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Extrinsic Bounds on A, of A on a Compact Manifold

Davip D. BLEECKER and JoeL L. WEINER

1. Introduction

Although the Laplacian of a Riemannian manifold M is an intrinsic object (as
well as the first nonzero eigenvalue A;), upper bounds on A; may be computed in
terms of extrinsic quantities (e.g. principal curvatures) of M relative to some
isometric embedding of M into some euclidean space E™. In order to convey
some idea of the results we obtained, the following is a special case of Theorem I:
For a compact orientable surface S immersed in E>, A, is bounded above by the
average of the sum of the squares of the principal curvatures over S. Equality is
achieved only in the case of a constant curvature sphere. Theorem I actually
applies to manifolds with arbitrary dimension immersed with arbitrary codimen-
sion. A somewhat sharper result is found in Theorem II with the additional
assumption that the mean curvature vector is parallel.

The primary means of obtaining these results is the minimum principle [1, p.
186] for A;, namely A, =inf {{ | df|*/fm f*:fmf=0, fe C' (M)}, and the infimum
is achieved only for f such that Af = A,f. To obtain interesting results, we choose f
such that df contains some geometric information, f»f=0, and then state
A =[m |df* /s f*. Actually we consider a parameterized family of such f say f,,
a € A, where A is a manifold endowed with a measure and integrate both sides of
A1 Smfa=fum|df.)? over A to eliminate the parameter.

2. Definitions and Statements of Main Results

In general we follow the notation of [3]. Let x:M— M be a isometric
immersion and let V and V be the covarient differentiations on M and M
respectively. For vector fields X and Y tangent to M, we define the vector field

h(X,Y) by

VxY =VxY+h(X,Y) [equation of Gauss].
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602 DAVID D. BLEECKER AND JOEL L. WEINER

The normal bundle valued (symmetric) 2-tensor h on M is called the second
fundamental form. For a normal vector field N on M we set

VxN =—An(X)+DxN [equation of Weingarten],
—An(X) and DxN being the tangential and normal parts of VxN. We have
<AN(X), Y) = (h(Xa Y)a N)-

The mean curvature vector field n is defined by m(p)=1/n trace h=
1/ndY7-1 h(e;, &) =1/nY -+ (trace A,)e, where A, = A, and (e;) is an o.n. frame
of T,M and (e,) is an o.n. frame of T,M". We shall adopt the convention that
latin indices run from 1 to n and greek from n+1 to m. Of course, we set
|AL? =Y (Aa(e), Aa(e)) and |AP =Y, |AL).

THEOREM 1. Let M be a compact orientable n-manifold isometrically im-
mersed in euclidean space E™. Then A;<[vol (M)]™" [s |A|* with equality only in
the case where M is a constant curvature sphere isometrically embedded in an n+1
dimensional subspace of E™.

THEOREM II. With M as above and assuming m is parallel in the normal
bundle, A;<[vol (M)]™" fs |A.|?, where e=n/H and H=|y|.

3. Proof of Inequality in Theorem I

Let x: M — E™ be an isometric immersion. Now dx =(dx;)é;+: - - +(dx,,)ém
where (é,,...,€,) form a standard o.n. basis of E™ and x(p)=
xi(p)é;+ - -+ + xm(p)ém, p€ M. Thus the dx;’s are 1-forms on M. We let (dx;)é; A
(dx;)é; = (dx; A dx;)(& A €) and extend this product in the natural way to A*(M)®
A*(E™) (i.e. by linearity and (a®e)A(BR®f)=(aAB)®(eAf)). In this context
1/ntdxA---Adx (n times)=(dV)f for some fe A°(M)@A"(E™) where dV is
the volume element of M. For an oriented n-plane = of E™ with o.n. basis
(ay,...,a,) we define the function f, on M by f.(p)=(ain:--Aa,)- f(p) or
perhaps more succinctly by f,dV=(aiA---Aa,) - 1/nldxA---Adx (n times).
We note that f,dV=d[(aiAn--Aa,) 1/n! xAdxA---Adx] is exact, whence
IM fn =0.

