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Extrinsic Bounds on Ai of 4 on a Compact Manifold

David D. Bleecker and Joël L. Weiner

1. Introduction

Although the Laplacian of a Riemannian manifold M is an intrinsic object (as
well as the first nonzero eigenvalue Ai), upper bounds on Ai may be computed in
terms of extrinsic quantities (e.g. principal curvatures) of M relative to some
isometric embedding of M into some euclidean space Em. In order to convey
some idea of the results we obtained, the foliowing is a spécial case of Theorem I:
For a compact orientable surface S immersed in E3, Ax is bounded above by the
average of the sum of the squares of the principal curvatures over S. Equality is

achieved only in the case of a constant curvature sphère. Theorem I actually
applies to manifolds with arbitrary dimension immersed with arbitrary codimen-
sion. A somewhat sharper resuit is found in Theorem II with the additional
assumption that the mean curvature vector is parallel.

The primary means of obtaining thèse results is the minimum principle [1, p.
186] for Ai, namely Ax inf {JM | 4/T7Jm/2:Jm/=0, /e C\M)}, and the infimum
is achieved only for / such that 4/= Ai/. To obtain interesting results, we choose /
such that df contains some géométrie information, JM/ 0, and then state
Ai&lt;JM |d/|2/JM/2. Actually we consider a parameterized family of such / say fa,

aeA, where A is a manifold endowed with a measure and integrate both sides of
Ai Jm/û^Jm \dfa\2 over A to eliminate the parameter.

2. Définitions and Statements of Main Results

In gênerai we follow the notation of [3]. Let x:M-* M be a isometric
immersion and let V and V be the covarient differentiations on M and M
respectively. For vector fields X and Y tangent to M, we define the vector field
h(X, Y) by

VxY-= VxY+h(X, Y) [équation of Gauss].
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602 DAVID D BLEECKER AND JOËL L WEINER

The normal bundle valued (symmetric) 2-tensor h on M is called the second
fondamental form. For a normal vector field N on M we set

VXN -AN(X) + DXN [équation of Weingarten],

—AN(X) and DXN being the tangential and normal parts of VXN. We hâve

The mean curvature vector field tj is defined by Tj(p) l/n trace h

l/nir=i fe(«i&gt; «.) lMET=n+i (trace Aa)ea where A« A«.a and (e.) is an o.n. frame
of TpM and (ea) is an o.n. frame of TPM±. We shall adopt the convention that
latin indices run from 1 to n and greek from n + 1 to m. Of course, we set

and |A|2^£a |Aa|2.

THEOREM I. Lef M be a compact orientable n-manifold isometrically im-
mersed in euclidean space Em, Then Ai ^[vol (M)]&quot;1 JM |A|2 vv/rh equality only in
the case where M is a constant curvature sphère isometrically embedded in an n + l
dimensional subspace of Em.

THEOREM II. With M as above and assuming 17 is parallel in the normal
bundle, À^volCM)]-1 JM |Ae|2, where e

3. Proof of Inequality in Theorem I

Let x:M-&gt; Em be an isometric immersion. Now dx (dxi)ëi + - • - + (dxm)êm

where (êi,...,6m) form a standard o.n. basis of Em and x(p)
*i(p)2i+ * • &apos; +^m(p)^m, peM. Thus the dx,&apos;s are 1-forms on M. We let (dxl)ël a
(dXj)ëj (dxt a dx^iët a ëj) and extend this product in the natural way to A*(M)&lt;8&gt;

A*(Em) (i.e. by linearity and (o®e)A(^/) (aAp)®(eA/)). In this context
l/nldxA&apos;-Adx (n times) (dV)/ for some fe A°(M)®An(Em) where dV is

the volume élément of M. For an oriented n-plane ir of Em with o.n. basis

(ai,..., an) we define the function f^ on M by /w(p) (aiA- • • Aan) • /(p) or
perhaps more succinctly by /,rdV (aiA- • *Aan) • 1/n! dxA- • -Adx (n times).
We note that fndV=*d[(aiA&apos; • -AaB) • 1/n! xAdxA» • »Adx] is exact, whence

