Lemma now follows by noting that Yjs*o e~n2s2/t is 0(e~i/t). We

may now take derivatives with respect to t to dérive the second formula. q.e.d.
For the remainder of the paper we will define bo=l, ** (£)(!)—((2£-1)/2),

8.3. LEMMA. Let g(0 lJU (2/+ 1) e-u+1/2)2t. Then

and

as t[0, where

Bn is the nth Bernoulli number.

Proof. See Mulholland [5].
Before proceeding we wish to note that ]j^=o (cjnl) f is not convergent. There-

fore Lemma 8.3 gives an asymptotic séries.

8.4. LEMMA. Let g^EJU (4/+ 1) e^2j+ll2)2t and g2(t) Z?=0 (4/+3)
w+3/2)2&apos;. Thengl(t)+g2(t)=g(t) and
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i=\,2

as ?|0.

Proof. See Mulholland [5].
The last lemma of this section is similar to Lemma 8.3.

8.5. LEMMA. Let h{t) Y,7=oVe~j1&apos;. Then

h{t)J~+d0+dlt+d~2t2 + - +
d&quot;

t 2! n\

and

as 40 with &lt;/„= [(-1 )&quot;/(/!+1)] fi2n+2.
Proof. A slight modification of Mulholland&apos;s method gives the desired resuit.

§9. The Asymptotic Expansion for Odd Dimensional Sphères
and Real Projective Spaces

Starting in this section we will analyze the zeta-functions developed in § 1 through
§6 using the results in the previous section. The goal of this section is to calculate the
coefficients, an, for the symmetric spaces analyzed in §2.

M=SX. Cm(0=/((4tt2//2)0. Consequently

2 \~1/2

Thus we conclude ao l and am 0,

=^3- Cm(0= Z
m 0
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£ p2e-&apos;(p2-l)l4- (wherep=m
p=0

therefore am=l6n2/4mml ES is an error which is exponentially small as /|0.

M=P3(R).

Cm (0=1
r=0

e Z s e 2Z

soam=87r2/4mm!.

M=S2a~i, n^3. At this point we wish to make a gênerai comment about the

procédure we will employ in this and following sections. Though we hâve established

a bijection between the représentations of ôK and functionals 1gA+ the proper
variable to use is not X but X + Qa. This is the guiding principle behind ail changes of
variable which are used in this and following sections.

lm=o

We will let s=m + n-l. Then
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î {

((n-l)/4)f rn_2 ^j

l(n — l) {ln — 5)\ s6z (j=o J
(9.1)

We now define cckn by

n-2

j=o

Then

\2n — 2)\
s2(tf4(n-l))

-(2k+l)/2
+ES.

Now by convolving the séries we conclude that

am - £ OLn_i-.knbn-l-kAn~il2~2k if m&lt;n

and

k\

f=P2n~1(R). To compute the asymptotic expansion for the projective spaces we
^ r+(«~l)/2. Then

— 1 2n~3

n
An-1 n-1

(2«-2)! sel/2Zj 0
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p(n-l)t/4 y t A-Jf(j)t A-Jf(

ah-1 1/2

Therefore

4n~1nn m (n-l)n~l/2

and

4&quot;&quot;V * (n-l)m&quot;&quot;1/2

§10. The Asymptotic Expansion for Even Dimensional Sphères
and Real Projective Spaces

M=S2n As in the preceding section we will change variables to utilize the lem-
mas of §8. Recall that

We will let s m + (n-1/2). Then

1 2n~2 m 4-k 2? n-3/2
2 2N_s J )~

where the product runs through the half-integers which are not integers. Also
t {m2 + m(2n-I)}l4n-2 t{s2-(n-l/2)2}/4n-2. Therefore

(n-l/2)t/4 n-le _s2r/4(n_1/2)

j=o

f-lVeO) - I
(«-l/2)/

Thus

_
(4nf - («-1-,
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and

m-nn-l(_\\Jr û

+ Y Y CJ+kPj1nVJ__

4Â *!(m-/!-
if

M=P2&quot;(R). Recall that

00 f4r4-2/7—1 2n~2

r o 2«— 1
fc o A: J

We will let s r + ((2n- l)/4). Then

and

-2 / \ï s l 2 l ^&quot;tl — A

Then

/4. „-! / f

APj-n{ } gl
\2(2/1-1)

where /= 1 if « îs odd and / 2 if n îs even.
Thus

if m&lt;n and

1 M

kto (/M-/i + fc + l)!
,m-/t + 2fc + 2 nt An-m

/il/
ifc!(m-«-Jfc)!
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§11. The Asymptotic Expansion for Complex Projective Spaces

We will hâve to treat P&quot;(C) with 2 separate arguments according to whether n is

odd or even. The reason for this division is that when n is even QaeA* while when n

is odd q$A*. The treatment of the 2 cases will then differ only in that when n is even

we will use Lemma 8.3 while for n odd we will use Lemma 8.5.

M=Pn(C), n odd

Let s=m+(nl2). Then

n»&quot;1 (m+k\2 2s n/^\ 2 .2,2
2s2s ^\ 2 .2,2
2s

r,2k

and t{m2 + mn}/n+l t{s2-(n/2)2}ln +1. Therefore

tn2/4(n+l) n-2

»!(«-1)!^
Thus

\\n — lj!k=o /
«12/4(11+1)»-2

(-l)kyk,ngik)(tl(n+l)).

iîm&lt;n—\ and

,-fV &quot;2

Y1 &quot;y

k 1 n-2 r_iV&apos;M n ,m-n+l-k
-k)\

if m ^ « — 1.

M=P&quot;(C), « even. Since n is even we will let n 2n0. If j=m+n0 then we will
write

&quot;ri (&quot;o &quot;i2

k=l
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Then

CM(t)= £ yk,n £ 2r--e
f/io2/(n+l) n-2

Thus

am --~—-- ^ (« + l)&quot;~1~m «o
^ ^-7n-m+fc-2,n if m&lt;w-l

and

§ 12. The Asymptotic Expansion of Quaternionic Projective Spaces

If M=Pn~i(Q), n&gt;2 then recall that

CM(r)=
m 0 1n — \ r=2 J&quot; P=l i*

We will let s=m + («-1/2). Then

2m+2n-l -- m + r^ m + P 2, -f) n
II ^Z«-^; lj=l/2 j=1/2

2^ 2M&quot;3

Therefore

f(n-1/2)2/2 (n+l) 2n-3

\Zn— \)\(2n — 3)! fc=o

f(n- 1/2)2/2 (n+1) 2n-3
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Thus

(4n)2n~2 * /(n-li2)2\k(2n
m (2n-l)l(2n-3)\k%\2(n + l) J k\ *.-*-»+*.»

if m&lt;2n-2
and

m £j

-m tfm&gt;2n-2.

§ 13. The Asymptotic Expansion of the Cayley Projective Plane

We will deal with the Cayley projective plane by letting s=m+11/2. Then

3! 7

^2 y 2J2s y rjiSuni j=o
J

with

170
_

10,437
_

262,075 _2,858,418
rjj — 1, rj6— — ^5 —T7 7/4= — r]3= ——

4 16 64 256

13,020,525 18,455,239 8,037,225
n lÎÔ24 &apos; rll4œ69 l|° T67384

so

3»
r — (I2l/72)fCp2(Cay)-—-— ^

/ 11 ï

3!

7

Therefore

3!

ik!
1k

ifw&lt;7

-k)l
(121/72/ &apos; (-i

Ç
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