To derive a formula for f, more amenable to calculating df,, we note that we
may write (locally) dx =) w;e; where e; is an o.n. frame field of M defined on a
neighborhood of some point of M (here we identify vectors tangent to M with
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their images under xy) and the w; are the one-forms on M dual to the e, This is
because dx, considered as an E™-valued one-form on M, is the identity map
under the above mentioned identification. Thus 1/n!dxA-:-Adx=
(Win---Awy)(ern - -Ae,)=dV(eyA - -Ae,). Thus f=e;A - -Ae, and fo=
(@1A: - Aan) (1A - Aey)=(Ansr1A* " *AGnip) * (€ns1A* - *A€nsp) where n+
p=m and (a,,...,an) and (e,, ..., e,) are oriented o.n. bases of E™. To avoid

WIiting a,.+1A** *Aan4, repeatedly we replace this expression by #. Now df, =
d(.Sﬂ LTS RAN '/\en+p)

=Z.sd-en+1/\' cAde N Nepyp
o
=Zéﬁ- Cni1 A" -/\Z Wai€i A** *Aelpip
a i
=-—Z hi(d - ensin - "AENA" - Aeuip)W
a,i

where [(de,)(X)]"=—A. (X) =Y wai(X)e; ==Y hiw;(X)e; for X tangent to M.
Note de,(X) 1 e,. Here the super a indicates the a-th slot in the product.

2
2
|df .| =Z (Z—h?}s&-enﬂx\- CCAETAC -/\en+p)
j a,i .

= Z h‘,-’}hﬁ(sd S epei At CAECTAT T Aenip)
j’i’l’a’ﬁ

X (A eni1 At AP A" - Aenip).

By the minimum principle for A, we have A; [ f2={fu |df.|*. However, the
unwieldy expression for |df,|* leaves much to be desired. Hence we integrate both
sides of the inequality with respect to 7€ G(p, n) =oriented p-planes in n+p-
space. To this end we apply Fubini’s Theorem obtaining A, fy [ f2dmdV =<
fm Sa |df|* dm dV. In integrating |df,|* with respect to = we consider h, hf and
the e’s to be fixed and o =a,«1A -+ Aa,+p to vary. We need only consider

B

I (A enraiA - AETA " Alnip) (A nr1iNt  ACTA" " Aenyy) d.
G

Upon reflection (pardon pun) we see that the above is 0 unless i =1 and a = B, for
otherwise {en+1,...,€5, ..., €nipt#{nsr1, ... ef,...,ensp} and reflection of
E™P in a hyperplane perpendicular to a vector in one set but not in the other,
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induces an isometry of G under which the integrand changes sign. Thus the above
integral is

Si,SaBJ (A-e 1A NETA-- -/\e,,ﬂ,)2 d1r=8.-,6a,3‘[ f2 dm
G G

and g |df.|* dm=Y..;(h5)* fc f~ dw. Hence

'\II f;’-,dwj dV=A1J jfidvdVSJ J |df.|* dmw dV
G M M JG M JG

=J fz,dwj Y (h3? dV.

o, b, j

Dividing by Js f2 dm gives us the desired result

A1 vol (M)SI Y (h3)? dV=J i

M a,ij

4. Equality in Theorem I

In this section we show equality holds in Theorem I only in the case where M
is a constant curvature sphere isometrically embedded in an n+1 dimensional
subspace, E"*', of E"*".

If we assume equality holds in Theorem I, then for almost all =€ G(n, p)

J |d(4 - ) dV

I\1=
J‘ It - 82 dV
M

where d=7" and €=e,+1A"* *Aensp Thus, for almost all 7€ G(n,p), the
minimum principle implies that - A€=A(A - €)= A,(A-E) =" (A;¥); hence
A€=)1,€. We suppose A;=n, taking a homothetic transformation of E"*? if
necessary.

We now compute A€ at a point me M. Let e, e,, ..., e,p be a frame field in
a neighborhood of x(m) such that e,,...,e, are tangent to M and hence
€n+1, - - - s €n+p are normal to M. Suppose that e, ..., e, are parallel in TM at m,
and e,+1,. .., €n+p are parallel in TM™* at m. In fact, we may assume D,D,e, =0,
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1=i=n, n+1=<a=<n+p, by supposing that e¢; and e, are obtained from e;(m)
and e,(m) by parallel translation along geodesics through m in TM and TM™,
respectively.