To dérive a formula for /w more amenable to calculating dfm we note that we

may write (locally) dx X w^ where e, is an o.n. frame field of M defined on a

neighborhood of some point of M (hère we identify vectors tangent to M with



Extrinsic Bounds on \1 of A on a Compact Manifold 603

their images under jc*) and the w, are the one-forms on M dual to the ev This is
because dx, considered as an Em-valued one-form on M, is the identity map
under the above mentioned identification. Thus 1/n! dx a- • • Adx
(wiA- • -Awn)(ciA- • -Aen) dV(eiA-- -Aen). Thus /=CiA---Acn and /„
(aia- • -aa») -(eiA- • -Aen) (an+iA- • &apos;Aaw+P)&apos;(en+1A- • -Aen+P) where n +
p m and (ai,..., am) and («i,..., em) are oriented o.n. bases of Em. To avoid
writing an+iA* • -Aan+P repeatedly we replace this expression by si. Now d/w

i a • • • a 2 wale, a • • • a eM4-p

«+i a • • • a cTa • • • a en

where [(dea)(X)]T -ACa(X) II wttI(X)e, -I, h^w^X)^ for X tangent to M.
Note dea(X)±ea. Hère the super a indicates the a-th slot in the product.

-Aen+P)

By the minimum principle for Ai we hâve Ax Jm/I^Jm I4fir|2- However, the
unwieldy expression for [d/J2 leaves much to be desired. Hence we integrate both
sides of the inequality with respect to ir e G(p, n) oriented p-planes in n + p-
space. To this end we apply Fubini&apos;s Theorem obtaining Ai JM iofldnàV^
Jm Ig |d/ir|2 d&apos;îrdV. In integrating |d/w|2 with respect to tt we consider /i^|, hg and
the e&apos;s to be fixed and si-an+iA • • • Aan+P to vary. We need only consider

Jg
(si* en+iA« • -Ae^A- • -Aen+P)(si&apos; en+iA- • -Aef a-

Upon reflection (pardon pun) we see that the above is 0 unless i l and a 0, for
otherwise {en+1,..., ef,..., en+p}#{en+i,..., ef,..., en+p} and reflection of
En+P, in a hyperplane perpendicular to a vector in one set but not in the other,
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induces an isometry of G under which the integrand changes sign. Thus the above

intégral is

r
a ,2 f 28a oa&lt;3 I (si &apos; en+i a- • • Aet a* • • Aen+P) dir 8li8apl f^dir

Jg Jg

and JG |d/^|2 dit £„,,,, (fi£)2 JG f% dir. Hence

Aif fldA dV=A1| f fldirâvÀ f \dU\2dirdV
Jg Jm Jm Jg Jm Jg

[
Jg

f
Jm a,i,j

Dividing by JG /^ dit gives us the desired resuit

ÀlVol(M)&lt;[ Z(^)2dV=f |A|2.

4. Equality in Theorem I

In this section we show equality holds in Theorem I only in the case where M
is a constant curvature sphère isometrically embedded in an n + 1 dimensional
subspace, En+\ of En+P.

If we assume equality holds in Theorem I, then for almost ail ir e G(n, p)

[ \d(si-%)\2dV
Jm

Jm

where si 7r± and en+iA*&quot;A6n+p. Thus, for almost ail ir€G(n,p), the
minimum principle implies that si • A% A(si *%) \1(si* %):=si • (À 1*8); hence
A% Ài(8. We suppose Ài n, taking a homothetic transformation of En+P if
necessary.

We now compute A% at a point me M. Let eu e2,..., en+p be a frame field in
a neighborhood of x(m) such that eu -.. » en are tangent to M and hence

en+i,..., en+p are normal to M. Suppose that ei,..., en are parallel in TM at m,
and en+i,..., en+p are parallel in TM± at m. In fact, we may assume DePefia 0,
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l&lt;i&lt;n, n +1 &lt;a&lt;n + p, by supposing that e, and ea are obtained from e,(m)
and ea(m) by parallel translation along geodesics through m in TM and TM&quot;1,