Now, A€=—-Y_, ;€. In a neighborhood of m, we have

n+
e€= Zo eni1 A cAdeg(e)N Nepyp

a=n+1

== ene1A - AAL(E) A" - ‘/\en+p+z ensiA* *AD (e)A - Aepsp
[s 4

a

using Weingarten’s equation; we have set A, = A,. At m,

ee; €= Z 1N ANAL(e)A - ANAg(E)A" - Aenyp
a*3

— Z en+1 /A" *ANAL(e)A “ADgeg A+ " Aenip
a#*

_Z (S WA AN Ve,Aa(ei)/\' **N€nyp
o

_Z S R AN 'Ah(ei, Aa(ei))/\' **Nén+p
a

- Z ens1iA ADge N ANAp(E)A- - Aensp
a#B

== Z en+1i A" *ADges A ADeeg Nt Newsp
a#p

_Z en+s1A* " *AApe (8N Aenip
[0 4

+Z eniiN***AD D.ey A+ Aepyp.
@

In the preceding equation, the third and fourth terms arise from Gauss’ equation.
Also, note that the second, fifth, sixth, seventh and eighth terms vanish since
D.e.=0 and D.D,.e, =0 at m. Thus

A%=_Z Z en+1/\"'/\Aa(ei)/\'"/\Aﬁ(ei)/\"'/\en+p
i aB

+2. Y niiA AVLAL(E) A" Alnip
i a

+Z Z enr1A* *Ah(e, Ag(@))A: - Aenip
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We now consider each term on the right-hand side of the preceding equation
separately.

-Z Z enti N AAL(E)N ANAg(e)A- - - Newsp

i a#p

=— Z Z ensiA* - Ahfe A AhGe A Aenyp
a#p ijk

D) [Z hghﬁ—h?khﬁ]en+lA- CCAETAT T AERAT Al

a# B j<k i

== 2 L (R*(€) x)las €a)enriA* " AEEA " AEEA- Al
a#®Bj<k

where R* is the curvature tensor of TM™.
Z Z eniiN AV Ag(@)N  Nepsp
i «

=Z Z enin AV, AL(€), e)ejN - *Aenip

a ij

*

= Z Z enriN A (V Au(e), e)ens - - Aenyp
a ij

=ZZ enin: - -AndH,(e)en - -Nepsp
a j

=nz enii A" AVH A< - Aepip,

o

where (*) follows from the Equation of Codazzi, which holds since e, is parallel in
TM™* at m. Also H, and VH, denote the mean curvature and the gradient of the
mean curvature in the direction of e,.

Z Z (2 A S AN h(ei, Aa(ei))/\' **Nényp
= Z Z S A 'A<h(ei’ Aa(ei))’ eB)eBA' ’ 'Aen+p

i o,

=2 T (Au(0), Aal@eniin® * Aeniy =|A[S.

Thus,
A'£=|A|2°8+nz entiA*AVH A *Aepyp

- gﬂ ;k (R* (e}, €x)€a €p)ens1 A * "AETA* *AERA* * *Apnip.
« J
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Thus A¥€=n% if and only if the following hold:

1) |AP=n.

2) VH, =0, for all a; this is equivalent to n being parallel in TM".
3) (R*(ej, ex)ea, €g) =0, for all j, k, a, B; that is, TM™ is flat.

We will show that 1) and 2) imply x(M)=S"c E"*'c E"*?, We set e,,,=
—n/H. Then A(x/nH) = e, since Ax =—nn. Thus [ (a - €,+;) dV =0 for all unit

vectors a in E"'P. Also de,,;=—Ap+; since e,., is parallel in TM™. Using the
minimum principle for A; again, we have

n §j |d(a - en+1)|2/j (a- en+1)2=J la - An“lzlj (a- eni1)’
M M M M

or

nj (a-ens1)’= J la - Anil”.
M M g
We integrate this inequality over all a € S™*? ~! use Fubini’s Theorem, and obtain
nV= I |An+1|2.
M

But |A,+1]*<|A>= n. Thus |A,+1[>=]|A?=n. Let €442, ..., a4, be an orthonor-
mal basis of the complement of e,.; in TM". Then |A,.2|=|Apis|=-: =
|An+p|=0. Thus Apiz=":++=A,+p =0. Let F be the p—1 plane in € orthogonal
to e,+1. It is easy to show that d¥F =0 since F=e,.2A" - -Ae,ip and A, =0 for
a=n+2,...,n+p. Hence ¥ =const. Thus x: M — E"*! where E"*'is a (n+1)-
plane orthogonal to %.