respectively.
Now, A% -J^==i €&amp;%. In a neighborhood of m, we hâve

rt+p

«i*= L en+lA*&quot;Adea(e,)A&apos;&quot;A6B+p

-L«n+iA- • -aA^Ja- • • aen+p + £ en+ia• • &apos;aDJOa&apos; • &apos;/\en+p

oc a

using Weingarten&apos;s équation; we hâve set ACa Aa. At m,

gn+l A • • • A Aa(e,) A • • • A De,e0 A • • • A 6n

~L en+iA- • &apos;Ah(enAa(el))A- • -Aen+P
a

~ Lé en+i a • • • a Deiea a • • • a Ap(e,) a • • • a en+p

+ 2^ ^n+1 A * • • A DCj6a A &apos; • • A De,6p A • • * A en+p

~ 2-» en+\ A • • • AAD«eSei) A * &apos; &apos; A et+P
a

a

In the preceding équation, the third and fourth terms arise from Gauss&apos; équation.
Also, note that the second, fifth, sixth, seventh and eighth terms vanish since

De,ea 0 and DeiDetea 0 at m. Thus

A%=-Y Y

~ Ct)A&apos; &apos;

&apos;Aen+p
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We now consider each term on the right-hand side of the preceding équation
separately.

~Z Z en+iA--

~ Z Z en+i a • • • a h^ a • • • a hfkek a • • • a en+p

~ Z II K,h?k-Kkh?j eM+iA- • -Ae;aA- • -A -Aen+p

- Z Z &lt;l?x(e;, ek)ea, e0&gt;en+iA- •

where JRX is the curvature tensor of TMX.

tn+p

^n+iA- • -A(VeiAa(el),el)e]A-
a i,j

ZZ «n+iA* • &apos;

where (*) follows from the Equation of Codazzi, which holds since ea is parallel in
TMX at m. Also Ha and ^Ha dénote the mean curvature and the gradient of the

mean eurvature in the direction of ea.

«+iA- • &apos;Ah(el9Aa(el))A- • -Aen+P

Z Z «n+iA- ••A&lt;h(e1,Aa(ei)),^)epA- -Aen+P

Thus,

|A|2«Z FH- • • A en

- Z Z (RH^, ek)ea
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Thus A%= n% if and only if the following hold:
1) |A|2=n.
2) VHa 0, for ail a; this is équivalent to tj being parallel in TM±.
3) (K^e,, ek)ea, e^) 0, for ail /, k, a, j3; that is, TMX is flat.

We will show that 1) and 2) imply x(M) Snc£n+1cEn+p. We set en+1

-tî/H. Then A(x/nH) en+1 since 4x -m?. Thus JM (a • en+1) dV 0 for ail unit
vectors a in En+P. Also den+1 -An+1 since en+i is parallel in TM±. Using the
minimum principle for Ai again, we hâve

\d(a • en+1)|2/1 (a-en+1)2=f |a-An+1|2/f (a • en+1)2
Jm Jm Jm

or

We integrate this inequality over ail a g Sn+P~\ use Fubini&apos;s Theorem, and obtain

^\ |An
J

+1||2

But |An+1|2&lt;|A|2= n. Thus |An+1|2 |A|2= n. Let en+2, • •, en+p be an orthonormal

basis of the complément of en+x in TM±. Then |An+2| |An+3| • • •

I An+P| 0. Thus An+2 • • • An+P 0. Let ^ be the p -1 plane in % orthogonal
to en+i. It is easy to show that d&amp; 0 since 9=- en+2^&apos;

&apos; • Aen+P and Aa 0 for
a n + 2,..., n + p. Hence 3^ const. Thus x : M -&gt; En+1 where En+1 is a (n +1)-
plane orthogonal to ^.

We must now prove that if x : Mn —&gt; En+1 is an immersion for which |A|2 n
and H constant then x embeds M as a standard sphère in £n+1. Consider
y x + Tj:M-&gt;En+1. Then 4y 4x + 4tï -nTj + nT) 0 since Ar) \A\2 r) nr\.
By Hopf&apos;s Theorem y constant. Thus the image of x is in a sphère with center y
and radius |tj| H. Clearly then H= 1. Since M is compact x(M) Sn. For n 2=2,
this is enough to imply x is an embedding. For n 1 we use the fact that M and
its image hâve the same length, 2tt, to prove x is an embedding.

It is natural now to ask what can be said about an isometric immersion
x :M-* En+P of a compact orientable n-dimensional manifold M into En+P when
à% Aï, where A is a constant, not necessarily Ax. We will characterize such x
when n 1, 2, or p 1, or M has nonnegative sectional curvature.
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PROPOSITION. Let M be a compact orientable n-dimensional manifold.
Suppose x:M-»En+p is an isometric immersion with A% k%, where A is a
constant. Then the following hold:

i) if n 1, x is a covering map onto a circle in a 2-plane of E1+p;

ii) if n &gt; 1, and p 1, then x embeds M as standard sphère in an (n +1)-plane
o/£n+p and A AX;

iii) if n 2, then M has constant nonnegative Gaussian curvature, and is

characterized in iv);
iv) if M has nonnegative sectional curvature, then, identifying M with its image,

M w a product submanifold, M&quot;xx • • • x Mn\ where Mn&apos; is an nt-sphère of radius r,

in an nt + \-plane of En+P; moreover, A £,k-i njr2t.

Proof. As above, â% k% if and only if 1) |A|2 A, 2) tj is parallel in TMX,
and 3) TMX is flat.

One can easily show that i) follows from 2).
The argument in the last paragraph of the proof of Theorem I proves ii).
The scalar curvature r= n2H2-|A|2. Hence for n 2, M has constant Gaussian

curvature. Since 2) and 3) hold we may conclude from Lemma 2.5 [2, p. 108]
and Theorem 2.1 [2, p. 106] of Chen that either x maps M into a 3-plane, E3, of
E2+p or x maps M into a 3-sphere, S3, in a 4-plane of E2+p. Moreover, M has

constant mean curvature relative to S3. If x maps M into E3 then clearly M is a

standard 2-sphere. If x maps M into S3 as a minimal surface, then M is a

standard sphère or is flat by a theorem of Lawson [4]. If x maps M into S3 with
constant nonzero mean curvature then M is a standard sphère or is flat by a

theorem of Klotz and Osserman [2, p. 118].

Finally, iv) follows from 2) and 3) and the fact that M has nonnegative
sectional curvature by a theorem of Erbacher, Yano and Ishihara [2, p. 139]. One

may easily compute A |A|2 Xik=i njrf.

S. Proof of Theorem II

In proving Theorem II we use the fact that for the immersion x : M —» Em, we
hâve Ax * (âxu -.., àxm) ~-nr\ where A is the laplacian on M, n dim M, and

tj mean curvature vector of M&lt;^Em. Thus for any unit vector a g Em, A(x • a)

nrj • a and since JM4/=0 for any /eC°°(M), we hâve Jmtî#û 0. By the
minimum principle for Ai we hâve Ai JM (r) • a)2^JM \d(r) • a)|2. Now
d(r) • a){X) X(t] • a) (-An(X) + Dxt\) • a -An(X) - a -HAe(X) • a since

Dxî? 0. Thus |d(Tj • a)|2 LH2(AeW*a)2 and Js-H«*(t| • a)|2da
H2 S* lAete)!2^&quot;1-1^ &apos; a)2da where t&gt; is a fixed unit vector. Thus integrating
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both sides of the above mequality with respect to &quot;a&quot; and applying Fubmi, we
obtain

KXH2 [ (va)2da\ dV=\1\ \ (rj-afdVda
Jsm~l Jm Js&quot;1&quot;1 Jm

&lt;[ f \d(r]&apos;a)\2dVda H2\ (v - a)2 da f £ |Ae(et)|2

and dividing by H2 fs—1 (u • a)2 da gives us Ai vol (M)&lt;JM |AC|2.

Remark. There are indications that in certain cases the upper bound of
Theorem I is not so good, especially when M is close to being &quot;extrinsically

creased.&quot; For example, if one considers a family of oblate spheroids in E3 with
fixed intrinsic diameter but with minor axes approaching 0, the upper bounds of
Theorem I approach infinity. However, by a resuit of Cheeger, Ai is bounded by
fc[diam M]&quot;2 for some large constant k depending only on the dimension of M [1,

p. 189].
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