We must now prove that if x: M" — E"*! is an immersion for which |A[*=n
and H =constant then x embeds M as a standard sphere in E"*'. Consider
y=x+m:M— E""' Then Ay = Ax+An=—nn+nn=0 since An=|A]* n=nn.
By Hopf’s Theorem y = constant. Thus the image of x is in a sphere with center y
and radius |n|= H. Clearly then H=1. Since M is compact x(M)=S". For n=2,
this is enough to imply x is an embedding. For n =1 we use the fact that M and
its image have the same length, 2, to prove x is an embedding.

It is natural now to ask what can be said about an isometric immersion
x:M — E™*? of a compact orientable n-dimensional manifold M into E""? when
A% = )%, where A is a constant, not necessarily A;. We will characterize such x
when n=1, 2, or p=1, or M has nonnegative sectional curvature.
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PROPOSITION. Let M be a compact orientable n-dimensional manifold.
Suppose x:M — E""? is an isometric immersion with A€=\%, where A is a
constant. Then the following hold:

i) if n=1, x is a covering map onto a circle in a 2-plane of E'*?;

ii) if n>1, and p=1, then x embeds M as standard sphere in an (n+1)-plane
of E"P and A = Aq;

iii) if n=2, then M has constant nonnegative Gaussian curvature, and is
characterized in iv);

iv) if M has nonnegative sectional curvature, then, identifying M with its image,
M is a product submanifold, M™ X - - - X M™, where M™ is an n;-sphere of radius r;
in an n; +1-plane of E™*?; moreover, A =Y1-, nj/r?.

Proof. As above, A€= A% if and only if 1) |A|*>= A, 2) n is parallel in TM",
and 3) TM" is flat.

One can easily show that i) follows from 2).

The argument in the last paragraph of the proof of Theorem I proves ii).

The scalar curvature r=n>H*—|A[*. Hence for n =2, M has constant Gaus-
sian curvature. Since 2) and 3) hold we may conclude from Lemma 2.5 [2, p. 108]
and Theorem 2.1 [2, p. 106] of Chen that either x maps M into a 3-plane, E>, of
E**? or x maps M into a 3-sphere, S°, in a 4-plane of E**?. Moreover, M has
constant mean curvature relative to $>. If x maps M into E> then clearly M is a
standard 2-sphere. If x maps M into S° as a minimal surface, then M is a
standard sphere or is flat by a theorem of Lawson [4]. If x maps M into S> with
constant nonzero mean curvature then M is a standard sphere or is flat by a
theorem of Klotz and Osserman [2, p. 118].

Finally, iv) follows from 2) and 3) and the fact that M has nonnegative
sectional curvature by a theorem of Erbacher, Yano and Ishihara [2, p. 139]. One
may easily compute A =|A*=Y1_; n/r?.

5. Proof of Theorem 11

In proving Theorem II we use the fact that for the immersion x: M — E™, we
have Ax=(Ax.,..., AX,,)=—nn where A is the laplacian on M, n =dim M, and
1 =mean curvature vector of M < E™. Thus for any unit vector ae E™, A(x - a) =
nn-a and since fpyAf=0 for any fe C*(M), we have [ym-a=0. By the
minimum principle for A; we have A;fpm(n:a)’<fy|d(n-a)’. Now
din-a)X)=X(n-a)=(-A,(X)+Dxn)-a=—-A,(X)-a=—-HA.(X)-a since
Dxn=0. Thus |d(n-a)=Y.H*(A.(e)-a)> and [sn1l|d(n-a)f>da=
H?Y,|A.(e)f fs~ (v - a)® da where v is a fixed unit vector. Thus integrating



Extrinsic Bounds on A; of 4 on a Compact Manifold 609

both sides of the above inequality with respect to “a” and applying Fubini, we
obtain

dV=/\1'[ J (n-a)’dVda
M

sm—l

)\IHzJ (v-a)? daj
sm——l

M

sj J |d(n - a)|* dVda= HZJ’ (v-a) daj LA ()P
s JMm sm-t M

and dividing by H? fg~- (v * a)* da gives us A, vol (M) =<[p |A.|*.

Remark. There are indications that in certain cases the upper bound of
Theorem I is not so good, especially when M is close to being ‘“‘extrinsically
creased.” For example, if one considers a family of oblate spheroids in E> with
fixed intrinsic diameter but with minor axes approaching 0, the upper bounds of
Theorem I approach infinity. However, by a result of Cheeger, A, is bounded by
k[diam M]~? for some large constant k depending only on the dimension of M [1,
p. 189].
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